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Abstract

Human papillomaviruses (HPVs), recognized as the etiological agents for the skin, plantar, genital, and laryngophar-
yngeal wart, have been previously in numerous studies demonstrated to present a close link between HPV infec-
tion and certain human cancers, some putative candidates of HPV cell receptor and possible pathways of cell entry
proposed. This review was to highlight the investigations and remaining questions regarding the binding and
entry process.

Introduction
As the well-recognized etiological agents for the skin,
plantar, genital, and laryngopharyngeal wart, human
papillomaviruses (HPVs) have been proven of a close
link between HPV infection and certain human cancers.
And considerable effort has been made in developing a
prophylactic vaccine and devising effective treatments of
HPV-induced lesions. It has been found that the early
events of HPV infection such as cellular receptor bind-
ing and entry into susceptible cells could provide poten-
tial targets of inhibiting the spread of a HPV infection.
HPVs are nonenveloped double-strained DNA viruses

about 55 nm in diameter with an approximately 8-kb
genome in the nucleohistone core, and their capsids are
composed of two virally encoded proteins, L1 and L2,
with L1, the major capsid protein, mainly responsible
for initial binding to the cell surface, and arranged in 72
pentamers which associate with T = 7 icosahedral sym-
metry [1]. Even in the absence of other viral proteins,
L1 self-assembles into empty capsid or virus-like parti-
cles (VLPs) [2]; L2 is incorporated into VLPs when
coexpressed with L1, i.e. L1/L2 VLPs, in insect or mam-
malian cells [1]. It is well known that difficulties in gen-
erating HPVs in vitro hinder the study on the pathway
of infection. Recent research predominantly utilized syn-
thetic HPV particles, such as VLPs, HPV-based gene
transfer vectors known as pseudovirions (PsV), or papil-
lomavirus genome-containing quasivirions (QV). VLPs,
including L1 VLPs or L1/L2 VLPs, are widely used for

the binding assay and vaccine production. PsV, pro-
duced for the studies on internalization, are composed
of the VLPs packaging or attached to a reporter gene
whose subsequent expression is used to identify and
quantity pseudoinfected cells [3]; QV are generated as
in the case of PsV in that the transfection of L1 and L2
codon-optimized expression plasmids, in addition to
full-length, recircularized HPV genomes, into 293T or
293TT cells allows for efficient intracellular production
of the native virion-like particles [4].
However, native virions are generated in stratified and

differentiated epithelia and are thus synthesized only
during a natural infection or in an organotypic culture
[4]. For years, the low productivity of organotypic cul-
ture garnered too few virions for many low sensitivity
analyses. Recently, Broker’s group established a highly
efficient and reproducible system that generated autono-
mous HPV-18 genome in the primary human keratino-
cytes, the organotypic raft cultures of which
recapitulated a robust productive program, which sug-
gested potential value for HPV genetic dissection and a
faithful ex vivo model for investigating infections and
interventions [5,6].
It is well known that HPVs, prior to a successfully

established infection, have to experience a complicated
process to bind to and enter the host cell. Our review
was intended as an update on the cellular receptor and
endocytic route of HPVs, with a focus on each putative
receptor and a possible pathway based on the previous
evidence derived from the literature review. In addition,
we briefly clarified the function of L2 protein in HPV
infection.
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1. HPV receptor binding and virus-host cell
interaction
The identification of HPVs cellular receptor began with
the observation of interaction between papillomaviruses
and cells. Roden et al observed that BPV-1 virions, as
well as VLPs of HPV-16, were capable of binding speci-
fically to several mammalian cell lines of fibroblastic and
epithelial origin [1]. Afterwards, HPV-11, -16 and -33
VLPs were reported to have bound to or entered a wide
range of cells [7,8]. These findings suggested that papil-
lomavirus receptor was a widely expressed and evolu-
tionally conserved surface receptor. Later, Qi et al
reconfirmed the outcomes, and, furthermore, proved the
receptor as a trypsin-sensitive structure and identified a
B-cell line DG-75 that did not bind VLPs, which was
critical to the investigations to come [9].
1.1 a6 integrin
The first candidate of cellular receptor was nominated
as a6 integrin [2,10,11]. The integrins, heterodimeric
glycoproteins comprising of a and b subunits, are
expressed in a variety of cell types, primarily involved in
cell-matrix and cell-cell interactions, and as the previous
researches revealed, capable of acting as virus receptors
for initial binding and/or internalization, as in the case
of echovirus (a2b1), coxsackievirus (avb3), hantavirus
(b3), adenovirus (avb3/5), and foot and mouth disease
virus (avb3) [2].
At present, 17 types of a subunits and eight of b sub-

