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Low‑reflective wire‑grid polariser 
sheet in the visible region 
fabricated by a nanoprinting 
process
Ryohei Hokari1*, Kyohei Takakuwa2, Hirohisa Kato3, Akitaka Yamamoto4, 
Yusuke Yamaguchi4 & Kazuma Kurihara1

For the construction of next‑generation optical products and systems, the evolution of polariser 
sheets is a necessary requirement. To this end, a low‑reflective wire‑grid polariser (WGP) sheet for 
the visible light region is demonstrated, the nanowires of which consist of a sintered body of silver 
nanoparticle ink. The nanowires are formed by a nanoprinting process using a thermal nanoimprint 
method and ink filling. This process makes it easier to achieve multiple wafer‑scale productions 
without using sophisticated equipment compared to conventional WGP nanofabrication techniques, 
which typically employ lithography and elaborate etching processes. The optical characteristics 
are controlled by the shape of the printed nanowires. A WGP sheet with a luminous degree of 
polarisation of 99.0%, a total luminous transmittance of 13.6%, and a luminous reflectance of 3.6% 
is produced. Its low reflectance is achieved through the uneven surface derived from the sintered 
body of the nanoparticle ink, and the shape of the bottom of the nanowire is derived from the tip 
shape of the mould structure. Furthermore, the printed WGP sheet has the durability required for the 
manufacturing of curved products, including sunglasses. The optical structures made of nanoparticle 
ink using this nanoprinting process have the potential to significantly contribute to the development 
of fine‑structured optical elements with unprecedented functionality.

Polarisers are essential optical elements that support vital polarisation control technologies in a wide range of 
fields such as liquid crystal displays (LCDs), polarised  sunglasses1, liquid crystal (LC) projectors, and in-vehicle 
head-up  displays2. In-vehicle devices and LC projectors are used in high-temperature, high-humidity environ-
ments, and/or environments where there is prolonged exposure to high-intensity light, so the polarisers that make 
up these products are required to have high durability (high-temperature resistance, high-humidity resistance, 
and high-intensity light resistance). In contrast, in optical systems such as LC projectors, suppression of stray light 
remains a problem, and polarisers with low reflectance are required. Similarly, in polarised sunglasses, a polariser 
having high durability and low reflectance is required in order to suppress a change in colour and to prevent lens 
reflections. However, there are no thin polarisers that exhibit both high durability and low reflectance. If such a 
polariser could be realised, it would be possible to expand into new fields in which polariser-based applications 
have been difficult, and it would be expected to open up new possibilities for the technology.

Polarisers are roughly classified into dye-type  polarisers3,4,  WGPs5–14, and polarisers using a birefringent 
crystal such as calcite. Since these polarisers have different functioning principles, they have unique character-
istics and are used appropriately according to their optical applications. WGPs used in the visible region of the 
electromagnetic spectrum have a grid structure of fine metal wires with a pitch shorter than the wavelength of 
the incident electromagnetic wave. They are manufactured using a micromachining process including physi-
cal vapour deposition, lithography, and etching processes. To obtain high polarisation performance and high 
transmittance, a dense and highly conductive metal structure with low optical absorption is used. Therefore, the 
incident polarised light on the light-blocking axis is reflected with a high reflectance much like when entering 
a metal mirror surface. For example, an aluminium WGP has a reflectance of ~ 80% for the incident polarised 
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light on the light-blocking  axis15. Since the structure providing their optical function is metal, they show excel-
lent resistance to high temperature and high humidity as compared with dye-type polarisers. In recent years 
manufacturing methods combining nanoimprint and deposition methods have been  developed11–13. Although the 
manufacturing cost has reduced compared to those manufactured by electron-beam lithography, it is still higher 
than that of dye-type polarisers. In a WGP for the visible light region, a thickness of several hundred nanometres 
is sufficient, which means that it can be incorporated into a product as a thin polariser sheet.

