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A B S T R A C T

Aims of study: To develop and validate a centile-based early warning score using manually-recorded data
(mCEWS). To compare mCEWS performance with a centile-based early warning score derived from con-
tinuously-acquired data (from bedside monitors, cCEWS), and with other published early warning scores.
Materials and methods: We used an unsupervised approach to investigate the statistical properties of vital signs in
an in-hospital patient population and construct an early-warning score from a “development” dataset. We
evaluated scoring systems on a separate “validation” dataset. We assessed the ability of scores to discriminate
patients at risk of cardiac arrest, unanticipated intensive care unit admission, or death, each within 24 h of a
given vital-sign observation, using metrics including the area under the receiver-operating characteristic curve
(AUC).
Results: The development dataset contained 301,644 vital sign observations from 12,153 admissions (median
age (IQR): 63 (49–73); 49.2% females) March 2014–September 2015. The validation dataset contained
1,459,422 vital-sign observations from 53,395 admissions (median age (IQR): 68 (48–81), 51.4% females)
October 2015–May 2017. The AUC (95% CI) for the mCEWS was 0.868 (0.864–0.872), comparable with the
National EWS, 0.867 (0.863–0.871), and other recently proposed scores. The AUC for cCEWS was 0.808 (95% CI,
0.804–0.812). The improvement in performance in comparison to the continuous CEWS was mainly explained
by respiratory rate threshold differences.
Conclusions: Performance of an EWS is highly dependent on the database from which itis derived. Our un-
supervised statistical approach provides a straightforward, reproducible method to enable the rapid develop-
ment of candidate EWS systems.

Introduction

Early warning score (EWS) systems based on vital signs rely on data-
driven approaches to derive the threshold values for the scores assigned
to each physiological variable [1–4]. While most of these systems are
based on a large database of vital signs collected manually, we previously
used a large dataset of continuously-recorded vital-sign data to derive our
original centile-based EWS (CEWS) [2]. For the latter, a large dataset
comprising 64,622 h of vital-sign data acquired from over 800 acutely
ill in-hospital patients connected to bedside monitors was used to in-
vestigate the statistical distributions of each vital sign. From this, an
aggregate centile-based alerting system with seven bands of risk level
for each vital sign was designed (i.e., scores of 0, 1, 2 and 3, as used in
other systems [1,3,4]). Observations are then treated as being “ab-
normal” if they occur at the extremes of the distributions of the vital

signs; i.e., the thresholds for low values were set to the values that
correspond to the 10th, 5th, and 1st centiles and the thresholds for high
values were set to be the integer values that correspond to the 90th,
95th, and 99th centiles, for scores of 1, 2, and 3, respectively. The
threshold values in the centile-based EWS derived using this approach,
with continuously-monitored data, are different from those in other
EWS systems. In particular, the thresholds for high values of respiratory
rate (RR) are markedly different [2].

Several studies have reported fundamental differences between
continuously-acquired and manually-collected vital-sign data in hos-
pital settings [5–10]; it is therefore not surprising that our original
centile-based EWS differed from other systems designed using vital-sign
values collected manually. In this paper, we investigate the changes in
threshold values for each vital sign in a centile-based system when the
centiles are derived from manually-recorded data. We then report the

https://doi.org/10.1016/j.resuscitation.2018.06.003
Received 19 December 2017; Received in revised form 13 April 2018; Accepted 3 June 2018

☆ A Spanish translated version of the abstract of this article appears as Appendix in the final online version at https://doi.org/10.1016/j.resuscitation.2018.06.003
⁎ Corresponding author at: Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
E-mail address: marco.pimentel@eng.ox.ac.uk (M.A.F. Pimentel).

