
ll
OPEN ACCESS
iScience

Article
Acute exposure to artificial light at night alters
hippocampal vascular structure in mice
Jacob R.

Bumgarner,

William H. Walker

II, Dominic D.

Quintana, ...,

James W.

Simpkins, A.

Courtney DeVries,

Randy J. Nelson

jrbumgarner@mix.wvu.edu

Highlights
Artificial light at night

(ALAN) is a pervasive and

disruptive aspect of

modern life

This study examined the

effects of acute ALAN

exposure on hippocampal

vasculature

ALAN exposure altered

hippocampal vascular

structure and connectivity

in mice

Vascular alterations

induced by ALAN

exposure varied based on

sex

Bumgarner et al., iScience 26,
106996
July 21, 2023 ª 2023 The
Authors.

https://doi.org/10.1016/

j.isci.2023.106996

mailto:jrbumgarner@mix.wvu.edu
https://doi.org/10.1016/j.isci.2023.106996
https://doi.org/10.1016/j.isci.2023.106996
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.106996&domain=pdf


ll
OPEN ACCESS
iScience
Article
Acute exposure to artificial light at night
alters hippocampal vascular structure in mice

Jacob R. Bumgarner,1,4,* William H. Walker II,1 Dominic D. Quintana,1 Rhett C. White,1 Alexandra A. Richmond,1

O. Hecmarie Meléndez-Fernández,1 Jennifer A. Liu,1 Darius D. Becker-Krail,1 James C. Walton,1

James W. Simpkins,1 A. Courtney DeVries,1,2,3 and Randy J. Nelson1
SUMMARY

The structure and function of the cardiovascular system aremodulated across the
day by circadian rhythms, making this system susceptible to circadian rhythm
disruption. Recent evidence demonstrated that short-term exposure to a perva-
sive circadian rhythm disruptor, artificial light at night (ALAN), increased inflam-
mation and altered angiogenic transcripts in the hippocampi of mice. Here, we
examined the effects of four nights of ALAN exposure on mouse hippocampal
vascular networks. To do this, we analyzed 2D and 3D images of hippocampal
vasculature and hippocampal transcriptomic profiles of mice exposed to ALAN.
ALAN reduced vascular density in the CA1 and CA2/3 of female mice and the den-
tate gyrus of male mice. Network structure and connectivity were also impaired
in the CA2/3 of female mice. These results demonstrate the rapid and potent ef-
fects of ALAN on cerebrovascular networks, highlighting the importance of
ALAN mitigation in the context of health and cerebrovascular disease.
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INTRODUCTION

The function of the cardiovascular system is coordinated across the day by circadian rhythms.1 Circadian

rhythms are endogenously driven cyclical processes with periods of about 24 h (hence circa: about,

diem: a day). These rhythms regulate and optimize the timing of various behavioral, physiological, and

cellular processes in response to fluctuating energetic resource availability and the need for periods of

rest.2 Proper alignment and integrity of circadian rhythms are vital for cardiovascular health.1

Cardiovascular circadian rhythms are generated and modulated across the day by both rhythms within the

cardiovascular system and by rhythmic humoral and neuronal signaling cues that act on the cardiovascular

system.2 For example, in mice, myocardial oxidative metabolism varies across the day in response to vary-

ing systemic energetic demands during sleep/wake activity.3 Aortic tight-junction and extracellular matrix

transcriptomic profiles also vary across the day, including rhythmic variation in genes such as claudin-5,

junctional adhesion molecule-1, and elastin.4 Circadian rhythms regulate several other cardiovascular pro-

cesses, including vascular tone,5 blood pressure,6 heart rate,7 and angiogenesis.8 The coordination of

many of these processes is necessary for responding to and recovering from varying energetic needs across

the day.2

Alignment of internal circadian rhythms to the external environment is vital for health.9 This alignment pri-

marily occurs by solar light-dark signaling cues. Disruption of circadian rhythms leads to many negative

physiological and behavioral consequences. Of the many circadian rhythm disruptors present in our mod-

ern environments, artificial light at night (ALAN) is the most pervasive.10 ALAN affects a growing 80% of the

global human population; this metric exceeds 99% in the US and Europe.11 Circadian rhythm disruption

caused by ALAN exposure has detrimental effects on the cardiovascular system.12

Previous evidence has demonstrated the rapid consequences of short-term exposure to ALAN.13 Mice

exposed to just four nights of ALAN exhibited increased neuroinflammation, increased depressive-like

behavior, and importantly, altered angiogenic transcript profiles in the hippocampus.13 Female and

male mice exposed to as few as four nights of 5 lux of ALAN exhibited reduced hippocampal VEGF-A

expression and elevated Vegfr-1 expression, indicating disrupted angiogenic signaling.13 VEGF-A is a
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Figure 1. ALAN exposure reduces lectin percent area fraction in hippocampal CA1 and DG

(A and B) Lectin perfusion enabled the visualization and segmentation of the CA1, CA2/3, and dentate gyrus (DG) of the hippocampus of male and female

mice exposed to either LD (C-E) or artificial light at night (F-H).