In this study, we propose an approach to reduce the reflectivity of WGPs to realise a highly durable polariser 
sheet with low reflectivity. Although various approaches have been researched and developed to reduce the 
reflectivity of WGPs, many of these methods involve laminating a light-absorbing material onto a wire-grid 
 structure15–17, or using low-reflectivity metal on a wire-grid  structure18,19. A moth-eye structure has been dem-
onstrated as a method of suppressing the reflectance of a material  surface20–22. This is effective not only for the 
dielectric transparent materials but also for the opaque and highly reflective surfaces of semiconductors and 
 metals20,23–27. If such a moth-eye-like structure could be formed on the top and bottom surfaces of wire-grid 
structures, the reflectivity of a WGP sheet would be suppressed. However, it is difficult to form a moth-eye-like 
structure on the surface of the nanowire of a WGP for the visible light region using conventional processing 
methods, and it has not been realised until now. We focused on a printing technique that uses metal nanoparticle 
ink to form metal nanowires with irregularities on the surface. Compared to a metal structure formed using a 
physical vapour deposition process, the sintered body of a metal nanoparticle ink has an uneven surface depend-
ing on the sintering  conditions28. However, since the nanowire structure of a WGP requires a pitch smaller than 
the wavelength of the target electromagnetic wave, it has been difficult to print and form the nanowire structure 
of the WGP for the visible light region. Instead, we have developed a nanoprinting process that forms thick ink 
patterns with a width of less than 100  nm29–31. This process involves filling nanoparticle ink into nanogrooves 
formed on a substrate surface using a nanoimprint method so that a nanowire structure having the required 
thickness for a WGP can be formed. In our study, a WGP sheet using the sintered body of a metal nanoparticle 
ink pattern was demonstrated. Furthermore, the optical properties of WGP sheets produced using moulds hav-
ing different shapes were evaluated and compared, and the effect of reduction in the reflectance was confirmed.

Results and discussion
Figure 1a shows a schematic of a low-reflectance WGP sheet, where the material of the metal nanowire is silver, 
and the substrate sheet is polycarbonate (PC). Figure 1b shows the geometry of the nanowire structure for a 
low-reflectivity WGP, where, W, P, H, and Ht represent the width, period, thickness of the nanowire, and the 
thickness of the tapered portion (uneven portion), respectively. The surface of the nanowire structure seen from 
the top side has irregularities (a moth-eye-like surface). The surface of the nanowire structure seen from the 
bottom side also has irregularities as well as a tapered shape.

To obtain a structure with the aforementioned characteristics where the silver nanoparticle ink could be 
embedded, the tip of the mould structure was processed so that it had a tapered shape with irregularities. Since 
the nanoprinting process allows the silver nanoparticle ink to be filled according to the shape of the inner 
part of the groove, the structure of the silver nanowire after sintering becomes practically the same shape, and 
irregularities are formed on the surface. The thickness of this uneven (tapered) part is important for reducing 
reflectance. Table 1 shows the geometric parameters of the four moulds used in this experiment. These values 
are the average of the values measured by scanning electron microscopy (SEM). P was designed to be fixed at 
140 nm. The fabricated type-A mould had a width to pitch ratio of 37%, an H/W of 3.5, and an Ht/W of 1.0. The 
type-C mould was fabricated to have a higher H/W ratio and more than twice the Ht/W compared to the type-A 
and type-B moulds. The type-D mould, on the other hand, was fabricated to have a width to pitch ratio of 17%, 
a higher H/W of 15.1, and a higher Ht/W of 7.5.

The optical characteristics of the WGP were calculated using a rigorous coupled-wave analysis (RCWA) 
simulation that predicts exact solutions for periodic structures based on Maxwell’s  equations32. The effect of the 
main parameters that determine the optical characteristics of WGP was investigated. The refractive index and 

Figure 1.  (a) Schematic of the low-reflective WGP sheet. (b) Schematics of the top and cross-sectional views of 
the surface structure.
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extinction coefficient of the PC substrate was set to 1.59 and 0 at wavelengths from 400 to 700 nm, respectively. 
The Drude model was used to calculate the dielectric constant of bulk silver, with the plasma frequency (ωp) 
and the damping or collision frequency (γ) set at 14.0 PHz and 32.3 THz,  respectively33,34. It is important to note 
here that the dielectric constant of a sintered body of silver nanoparticle ink is different from that of bulk silver 
because of their different conductivities. The conductivity (σ) of metal in the visible region of the electromagnetic 
spectrum is represented by