Resuscitation 129 (2018) 55–60

0300-9572/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03009572
https://www.elsevier.com/locate/resuscitation
https://doi.org/10.1016/j.resuscitation.2018.06.003
https://doi.org/10.1016/j.resuscitation.2018.06.003
mailto:marco.pimentel@eng.ox.ac.uk
https://doi.org/10.1016/j.resuscitation.2018.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resuscitation.2018.06.003&domain=pdf


performance of the manual CEWS system in comparison to other early
warning scores on a large database of vital-sign data collected from in-
hospital patients.

Methods

Approval from the Health Research Authority was obtained for this
study from the Oxford Research Ethics Committee (REC reference: 16/
SC/0264).

Data collection

A database of vital sign observations was collected from adults
(aged at least 16 years) admitted to the Oxford University Hospitals
NHS Trust on or after 10 March 2014 and discharged on or before 01
May 2017. Clinical staff recorded patients’ vital signs at the bedside on
general wards using our System for Electronic Notification and
Documentation (SEND) [11,12]. The following data were recorded:
date and time of observation (automatically by SEND); the manual
measurement of heart rate, systolic and diastolic blood pressure, re-
spiratory rate, body temperature, neurological status using the Alert-
Verbal-Painful-Unresponsive (AVPU) scale, peripheral oxygen satura-
tion (SpO2); and a record of whether or not supplemental oxygen
support was given to the patient at the time of the measurement. This
does not include observations carried out while patients were in the
ICU. The database also contains administrative and patient demo-
graphic information, and occurrences of patient death, cardiac arrests,
unanticipated ICU admissions, and their corresponding timings, which
were identified from the patient administration system and the ICU
clinical information system.

All admissions to four Oxford organisation hospitals: the John
Radcliffe Hospital – a large university hospital, the Horton General
Hospital – a small district general hospital, the Churchill Hospital – a
large university cancer centre, and the Nuffield Orthopaedic Hospital,
were considered for this study. Only adult (aged at least 16 years) ad-
missions where, at least, one complete set of vital signs recorded elec-
tronically, were considered for inclusion in the analysis. Where the
specialty on admission to the hospital was palliative medicine, the
admission was excluded from the analysis. Data from patients who were
discharged alive from hospital before midnight on the day of admission
were excluded.

Two datasets were extracted from this database. The first dataset,
the “development” dataset, includes 301,644 vital sign observations
collected from 12,153 admissions (median age (IQR): 63 (49–73);
49.2% females) between 24 March, 2014 and 30 September, 2015 (see
Table 1). This dataset was used to estimate new threshold values for
each individual vital sign using our centile-based approach, but this
time using manually-recorded measurements (instead of automatically-
measured values). We used a second (“validation”) dataset that includes
clinical data from emergency admissions between 1 October, 2015 and
1 May, 2017 to evaluate the performance of our EWS system. This
second dataset comprises 1,459,422 vital-sign observations from
53,395 admissions, median age (IQR) 68 (48–81), 51.4% females (as
detailed in Table 1). Data pre-processing was carried out before eva-
luation. Vital-sign sets for which more than two measurements were
absent or which were physiologically-implausible (i.e., recorded in
error) were excluded. For those observation sets with one or two
missing measurements, the missing value was replaced by the popula-
tion mean value of the corresponding measurement (from the devel-
opment dataset). We note that by replacing the missing value with the
population mean value, we make the assumption that this measurement
does not contribute to the overall early warning score, because the
score assigned to this particular variable will be 0.

Methods: estimation of threshold values from vital-sign database

Using the development dataset of observation sets (which includes
manual measurements of vital signs), and using the same unsupervised,
statistical approach proposed by Tarassenko et al. [2], we obtained new
values for the lower and upper thresholds for each vital sign (except for
SpO2). To maximise the use of the dataset for robust estimation of the
centiles in the tails of the distributions, a smooth estimate of the dis-
tribution of each vital sign was obtained using a kernel-based density
estimator. The bandwidth, h, of the Gaussian kernels was computed
using the normal distribution approximation, given by =