units are known, of which a6, b4, and b1 have been
reported to be involved in HPV binding. And it has
been clarified that a6 integrin played a leading role in
this process with the evidence that a monoclonal anti-
body against the a6 integrin subunit reduced the bind-
ing degree of VLPs, while anti-b1 or anti-b4 antibodies
did not [2]; that HPV6 bL1 VLPs failed to bind to DG-
75 [2], whereas VLPs did to the genetically modified
DG-75 expressing a6 integrin [10]; that the binding
degree of HPV-16 VLPs to each cell type varied not
with the expression level of b subunits, but with that of
the a6 integrin [11]. In addition, the a6 integrin was
known capable of invoking a transductive signal pathway
to initiate DNA replication in keratinocytes, which could
be an ideal condition for viral replication [10].
Although both the a6b4 and a6b1 heterodimer were

capable of binding VLPs in vitro, only the former was
supposed to function as a HPV receptor, which was
concluded from the results that the a6 subunit asso-
ciated preferentially with the b4 in epithelial cells [12],
and the a6b4 complex was expressed exclusively in the
basal cellular layer of the stratified squamous epithelium
[13], which was presumably the only site of productive
PV infection, while the a6b1 was found in relatively
more cell types and sites unrelated to HPV infection,

which might partly explain why HPVs were reported to
be able to bind to a wide range of cells in vitro that
were not the natural host of HPVs [10]. And the consis-
tent results from Evander et al showed that the human
laminin, the natural ligand for the a6b4 complex, was
capable of blocking the binding of VLPs to HaCaT cells
in a dose-dependent manner [2].
It is generally held that HPV infection is believed to

occur as a result of exposure of basal cells to virus parti-
cles upon a minor trauma to the epithelium. During the
wound healing, the a6b4 complex presented a high
expression over the entire surface of the epithelial cells
migrating to cover the focus [14]. Furthermore, the
complex was constitutively endocytosed and recycled,
with a rate of endocytosis of 1% to 2% of surface mole-
cules per min, and with a recycle of the receptor facili-
tating the cellular migration, during which it moved in
and out as the cell was advancing [15]. Therefore, a
model of HPV infection was proposed that HPV parti-
cles bound to the a6b4 complex during the wound heal-
ing and were endocytosed to the microfilament network
via the hemidesmosome [2], of which the complex is an
integral part [16].
1.2 Heparan sulfate proteoglycans/Heparan sulfate
1.2.1 Heparan sulfate proteoglycans/Heparan sulfate and
HPV binding
Cell surface heparan sulfate proteoglycans (HSPGs),
mainly syndecans and glypicans, are complex molecules
composed of a core protein with covalently attached gly-
cosaminoglycans chains, especially heparan sulfate. The
glycosaminoglycans, comprised of alternating disacchar-
ide units of uronic acid and amino sugars, are posttran-
slationally modified by sulfation and acetylation to
various degrees, providing a variety of molecules with
substantial sequence heterogeneity [17]. HSPGs are
involved in a wide variety of biological phenomena,
including organogenesis, angiogenesis, growth factors/
cytokine actions, wound healing, and cell adhesion.
Moreover, they are implicated as primary host cell
receptors for many viruses, although most of them
depend on secondary receptor proteins for efficient
internalization [18].
As part of HSPGs, heparan sulfate was reported to

play a critical role in the binding of HPVs to the cell
surface: 1) the removal of heparan sulfate glycosamino-
glycans on keratinocytes with heparinase or heparitinase
resulted in an 80%-90% reduction of HPV-11 VLPs
binding [19]; 2) the pseudoinfection of HPV-16 and -33
was inhibited by heparin, reduced with a decline in the
level of surface sulfation, and abolished via a heparinase
treatment [20]; 3) HPV-16, -18, -31, -33, -39, -45, -58,
-59, and -68 VLPs possessed the ability to transfer genes
into COS-7 cells in an efficient way, which, however,
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was inhibited when the pseudovirions were preincubated
with heparin [21].
Of HSPGs, syndecan-1, instead of syndecan-4 and gly-