where ε0 is the permittivity of the vacuum. Since the conductivity of a sintered body of silver nanoparticle ink var-
ies depending on the sintering  conditions35, the plasma frequency and the damping frequency also change. First, 
we investigated the effects resulting from the change in the damping frequency. Figure 2 shows the calculated 
transmittance and reflectance spectra of an embedded WGP sheet as a function of γ which was varied from 32.3 
to 3230 THz. The inset in Fig. 2a illustrates the cross-sectional view of the model employed in our calculations. 
The model consists of a silver wire-grid structure (width 40 nm, thickness 500 nm, and pitch 140 nm) embed-
ded in a PC substrate. We observed that both the transmittance and reflectance decreased with increasing γ.

Next, using RCWA we investigated how the variation in the W and H of the wire grid structure influences the 
optical characteristics of WGP sheets fabricated from four moulds with different structures. In all calculations, γ 
was set to 646 THz, which was determined as an appropriate value by comparison with the experimental results 

σ(ω) =
ε0ω

2
p

ω2 + γ 2
(γ + iω),

Table 1.  Geometrical parameters of the moulds.

Mould type W [nm] H [nm] Ht [nm] H/W Ht/W

A 52.4 183 50 3.5 1.0

B 44.9 278 40 6.2 0.9

C 42.1 500 100 11.9 2.4

D 24.0 363 180 15.1 7.5

Figure 2.  Calculated (a), (b) transmittance and (c), (d) reflectance spectra of embedded WGP sheet as a 
function of damping or collision frequency γ. The polarisation directions are (a), (c) x-polarisation and (b), (d) 
y-polarisation.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2096  | https://doi.org/10.1038/s41598-021-81750-2

www.nature.com/scientificreports/

described later. Figure 3 shows the calculated transmittance and reflectance spectra of an embedded WGP sheet as 
a function of W for a given value of H (500 nm). As can be seen in Fig. 3a, the transmittance for the y-polarisation 
increases when W decreases. However, for the x-polarisation, the wavelength at which the transmittance goes to 
zero (light-blocking wavelength) exhibits a red-shift with decreasing values of W. Correspondingly, the wave-
length at which the reflectance for x-polarisation starts to increase exhibits a red-shift, and the total reflectance 
decreases considerably with decreasing W, as can be seen in Fig. 3b. Figure 4 shows the calculated transmittance 
and reflectance spectra of an embedded WGP sheet as a function of H of the wire-grid structure for a given value 
of W (40 nm). The light-blocking performance for the x-polarisation undergoes a significant improvement when 
H is increased (Fig. 4a). However, the transmittance for the y-polarisation exhibits a decrease with increasing 
values of H within the observed wavelength band as can be seen in Fig. 4b. On the other hand, the reflectance for 
both x- and y-polarisations is not significantly affected by H as can be seen in Fig. 4c,d. In terms of H, we expect 
based on our calculations, that the polarisation performance of samples fabricated using different moulds to 
decrease in the following order: Type-C > Type-B > Type-A. On the other hand, in terms of the structural width, 
we expect that a sample fabricated using Type-D mould to exhibit high transmission values for y-polarisation.

Figure 5 shows SEM images of the cross-sections of different moulds. A 4-inch Si wafer was used for their 
fabrication. We observed that the type-A and type-B moulds had a tapered tip, while the type-C mould had a 
tapered tip and an uneven surface. The type-D mould had a considerably rougher tip, and the structure exhibited 
a significant variation in thickness along the wire-direction. These moulds were fabricated by nanoimprint lithog-
raphy and dry etching processes using a master mould with line-and-space patterns. Depending on the conditions 
of the nanoimprint lithography and dry etching processes, the width, thickness, and tip shape of the structure 
can be controlled. Furthermore, the processes can also be adjusted to reduce the roughness of the sidewall.