−h σn1.06 ˆ 1/5,
where σ̂ is the standard deviation of the n samples [13]. Using the re-
sulting (smoothed) cumulative distribution of each vital sign estimated
from the development dataset, the lower threshold values were then set
to the integer values that correspond to the 10th, 5th, and 1st centiles
and the upper threshold values were set to be the integer values that
correspond to the 90th, 95th, and 99th centiles (as shown in Fig. 1), for
scores of 1, 2, and 3, respectively. In other words, a score of 3 is gen-
erated when a vital sign is below the 1st centile or above the 99th
centile, a score of 2 corresponds to the vital sign being between the 1st

Table 1
Demographic descriptors for admissions included in both development and
validation datasets. The Charlson Comorbidity Index and definitions of surgical
specialties were determined according to the methodology and specification
provided by NHS Digital. Continuous variables are shown with Median (IQR)
[Mean]. IQR refers to the interquartile range.

Development set Validation set

Admissions:
No. of admissions 12,153 53,385
Age (years) 63 (49–73) [61] 68 (48–81) [64]
Females, No. (%) 5976 (49.2) 27,433 (51.4)

Ethnic category, No. (%)
Asian or Asian British 274 (2.3) 1283 (2.4)
Black or Black British 158 (1.3) 538 (1.0)
Mixed 118 (1.0) 362 (0.7)
White 9,035 (74.3) 43,017 (80.6)
Other Ethnic Groups 2,539 (20.9) 7636 (14.3)
Not disclosed 29 (0.2) 559 (1.0)

Length of stay (days) 2.4 (0.8–7.1) [7.2] 3.1 (1.3–8.0) [7.0]
Surgical admissions, No. (%) 5259 (43.3) 20,412 (38.2)
Charlson Comorbidity Index 3 (0–10) [5.4] 3 (0–12) [6.4]

Outcomes studied, No. (%)
Composite outcome 548 (4.5) 3507 (6.6)
In-hospital mortality 358 (3.0) 2805 (5.2)
Unanticipated ICU admission 225 (1.8) 907 (1.7)
Cardiac arrest 22 (0.2) 173 (0.3)

Observation sets:
No. of observations 301,644 1,459,422
Heart rate, beats per minute 82 (71–93) [83] 80 (70–92) [82]
Respiratory rate, breaths per
minute

17 (16–18) [17] 18 (16–18) [17]

SpO2, % 97 (95–98) [96] 96 (95–98) [96]
Systolic blood pressure,
mmHg

123 (110–138) [125] 125 (111–142) [128]

Temperature, °C 36.3 (36.0–36.7)
[36.4)

36.4 (36.0–36.7)
[36.4]

AVPU level, No. (%)
Alert 296,221 (98.2) 1,417,719 (97.1)
Responds to Voice 4,524 (1.5) 31,662 (2,2)
Responds to Pain 603 (0.2) 6613 (0.5)
Unresponsive 296 (0.1) 3428 (0.2)

Supplemental Oxygen Support,
No. (%)

53,693 (17.8) 265,759 (18.2)

Charlson Comorbidity Index guidelines are available at https://beta.digital.nhs.
uk/publications/ci-hub/summary-hospital-level-mortality-indicator-shmi, and
the definitions of surgical specialties are available at https://www.
datadictionary.nhs.uk/data_dictionary/attributes/m/main_specialty_code_de.
asp (both accessed in September 2017).
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and 5th centiles or between the 95th and 99th centiles, and a score of 1
corresponds to the vital sign being between the 5th and 10th centiles or
between the 90th and 95th centiles. For SpO2, with a one-sided dis-
tribution, the lower threshold values were set to the integer values that
correspond to the 20th, 10th and 2nd centiles for scores of 1, 2, and 3,
respectively (see Supplemental Materials–Appendix A). For tempera-
ture, given the very small ranges of possible values between the lower
and upper centiles, the lower threshold values were set to the values
with one decimal place that correspond to the 10th and 1st centiles and
the upper threshold values were set to the values with one decimal
place that correspond to the 90th and 99th centiles, for scores of 1 and 3
respectively. A further modification to this scoring system was eval-
uated: the use of an additional score of 2 if the patient was given
supplemental oxygen support at the time of the measurement, as with
the NEWS scoring system [3].