pican-1, was reported to function as a HPV receptor.
Evidence were: 1) when cells was treated with hepari-
nase I, rather than with phosphoinositol-specific phos-
pholipase C, which could remove most of the surface
heparan sulfate, the degree both in their binding of
VLPs and infection with HPV-33 pseudovirions was
sharply reduced [22]; 2) K562 cell with ectopic expres-
sion of syndecan-1 could enhance its binding of HPV-16
VLPs, which otherwise possessed no HSPGs but minor
amounts of molecules and thus weakly bound of VLPs
[23]. Syndecan-1 was strongly upregulated during the
wound healing, and widely expressed on the migrating
and proliferating keratinocytes as well as on the adjacent
hair follicles. Therefore, the basal keratinocytes, in addi-
tion to the suprabasal ones, when exposed upon a
minor trauma or abrasion, overexpressed syndecan-1,
thus upregulating strongly their ability to bind and
internalize papillomaviruses in vivo [23].
1.2.2 Conformation of HPV virions and HPV binding
The conformation of HPV particles is considered to be
critical to the cellular binding. Initially, Joyce et al iden-
tified a conserved heparan-binding region on the car-
boxyl-terminal portion of HPV L1 protein through a
sequence comparison of nine HPV types: HPV-11, -3,
-13, -31, -58, -6b, -40, -7 and -42. This region was
found to be located in the final 15 amino acid residues
of the L1 protein of the general type XBBBBXB where B
was Lys, Arg or His, which was similar to the XBBXBX
and XBBBXXBX consensus sequences of the known
heparin-binding proteins [19]. However, later studies
reported that deletion of this region did not affect the
interaction of HPV-33 VLPs with heparin [20], and the
interaction was strictly dependent on an intact outer
surface conformation of L1 [24], suggesting that the
basic C-terminus of L1 was not sufficient for heparin
binding. Moreover, the structure of the papillomavirus
capsid, reported recently, showed that the C-terminus
was not surface-exposed [25,26]. Taken together, these
data indicated that the interaction between the capsid
and heparin required an intact outer surface structure,
which provided a conformational cluster of basic amino
acids rather than a linear arrangement of positively
charged amino acids [24].
Afterwards, Selinka et al, based on published and their

own data, proposed that papillomavirus virions might
exist in two conformational forms, the closed and open,
the former the predominant species in solution, from
which the binding of the surface receptors cause a tran-
sition in the virion to the latter, which might initiate
internalization and uncoating [17]. Day et al later on
demonstrated this model in details via a study on

neutralization of HPV with monoclonal antibodies [27].
In the study, three anti-HPV-16 monoclonal antibodies
were employed, which were H16.V5 (V5), H16. E70
(E70), and H16.U4 (U4). And the result showed that V5
and E70, recognizing overlapping epitopes present on
the apex of the L1 capsomers [28], did not interfere
with the virion binding to the cell surface, but neutra-
lized infection by preventing the internalization of
bound particles [27]; that U4, whose epitope was
mapped to a C-terminus portion of L1, and was pro-
posed to extend between adjacent capsomers [28], inter-
fered with infection by preventing cellular binding, but
did not interfere with the binding to ECM. These data
suggested that interaction between HPV and cells was
dependent on functional epitopes on the particle [27].
As in the case of the U4 epitope, it physically over-
lapped with a HSPGs binding site within cleft within
which there might be a heparin-binding domain, which,
however, might not be the site originally proposed by
Joyce et al, and cell-induced conformational changes
could expose the C-terminus of L1, resulting in a higher
affinity binding between virions and cells. On the other
hand, several epitopes, such as V5 and E70, once occu-
pied, could prevent a necessary conformational change
in capsid, or might induce a conformational change in
another way, in order to block the binding [27].
1.2.3 Structure of HSPGs and HPV binding
The structure of HSPGs is believed to be equally essen-
tial. For instance, O sulfation of HSPGs was sufficient
for VLPs binding, which, however, was required together
with N sulfation by pseudoviruses [17]. This, neverthe-
less, has received little research. So far, it has been
recognized that 2-O-sulfate groups, primarily located on
iduronic acid residues in heparin and heparan sulfate,
glucosmine N-sulfate and in particular glucosamine 6-
O-sulfate groups of the polysaccharide all contribute to
the interaction with HPV-16 VLPs. In addition, eight
monosaccharide units of heparin were sufficient for the
binding of HPV-16 VLPs, which increased as the
heparin chain prolonged in size from eight to 14 units,
but decreased with 16 or more units [18].
It still remains mysterious whether a6 integrin or