The proposed WGP sheet was fabricated by a nanoprinting process using these moulds. Figure 6a,b show 
photographs of a WGP sheet fabricated using the type-C mould. As shown in the illustration on the right in 
these figures, the sample was placed over the linearly polarised image of the LCD. As shown in Fig. 6a, when the 
sample was placed such that the direction of the nanowire was perpendicular to the polarisation direction of the 

Figure 3.  Calculated (a) transmittance and (b) reflectance spectra of embedded WGP sheet as a function of the 
width of the wire grid structure W.
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polarised image, the background image could be seen. On the other hand, as shown in Fig. 6b, when the sample 
was placed such that the direction of the nanowire was parallel to the polarisation direction of the polarised 
image, the background image could not be seen. Consequently, the fabricated sample demonstrated its function 
as a polariser. Figure 6c shows the top view of the SEM image of the fabricated sample. Silver nanoparticles with 
a diameter of approximately 10–40 nm were densely spread on the top of the periodically formed nanowires. 
Figure 6d shows the cross-sectional view of the SEM image of the sample. Platinum was coated over the silver 
nanoparticles for the SEM observation. Due to the thermal deformation caused by the sintering process, leaned 
nanowires with a high aspect ratio were obtained. The bottom part of the nanowire had a tapered or rounded 
shape. Observations from this cross-section suggest that there is a variation in thickness between different 
nanowires, with some wires being approximately 20% lower than others, resulting in an uneven thickness in 
the direction of the wires. In addition, it is observed that the nanowires formed from the aggregates in which 
silver particles of several tens of nanometres diameter were partially bonded, and the gap between the particles 
in the part that did not seem to be bonded was below 10 nm. In this way, high aspect ratio nanowires having 
irregularities on the surface were realised on both the top and bottom sides of the sample.

The optical characteristics of a printed WGP sheet were measured using a spectroscope to determine whether 
it could be used as a polariser in the visible region of the electromagnetic spectrum. Figure 7a–d show the experi-
mental transmittance spectra of WGP sheets fabricated using moulds of type-A, type-B, type-C, and type-D, 
respectively. The red and blue solid curves represent measurement results when the incident light is polarised 
in the x- and the y-direction as it entered each sample, respectively. Figure 7e shows the plot of the degree of 
polarisation (DOP) with respect to the wavelength of the incident radiation for the WGP sheets fabricated using 
different moulds. The DOP is a parameter indicating the polarisation performance such as a polarisation extinc-
tion ratio, and is represented by the following equation:

Figure 4.  Calculated (a), *b) transmittance and c, d reflectance spectra of embedded WGP sheet as a function 
of the thickness of the wire grid structure H. The polarisation directions are *a), (c) x-polarisation and (b), (d) 
y-polarisation.
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where Tx and Ty represent the transmittances of the samples for the x- and the y-polarisation, respectively. The 
threshold wavelength at which the DOP changed from a negative to a positive value was 441, 481, 440, and 
447 nm for each of the samples fabricated using the type-A, type-B, type-C, and type-D moulds, respectively. 
To quantify the performance evaluation, we have introduced the parameters luminous DOP and the luminous 
transmittance (TL). Luminous DOP was calculated from the measured spectral data and the luminous  curve36, 
while TL was calculated from the spectral data for the total transmittance (T = (Tx + Ty)/2) and the spectral data 
of the luminous curve.

Polarisation anisotropy was observed for samples fabricated using the type-A mould. A transmittance of 
12.2% was obtained at a wavelength of 550 nm for the x-polarisation (i.e., along the light-blocking axis). This 
value indicates a weak light-blocking performance as a polariser. At the same wavelength, a transmittance of 
35.0% was obtained for the y-polarisation. The calculated DOP for this sample was 69.4% and the luminous DOP 
was also quite low. Consequently, the samples fabricated using the type-A mould are not good for our desired 
polarising applications. Based on the results obtained by the RCWA calculations (in Fig. 4), the low value of 
luminous DOP can be attributed to the relatively low values of the optical thickness of the nanowires due to the 
low H of the mould.

The light-blocking performance for the sample fabricated using the type-B mould improved considerably, 
particularly for the x-polarised light, and transmittance of less than 1% was obtained for wavelengths longer 
than 497 nm. The transmittance reached 0.38% at a wavelength of 550 nm. In contrast, for y-polarisation, the 
transmittance was in general lower than that observed for the type-A mould within this wavelength band. It 
was 9.4% at a wavelength of 550 nm and 42.6% at a wavelength of 700 nm. However, the DOP exceeded 90% at a 
wavelength of 523 nm, reaching 96.0% at a wavelength of 550 nm. The luminous DOP increased to 94.8%. This 
increase can be understood in terms of the increased optical thickness of the printed nanowires (Fig. 4) due to 
the higher value of H for this mould.