Performance assessment

We assessed EWS performance using the validation dataset of vital
signs (independent of the development set used to calculate the manual
CEWS threshold values). We evaluated the discriminative ability using
the composite outcome of cardiac arrest, unanticipated intensive care
unit (ICU) admission, or death (categorised as major adverse events),
each within 24 h of a given vital-sign observation, as performed in
previous studies [1,3,4]. Where there were multiple outcomes (for ex-
ample, cardiac arrest followed by unanticipated ICU admission), only
the first event to occur was used for analysis. Hence, observation sets
performed after the first event were excluded from this analysis. The
number of patient admissions with a combined outcome in the vali-
dation set was 3,688, approximately 7% of the total number of ad-
missions (see Table 1). We have also evaluated the performance of the
scoring systems for each of the three individual outcomes.

We first assessed the performance of the continuous CEWS system
[2] on the validation dataset. To determine which vital signs contribute
to differences in performance of the manual CEWS, we then assessed
the effect of substituting the manually-derived threshold values of each
vital sign in turn (keeping the continuously-derived threshold values of
the remaining vital signs the same). Performance was assessed using the
area under the receiver-operating characteristic curve (AUC) [14] for
the composite outcome, by determining the percentage change, as such:

−
×

AUC AUC
AUC

100 (%)CEWS i CEWs

CEWS

,

where AUCCEWS is the performance of the continuous centile-based
EWS, and AUCROCCEWS i, corresponds to the AUC of the continuous

centile-based EWS system with the new manual thresholds substituted
for each of the vital signs, i, in turn.

We then evaluated the performance of the manual centile-based
EWS system (with the new threshold values for all vital signs and the
additional score of 2 for use of oxygen support) and compared it with
that of other EWS systems published in the literature. In addition to the
AUC metric, we determined the area under the precision-recall curve
(AUC-PR), as suggested in an increasing body of literature [15–17]. The
precision-recall curve is a plot of the sensitivity (recall) against the
positive predictive value (PPV, or precision), a metric which is asso-
ciated with the operational consequences and workload/clinical burden
imposed on clinicians by alerting systems [16].

We also evaluated the performance (as given by the AUC) of the
EWS systems using subsidiary-derived outcome variables that include
the occurrence of the composite adverse event within 12 or 48 h of an
observation set.

Results

The characteristics of the vital signs in our development and vali-
dation datasets are shown in Table 1. Fig. 1 shows an example of the
histogram (normalised such that the area-under-the-curve is 1.0) and of
the cumulative distribution function for manually-collected respiratory
rate (see Supplemental Materials–Appendix A for the equivalent figures
for the other vital signs, including those for continuously-acquired vital
signs, which are based on our previous results [2]). The differences
between the scores for the continuous CEWS and its manual version are
shown in Table 2.

Fig. 2 shows the change in performance (as measured by the AUC)
for the continuous centile-based EWS when the thresholds for each vital
sign in turn are replaced by the equivalent thresholds derived from the
manual dataset. Changing the thresholds for RR produces a percentage
change of approximately 2% in the performance of the original, con-
tinuous centile-based EWS system.