HSPGs is the genuine cellular receptor of HPV, for
there are counterevidences and controversies for
either. Several studies indicated that a6 integrin was
dispensable for HPV-11 VLP binding to cells [19], for
BPV-4 infection [29], as well as for HPV-16 and HPV-
33 pseudoinfection [20]. On the other hand, HSPGs,
especially heparan sulfate, was not required for
HPV31b virions infection of human keratinocytes in
vitro [3]. However, Johnson et al recently showed the
opposite results using the murine cervicovaginal chal-
lenge model that in vivo HPV-31 infection was depen-
dent on HSPGs [30]. We put forwarded at least three
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possible explanations to the discrepancies between the
outcomes. In the first place, it was largely that the dif-
ferent assay systems were employed since a standar-
dized one was not available, where the viral particles
could be VLPs, pseudovirions, or authentic virions; and
the cell lines, diversified, including those derived from
malignant carcinomas, such as Hela and HaCaT, etc,
and the normal keratinocytes from human beings or
animals. Different kinds of viral particles required dif-
ferent concentrations in assay. For example, MOIs in
the setting of authentic virions ranged from 5 to 50
viral genome equivalents per cell, but reached thou-
sands to tens of thousands per cell in most cases of
VLP binding or pseudovirion pseudoinfection [3]. And
different cell lines presented distinct characteristics.
Those transformed cells, which lost some of their
epithelial characteristics, might result in disparities.
Second, HPVs of different types employed distinct
molecules as their own primary receptors. This could
be the simplest explanation, which needs further evi-
dence. In addition, further studies suggested that HPV
infection was likely to engage more than one cellular
surface protein, as in the case of a secondary receptor
[10,19,20,23]. It was possible that HPVs utilized this
strategy for infection that initial binding to a primary
receptor and then transfer to a secondary receptor
allowing for invasion of cells. Thus, it was most likely
that both a6 integrin and HSPGs, functioning as pri-
mary or secondary receptor, contributed individually
or in combination to the process. It should be noted
that a virus receptor means a host surface component
involved in binding and facilitating a viral infection.
Therefore, we believe that both a6 integrin and
HSPGs can be labeled HPV receptor, and that more
receptors will be identified in the future.

2. HPVs to enter cells via distinct pathways
Intriguingly, most of the studies proved that different
types of HPVs entered cells in distinct pathways, includ-
ing clathrin-mediated endocytosis, caveolar endocytosis,
and clathrin- and caveolae-independent endocytosis.
2.1 Clathrin-mediated endocytosis
It was found that clathrin-mediated endocytosis was the
major cellular entry for many viruses. The binding of
ligand to a specific receptor is widely recognized to
result in the clustering of the ligand-receptor complexes
in the coated pits on the plasma membrane (Fig. 1A),
which then invaginated and pinched off from the plasma
membrane to form intracellular clathrin-coated vesicles
in progress to early endosomes in a Rab5- dependent
manner before being fused with each other to form late
endosome or lysosome, controlled by Rab7. And the
molecules internalized via clathrin-mediated endocytosis
experience a fast decline in pH from the neutral to a pH

approximately 6 in the early endosomes transforming
into the late endosomes and ultimately degrading in
lysosomes, with a pH of approximately 5[31,32].
Day et al examined the pathway via which papilloma-

viruses infected cells using BPV virions and VLPs, and
concluded that the pathway was accomplished via cla-
thrin-dependent receptor-mediated endocytosis, and the
viral capsid, unlike other molecules, presented a confor-
mational change when the pH of the endosomal com-
partment decreased, resulting in the endosomal escape
of the viral genome or genome/L2 complex (Fig. 1B)
[33]. Moreover, Bousarghin et al revealed that HPV-16,
-31, and -58, which were closely related viruses, how-
ever, presented different endocytosis pathways, HPV-16
and -58 typically internalized through clathrin-coated
vesicles, and HPV-31 most likely to involve caveolae
[34]. However, one investigation reached a conclusion
that HPV-31, as in the case of HPV-16, entered the
human and primate cells through a clathrin-mediated
pathway [35]. All suggests much ambiguity in terms of
papillomavirus entry, which merits further studies.
2.2 Caveolar endocytosis
The number of viruses that enter cells via caveolar
endocytosis as an alternative uptake pathway was found
to be less than via clathrin-mediated endocytosis. In the
former, most of these viruses were nonenveloped and
less than 55 nm [31], as in the case of HPVs. Compared
with the clathrin-mediated entry, caveolae performed
internalization at a lower speed, the resulting vesicles
failing to become acidized, and an additional difference
was that internalization via caveolae was not a constitu-
tive process [32]. Other studies showed that the caveolar
endocytosis passed through the caveosomes, bypassing
endosomes, and then moved to the Golgi body, and/or
endoplasmic reticulum (Fig. 1C) [36], and HPV-31 was
found to do this via caveolar endocytosis [34,36,37].
For years, clathrin-dependent endocytosis and caveolar