For the samples fabricated using the type-C mould, we observed that the light-blocking performance for 
x-polarised light was better than the sample fabricated using the type-B mould. Transmittance of less than 1% 
was observed for wavelengths longer than 465 nm, which further dropped to a value of 0.22% at a wavelength 
of 550 nm. The transmittance for the y-polarisation also showed an increase when compared with the sample 
fabricated using the type-B mould. The transmittance was 23.9% at a wavelength of 550 nm and 64.3% at a 
wavelength of 700 nm. The DOP exceeded 90% at a wavelength of 470 nm, reaching 99.1% at a wavelength of 

(2)DOP =
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Figure 5.  SEM images of the moulds used for the nanoprinting process. The white scale bars in each image 
represent 200 nm.
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Figure 6.  Photographs of the low-reflective WGP sheet over a linearly polarised image. Directions of wires of 
the WGP sheet are arranged in (a) the perpendicular, and (b) parallel to the linearly polarised image. (c) Top-
view and (d) cross-sectional-view SEM images of the printed WGP sheet that was fabricated using the type-C 
mould.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2096  | https://doi.org/10.1038/s41598-021-81750-2

www.nature.com/scientificreports/

550 nm. The luminous DOP was 99.0% because of the high value of H for this mould which is approximately 1.8 

Figure 7.  Measured transmittance spectra of WGP sheets printed by using (a) type-A, (b) type-B, c type-C, and 
(d) type-D moulds. (e) DOP spectra were obtained from the measured transmission spectra of each sample.
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times higher compared to the type-B mould. The luminous DOP obtained, in this case, satisfies the polarisation 
characteristics of commercially available polarised sunglasses, where it is mandatory to have at least a luminous 
DOP of 90%. However, a luminous DOP of 99.0% or higher is often used as a standard in the current Japanese 
 market37. The experimental transmittance spectra obtained for the samples fabricated using type-C mould are 
in good agreement with the spectra obtained from simulation (Fig. 2a,b). This can be explained by considering 
that the conductivity of the sintered body of silver nanoparticles is lower than that of bulk silver.

In the case of samples fabricated using the type-D mould, the light-blocking performance for the x-polarised 
light slightly weakened. Transmittances of just 1.3% were observed at a wavelength of 550 nm which decreased to 
a value of less than 1% for wavelengths longer than 587 nm. In contrast, the transmittance for the y-polarisation 
was significantly enhanced compared to the type-C mould, being 41.8% at a wavelength of 550 nm and reach-
ing 77.4% at a wavelength of 700 nm. The DOP exceeded 90% at a wavelength of 504 nm, reaching 97.0% at a 
wavelength of 550 nm. Comparing the experimental results with the simulation (Fig. 3), it was confirmed that 
the TL increased to 27.4% because of the narrowing of W to a value which is about half that of the other moulds.

The line width, pitch, and material of the nanowires were the primary reasons why the printed WGP sheets 
exhibited weak polarisation characteristics in the shorter wavelength region (400 nm). In the case of silver, 
the real part of permittivity approaches zero from the blue to the ultraviolet  region38. As a result, the metallic 
behaviour of silver diminishes in the shorter wavelength region which could lead to an increase in the transmit-
tance for the x-polarisation in this region. The decrease in transmittance for the y-polarisation in the shorter 
wavelength region could be attributed to the surface plasmon resonance within the  wires39. It is plausible that the 
plasmon absorption due to the unsintered (or partially sintered) silver nanoparticles present in the WGP sheet 
affects the reduction of the transmittance at y-polarisation in the shorter wavelength region When comparing 
the WGP sheets fabricated using the type-B and type-D moulds, the wavelength at which the transmittance of 
y-polarisation start to increase was shorter than when the type-D mould was used. This is because the width to 
pitch ratio of the nanowires was small (Fig. 3). Therefore, by increasing the conductivity of nanowires as well 
as by optimising their shape, the WGP sheet made of silver nanoparticle ink can function as a polariser in the 
shorter wavelength region.

Furthermore, polarisation performance was measured as a function of the incidence angle, which was varied 
from 0 to 70° in 5° increments in each of the x–z and y–z planes. The maximum change of the measured luminous 
DOP equalled 0.2%, indicating robust polarisation performance with respect to the incidence angle.