The performance of the different EWS systems on the validation
dataset is shown in Table 3. Our continuous CEWS has an AUC of 0.808
(95% CI, 0.804–0.812) for the validation dataset using the composite
outcome of major adverse event within 24 h of an observation set. The
manual CEWS without supplemental oxygen has an AUC of 0.836
(0.832–0.840). When supplemental oxygen is included, the manual
CEWS has an AUC of 0.868 (0.864–0.872), which is comparable to that
of NEWS, 0.867 (0.863–0.871). The same trend (increasing perfor-
mance) is observed if we consider the AUC-PR values. The AUC (95%
CI) for the other EWSs using the composite outcome ranged from 0.768
(0.764–0.773) [31] to 0.865 (0.861–0.869) [4] (the ROC and Precision-

Fig. 1. Representation of the normalised histogram (left), and cumulative distribution functions (cdf), P x( ) for respiratory rate, computed from the development
dataset, which includes manual measurements of respiratory rate collected electronically from patients admitted to the hospital. For the plot on the left, the central
vertical line indicates the mean of the data, with the two vertical (dashed) lines either side corresponding to one standard deviation. For the plot on the right, the 1st,
5th, 10th, 90th, 95th and 99th centiles are shown on the vertical axis and the corresponding threshold values on the horizontal axis.
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Recall curves for all EWSs are represented in Supplemental Material –
Appendix B). The results of the evaluation of the EWSs using each in-
dividual outcome are described in Supplemental Material–Appendix C.

Fig. 3 shows the performance of the different scoring systems using
the composite outcome of a major adverse event occurring within
T=12, 24, or 48 h of an observation set. The change in performance
with respect to T is consistent for all scoring systems, deteriorating as T
increases.

Discussion

Our original centile-based EWS system was developed using vital-
sign data acquired continuously from bedside monitors. We used a
statistical approach to determine the threshold values for each phy-
siological variable from which scores are calculated. In this study, we
applied the same statistical approach using vital-sign data acquired
manually by clinical staff, the current method of recording vital signs in
clinical practice on general wards. The improvement in performance
between continuous CEWS and our new manual CEWS was mainly
explained by differences in respiratory rate thresholds. Although the
median value for respiratory rate acquired manually from hospitalised
patients is similar to that in continuous data acquired from patient
monitors, the distributions, especially in the tails, are very different (see
Supplemental Materials: Appendix A), hence the threshold values are

also different, especially for the upper thresholds for respiratory rate
(tachypnoea). With these thresholds, the manual CEWS has superior
discriminative performance as measured by the AUC metric. On a

Table 2
Range of values for each weighting for the vital signs in the centile-based EWS derived from continuously-acquired vital-sign data using bedside monitors, and for the
manual centile-based EWS system. *Inspired O2, denoting use of any oxygen support, was investigated as a separate addition to the EWS system.

Continuous Centile-based EWS [2]

Score
Variable 3 2 1 0 1 2 3
Heart rate ≤ 50 51–58 59–63 64–104 105–112 113–127 ≥ 128
Respiratory rate ≤ 7 8–10 11–13 14–25 26–28 29–33 ≥ 34
Temperature ≤ 35.4 35.5–35.9 36.0–37.3 37.4–38.3 ≥ 38.4
Systolic BP ≤ 85 86–96 97–101 102–154 155–164 165–184 ≥ 185
SpO2 ≤ 84 85–90 91–93 ≥ 94
AVPU scale A V P, U

Manual Centile-based EWS

Score
Variable 3 2 1 0 1 2 3
Heart rate ≤ 42 43–49 50–53 54–104 105–112 113–127 ≥ 128
Respiratory rate ≤ 7 8 – 11 11 – 12 13 – 21 22–23 24–28 ≥ 29
Temperature ≤ 35.4 35.5–35.9 36.0–37.3 37.4–38.3 ≥ 38.4
Systolic BP ≤ 83 84–90 91–100 101–157 158–167 168–184 ≥ 185
SpO2 ≤ 84 85–90 91–93 ≥ 94
Inspired O2* Air Any O2

AVPU scale A V P, U

Fig. 2. Percentage change (%) in performance (as given by the AUC) of the
continuous CEWS when the thresholds for each vital sign are replaced by the
equivalent thresholds derived from the distribution of manually-recorded
measurements, with the threshold values for the other four vital signs re-
maining unchanged.