entry were believed to be of two parallel but separate
pathways. However, as indicated by the latest investiga-
tions, there was cross talk whereby cargo could move
between them with some molecules involved. Rab 5
GTPase was first identified. Laniosz et al found that
BPV-1 although shown to possess the entry capacity via
clathrin-dependent endocytosis, was incapable of estab-
lishing an infection without caveolin-1, suggesting that
the virus whose entry was facilitated via clathrin-
mediated endocytosis, utilized the caveolar pathway
postentry for infection, where the Rab 5 might induce
or be involved in its transport from the endosome to
the caveosome (Fig. 1D) [38]. Afterwards, Smith et al
reported that HPV-31, upon initial cellular binding and
associating with caveolin-1, was transferred to the early
endosome and proceeded through the endosomal path-
way, during which the Rab 5 might be responsible for
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the exchange of the cargo [38]. Another putative mole-
cule might be dynamin, also called a GTPase, which was
capable of affecting “pinching off” coated vesicles to
form nascent clathrin-coated or caveolin-1-coated endo-
cytic vesicles at the plasma membrane. It was reported
that a dynamin inhibitor, dynasore, blocked the infection
of HPV-16 and BPV-1 pseudovirions in a dose- and
time-dependent manner with equal efficiency [39], and
that HPV-31 infection could be blocked using a dyna-
min-2 dominant negative molecule [35].
2.3 A Clathrin- and caveolae-independent pathway
In a latest study, HPV-16 was reported to be capable of
entering and thus infecting cells in a clathrin- and

caveolae-independent manner, and further evidence
indicated that tetraspanin-enriched microdomains
(TEMs) were involved in the endocytosis (Fig. 1F) [40].
Tetraspanins are an evolutionary conserved family of
four transmembrane domain-containing proteins includ-
ing at least 32 members in humans [41], which are able
to interact laterally with each other and with other
transmembrane proteins to form TEMs, within which
tetraspanins can control and modulate complicated
activities including adhesion, migration, and synapse for-
mation, as well as endocytosis and exocytosis [42]. Spo-
den et al proposed that HPV-16 particles, following
binding to the cells, colocalized with the tetraspanins

Figure 1 Endocytic pathways of HPVs. (A) HPV-16, -58, and BPV-1 entered via clathrin/dynamin dependent pathway. HPV-31 might enter via
this pathway. (B) The decrease of pH led to endosomal escape of the viral genome. (C) HPV-31 entered via caveolin/dynamin dependent
pathway. (D) and (E) Virions were transported between early endosome and caveosome. (F) HPV-16 might be internalized in clathrin- and
caveolae-independent pathway, via TEMs.
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CD63 and CD151 whose capacity to interact with other
membrane components and assemble into microdo-
mains on the plasma membrane enabled these mole-
cules to serve as the recipients of virions from the
primary receptors, such as HSPGs. Consequently, the
binding could trigger endocytic uptake processes and
infection [40].

3. L2 protein necessary for infection
The function of L2 has long been neglected. Recently, a
growing body of evidence has suggested that L2 is
necessary for the establishment of HPV infection. L2 of
all sequenced HPVs contain at their N termini a con-
sensus cleavage motif for furin, a proprotein convertase,
and furin cleavage is supposed to be necessary for cellu-
lar attachment and entry. Therefore, a model of L2
functioning in the early events of PV infection was pro-
posed, in which the initial attachment to HSPGs moi-
eties functioned primarily as the critical step of L2
cleavage by furin, thus resulting in a conformational
change of viral capsids, followed by the capsids detach-
ing from HSPGs and associating with a putative second
receptor [43]. Other studies showed that furin cleavage
might occur at the cell surface or within an early endo-
somal compartment [44], and the capsids underwent
uncoating in a late endosomal compartment, leading to
the associated genome to escape from the endosome
into the cytoplasm via a mechanism that involved the
C-terminus of L2 [45].
In summary, HPVs had to undergo a complicated pro-

cess to successfully infect their host cells. We presented
cellular receptor-binding and internalization pathways of
HPVs, which were of multiple steps relating to numer-
ous molecules, cellular or viral, suggesting that it was a
promising step in attacking pathogenic viruses before
they could utilize the host cell’s machinery for replica-
tion, and the studies on HPV cellular binding and entry
would locate novel molecular targets for antiviral
strategies.
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