Using microspectrophotometer, we have measured the reflectance spectra of the printed WGP sheets fabri-
cated using the respective moulds as can be seen in Fig. 8a–d. These measurements were carried out using unpo-
larised incident light. R1 (shown by a broken line) represents the reflectance obtained from the top of the printing 
surface, and R2 (shown by a solid line) represents the reflectance from the bottom of the nanowires from the back. 
When the printed WGP sheets were applied to sunglasses, a low value of R2 was required because the back of the 
nanowires was arranged within the lens. The luminous reflectance (RL1, RL2) was calculated from the measured 
spectral data and the luminous curve. Compared to the WGPs fabricated using conventional  methods15,16, the 
reflectance spectra of the WGP samples fabricated using silver nanoparticle ink showed low reflectance within the 
visible region of the electromagnetic spectrum. When viewed in conjunction with the transmittance spectra of 
Fig. 7, especially for the samples fabricated using the type-C and type-D moulds, the reflectance did not increase 
significantly and exhibited a small value (less than 10%) even in the longer wavelength region. To demonstrate the 
effect of the wire-grid structure with a tapered tip or uneven surface we have calculated its optical characteristics. 
In these calculations, W, H, and γ were set to 40 nm, 500 nm, and 646 THz, respectively. The total thickness H 
includes the thickness of the tapered portion Ht. Figure 9 shows the calculated transmittance and reflectance 
spectra of embedded WGP sheets with a tapered tip as a function of Ht which was varied from 0 to 200 nm. The 
tapered portion was designed to linearly narrow down toward the tip, and the layer was divided for each Ht/10 
for the calculations. It seems that the tapered tip provides slightly higher transmittance than the flat tip as shown 
in Fig. 9a,b. Importantly, it was confirmed that the reflectance was reduced with an increase of Ht especially for 
x-polarised light, and the reflectance decreases to 14% at a wavelength of 550 nm and Ht of 200 nm as shown in 
Fig. 9c,d. Figure 10 shows the calculated transmittance and reflectance spectra of an embedded WGP sheet with 
an uneven shape (like a pyramid) as a function of Ht which was varied from 0 to 200 nm. The tip structure had 
a shape that linearly narrows toward the tip with a bottom dimension of 50 and 40 nm in the x- and y-direction, 
respectively, and was arranged in 50 nm cycles in the x-direction. In this calculation, the layer was also divided 
for each Ht/10. Compared with the calculation result for the tapered tip, the change in the transmittance was 
comparable as shown in Fig. 10a, b. Tip structure with the uneven shape proved to be more effective in reducing 
the reflectance compared to the tapered shape, and the calculated reflectance was close to zero at Ht ~ 100 nm 
as shown in Fig. 10c, d. From the SEM images, the tip of the structure of the type-A and type-B moulds can be 
considered as tapered, while the tip of the type-C and type-D mould can be considered uneven (see Fig. 5). R2 
for the WGP sheet fabricated using the type-A and type-B moulds with Ht of the tapered shape equalled ~ 50 nm 
or 40 nm, as shown in Fig. 9c. It is presumed that these tip shapes contribute negligibly towards the reduction 
in reflectance. On the other hand, for the WGP sheet fabricated using the type-C and type-D moulds with Ht 
of the uneven shape of 100 nm or 180 nm, exhibit excellent reflectance reduction which can be attributed to 
the tip shape as can be seen from Fig. 10c. Experimentally, low luminous reflectance of 3.6% and 3.7% were 
obtained. Similarly for R1, the result was affected by the nature of the surface (i.e., presence of sub-wavelength 
surface roughness) in addition to the optical absorption by the sintered body of silver nanoparticle ink with low 
conductivity. As described above, the reflectance can be significantly reduced compared to the conventional 
WGP by using the sintered body of silver nanoparticle ink and controlling the tip shape.