Table 3
Area under the receiver-operating characteristics curve (AUC) and area under
the precision-recall curve (AUC-PR), and corresponding 95% confidence in-
terval (CI) for the Manual centile-based EWS (CEWS) and 22 other early
warning score (EWS) systems, using cardiac arrest, unanticipated admission to
ICU or death within 24 h of the observation set as the (composite) outcome. The
EWS number (EWS no.) refers to those used in other figures and sections of the
manuscript. Results are presented in descending order of AUC, with the results
relating to the scores that use the methodology discussed in the manuscript
highlighted. [*] indicates systems that have an additional score for supple-
mental oxygen support.

EWS no. EWS AUC 95% CI AUC-PR 95% CI

– Manual CEWS [*] 0.868 0.864–0.872 0.161 0.155–0.167
21 NEWS [3] [*] 0.867 0.863–0.871 0.163 0.157–0.169
22 Badriyah et al. [4]

[*]
0.865 0.861–0.869 0.157 0.151–0.162

19 Lilienfeld-Toal et al.
[34] [*]

0.860 0.857–0.864 0.151 0.146–0.157

8 Goldhill et al. [25] 0.846 0.842–0.850 0.148 0.142–0.153
18 Lilienfeld-Toal et al.

[34]
0.846 0.842–0.850 0.143 0.137–0.148

11 Paterson et al. [28] 0.843 0.839–0.847 0.159 0.153–0.164
– Manual CEWS 0.836 0.832–0.840 0.140 0.135–0.146
9 Chatterjee et al. [26] 0.827 0.823–0.831 0.124 0.118–0.129
7 Allen [24] 0.826 0.822–0.830 0.130 0.125–0.135
1 Wright et al. [18] 0.823 0.818–0.827 0.129 0.124–0.135
4 Cooper et al. [21] 0.823 0.818–0.827 0.129 0.124–0.134
5 Subbe et al. [22] 0.822 0.818–0.826 0.130 0.125–0.136
2 Subbe et al. [19] 0.821 0.817–0.825 0.126 0.120–0.131
3 Riley et al. [20] 0.821 0.817–0.825 0.123 0.118–0.128
12 Smith et al. [35] 0.821 0.817–0.825 0.130 0.124–0.135
10 Andrews et al. [27] 0.818 0.813–0.822 0.131 0.126–0.137
14 Gardner-Thorpe

et al. [30]
0.817 0.813–0.822 0.130 0.125–0.136

16 Odell [32] 0.817 0.813–0.822 0.127 0.122–0.133
13 Lam et al. [29] 0.817 0.813–0.822 0.130 0.125–0.136
6 Rees et al. [23] 0.817 0.813–0.821 0.128 0.122–0.133
17 Hancock et al. [33] 0.815 0.811–0.820 0.128 0.123–0.133
20 Continuous CEWS

[2]
0.808 0.804–0.812 0.128 0.123–0.133

15 Subbe et al. [31] 0.768 0.764–0.773 0.101 0.096–0.106
– CART, Churpek et al.

[39]
0.729 0.725–0.734 0.098 0.092–0.104
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separate, validation dataset, manual CEWS, an unsupervised centile-
based approach to EWS development produces values of AUC at least as
high as supervised methods, such as NEWS, in which knowledge of
patient outcome is used during development.

The difference in performance between continuous and manual
CEWS suggests that the database with which an EWS is developed af-
fects performance. The key difference between the two training data-
bases is that, with continuous CEWS, the vital signs were (continuously)
electronically recorded. Previous studies [6,8] have shown dis-
crepancies between clinical measurements by clinical staff and elec-
tronic monitors.