Finally, we report the trial production of polarised sunglasses using the printed WGP sheet. Figure 11a 
schematically represents the different steps such as the bending step, insertion moulding step, and hard-coating 
step, involved in the process. In the bending step, the surface of the sheet was strained by bending stress, but no 
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Figure 8.  Measured reflectance spectra of WGP sheets printed by using (a) type-A, (b) type-B, c type-C and d 
type-D moulds. The incident light is unpolarised.
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damage to the printed nanowires was observed. In the insertion moulding step, even though the printed WGP 
sheet was exposed to a high-temperature resin, this did not affect its optical characteristics. In the hard-coating 
step, no deformation or damage to the printed nanowires was observed. Figure 11b shows a prototype of polarised 
sunglasses. We succeeded in fabricating it at the size of actual sunglasses and with an appearance comparable 
to that of a commercially available product. We used a printed WGP sheet with a luminous DOP of 98.9% and 
luminous transmittance of 10.8%. The optical characteristics of the polarised sunglasses after the bending, inser-
tion moulding, and hard coating steps, showed a luminous DOP of 98.9% and luminous transmittance of 13.5%. 
Since there was almost no effect on the luminous DOP, we conclude that the printed nanowires themselves did 
not undergo any large deformation which might have reflected as a change in their optical properties. In addi-
tion, there was almost no change in reflectance. Therefore, the printed WGP sheet exhibited the durability of 
sustaining the manufacturing process for curved products including sunglasses.

Conclusions
We have fabricated a low-reflectivity WGP sheet for the visible portion of the electromagnetic spectrum by the 
nanoprinting process using silver nanoparticle ink. Compared to the conventional nanofabrication techniques 
for a WGP, the proposed method makes it easier to achieve multiple wafer-scale productions without using 
sophisticated equipment. The optical characteristics of the WGP sheet can be tuned by controlling the shape 
of the printed nanowires, such as providing irregularities on the mould tip and the surface of the nanowires. A 
WGP sheet with a luminous DOP of 99.0% and a luminous reflectance of 3.6% was fabricated which was dura-
ble enough to withstand the sunglass moulding process. The fabrication of optical structures by the proposed 
nanoprinting process using nanoparticle ink has the potential to significantly contribute to the development of 
fine-structured optical elements with unprecedented functionality.

Figure 9.  Calculated a, b transmittance and c, d reflectance spectra of embedded WGP sheet with a tapered tip 
as a function of Ht. The polarisation directions are a, c x-polarisation and b, d y-polarisation.
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Methods
Fabrication of WGP sheets: First, the moulds were fabricated by nanoimprint lithography and reactive ion etching 
(RIE) on a 4-inch Si wafer. The shape (width, thickness, and tip thickness) of the inverted wire-grid structures 
was controlled using the RIE conditions. For the substrate, a 400-µm thick PC sheet (FE-2000, Mitsubishi Gas 
Chemical) was employed. Wire-grid grooves were formed on a substrate sheet by using a thermal nanoimprint 
(hot embossing) process, which was carried out in a vacuum. The imprint pressure, temperature, and time were 
0.9 MPa, 175 °C, and 150 s, respectively. Subsequently, the nanogrooves were filled with silver nanoparticle ink 
(NPS, Harima Chemicals), having a representative primary particle diameter of 12 nm and metal content of 83%, 
using a squeegeeing method. Following this process, some ink remained outside the nanogrooves. The samples 
were wiped to remove this excess ink. Finally, sintering was performed at 130 °C using an oven. The sintered bod-
ies of nanoparticle ink were formed, which became silver wire-grid structures with irregularities on the surface.

Measurements Transmittance spectra were measured using a spectroscope (SolidSpec-3700, Shimadzu). The 
measurement area was 2 mm square. Reflectance spectra were measured using a confocal microspectrometer 
(USPM-RU III, Olympus). SEM images of the moulds and a top view of the fabricated WGP sheets were obtained 
using a field emission SEM (S-4800, Hitachi). Cross-sectional images of the fabricated WGP sheets were obtained 
using a hybrid ion milling system (IM4000Plus, Hitachi) and field-emission SEM (Regulus8240, Hitachi).

Simulations Numerical simulations were carried out using the 3D optical diffraction simulator (DiffractMOD, 
Cybernet).

Figure 10.  Calculated a, b transmittance and c, d reflectance spectra of embedded WGP sheet with an 
uneven shape like a pyramid as a function of Ht. The polarisation directions are a, c x-polarisation and b, d 
y-polarisation.
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