We also found a clear effect associated with the inclusion of sup-
plemental oxygen. The best-performing EWS systems (as evaluated on
the validation dataset) include an additional score for those observation
sets acquired when the patient is given supplemental oxygen support.
We note, however, that the inclusion of this extra information as a
marker for identifying deterioration may be problematic as different
hospital units often have different protocols for using supplemental
oxygen support. Secondly, the use of oxygen support is the result of a
clinical intervention, which will have a direct influence on the phy-
siological variables (certainly on SpO2) that are measured during that
period. Although the use of oxygen support increases the ability of EWS
systems to predict a major adverse event, its inclusion in a scoring
system should depend on the clinical protocol employed in that hospital
setting.

With the modifications described in this paper to our centile-based
EWS, the performance of the proposed system is comparable to that of
NEWS using all outcomes considered (Table 3, Supplemental Material –
Appendix C). Our centile-based approach is based on unsupervised,
statistical methodology, rather than on the supervised method used to
estimate the thresholds in NEWS. Our approach can easily be extended
to include new variables without having to re-train the model, and the
same statistical framework can be applied to sub-populations (for ex-
ample, patients with respiratory disease such as chronic obstructive
pulmonary disease, COPD) or other populations (for example, paedia-
tric patients). This unsupervised approach is a key differentiator in the
methodology for constructing EWS systems, as most existing systems
are optimised according to their ability to identify a compound set of
patient outcomes at T=24 h. Our method assumes that observations
should be treated as being abnormal if they lie at the extremes of the
distributions of vital signs acquired from representative sets of at-risk
hospitalised patients.

There are limitations to our study. The first is that the study is based
on retrospective analysis of hospitalised patients. Secondly, for the
evaluation of the various EWS systems considered in this paper, we
used repeated observation sets from the same patient in the analysis.
This relies on the assumption that the EWS values computed from each
observation set for that patient are independent (which is the usual
assumption when evaluating EWS systems), and this assumption may
not hold in practice. (That is, a vital-sign measurement at one point in
time may be correlated with previous measurements.) However, we
note that this has been the standard methodology for all the studies
reported in the literature when assessing the discriminatory perfor-
mance of EWS systems [1,3,4,36]. Finally, the dataset from which we
derived the thresholds for our continuous CEWS score differed from the
dataset with which we derived and validated the thresholds for our
manual CEWS; the former was acquired from different hospitals a
decade earlier. We hypothesise that differences in methods of recording
respiratory rate (counting chest wall movements in manual CEWS
versus automated recording of RR measurements from an electronic
patient monitor in continuous CEWS) explains the differences in RR
thresholds between the two scoring systems. However, we cannot ex-
clude the possibility that other factors may provide part of the ex-
planation.

Despite the limitations discussed above, the results of the present
study are clear. Our unsupervised, data-driven approach allows for
simple adjustment of the model as new representative datasets become
available. Data-driven EWS systems should take into account not only
the different databases used to build those systems, but also the dif-
ferent methods of recording the physiological variables stored in those
databases.

More work is needed to establish whether systematic differences
exist between vital signs recorded by patient monitors and those re-
corded manually. Caution needs to be exercised if early warning scores
designed using databases of manually-recorded vital signs are to be
used with continuously-recorded vital signs. Our statistical approach
can also be used to allow the rapid development of candidate EWS
systems for specific patient groups such as patients with moderate-to-
severe COPD, where current early warning scores are reported to per-
form less well [37,38].

Conclusion

The performance of an EWS is highly dependent on the database

Fig. 3. AUC values for the manual CEWS and another 22
EWS systems, for the composite outcome of cardiac arrest,
unanticipated ICU admission, or death within {12, 24, and
48} h of a given observation set. The system numbers
(horizontal axis) correspond to those used in Table 3. The
symbol ‘*’ denotes the systems that have an additional
score for supplemental oxygen support.

P.J. Watkinson et al. Resuscitation 129 (2018) 55–60

59



from which it was derived. Our unsupervised statistical approach
methodology enables the rapid development of candidate EWS systems.
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