(I–K) Percent area fraction was calculated and compared in the CA1 (I), CA2/3 (J), and the DG (K) (n = 9 females/group, n = 9–10 males/group). Data were

analyzed with a one-tailed t-test, as supported by an a priori hypothesis generated from evidence by Walker et al., 2020. Scale bars represent 200 mm. Data

are represented as mean G SEM. *p < 0.05.
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potent angiogenic signaling factor14; reduction of VEGF-A signaling can reduce vascular density and alter

vascular function.15,16 Moreover, VEGFR-1 is capable of potentiating angiogenesis,17 but also can

sequester VEGF-A and inhibit angiogenesis.18

Based on this evidence, we hypothesized that four nights of exposure to 5 lux of ALAN alters vascular struc-

ture in the hippocampus of CFW mice. We tested this hypothesis by examining 2D sections of lectin-

labeled hippocampal vasculature, large-scale 3D reconstructions of hippocampal vasculature generated

with corrosion casting, and hippocampal bulk-sequencing transcriptome profiling.
RESULTS

ALAN alters hippocampal vascular density

To assess the effects of short-term ALAN exposure (4 nights) on hippocampal vascularity, we first perfused

fluorescently labeled lectin, a carbohydrate-binding protein used to label vasculature. Following imaging,

the CA1, CA2/3, and dentate gyrus (DG) of the hippocampus were manually segmented to examine the

percent area fraction (PAF) of lectin staining (Figures 1A–1H). There were no sex differences in lectin

PAF (see Summary Table), so the results between sexes were combined for subsequent lectin analyses.

Reduced vascular density was observed in both the CA1 (Figure 1I) and DG (Figure 1K) of mice exposed

to ALAN, supporting the hypothesis that ALAN disrupts cerebrovascular structure. Segmented lectin

percent area fraction was not significantly different in the CA2/3 of mice exposed to ALAN (Figure 1J).
ALAN exposure alters the density of small-to-medium vessels in the hippocampus

Following the observation of reduced lectin-labeled vascular density, we sought to comprehensively

examine the effects of ALAN on region-wide hippocampal vascular networks. To do this, cerebrovascula-

ture casts were created using a corrosion casting procedure and were imaged using mCT.19 This enabled
2 iScience 26, 106996, July 21, 2023
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the 3D segmentation of the CA1, CA2/3, and DG for subsequent quantification of numerous vascular

characteristics.

Vascular networks can be characterized by examining the whole-network topology and the mean features

of individual segments.20 First, the density of hippocampal vascularization by varying radii of vessels per

mm3 of tissue was examined in all three segmented regions. Female and male groups were separated in

the subsequent analyses because of sex differences in several vascular features across the examined re-

gions (e.g., Figures 3A–3C, S2). In both the CA1 (Figure 2A; nfemales = 7–8, nmales = 5–7) and the CA2/3 (Fig-

ure 2B) of female mice exposed to ALAN, the density of vessels with radii of 4–7 mmwas reduced. Similarly,

ALAN exposure reduced the density of 3–6 mm radius vessels in the DG of male mice (Figure 2F; Video S1).

In the female CA1 and CA2/3 as well as the DG of male mice exposed to ALAN, there was an interaction

between exposure to ALAN and the size of vessels that were reduced. There were no reductions in the

vascular density in the DG of female mice (Figure 2C) or the CA1 or CA2/3 of male mice exposed to

ALAN (Figures 2D and 2F).
ALAN alters network structure and topology in the CA2/3 of female mice

To further understand the effects of ALAN onwhole-network vascular characteristics, we examined network

volume and surface area in the corrosion casting mCT datasets. To do this, dorsal hippocampal vasculature

was manually segmented, as described in the methods. In the CA2/3 of female mice, ALAN reduced total

network volume (Figure 3A) and the total network surface (Figure 3B) area per mm3 of segmentation vol-

ume. Volume and surface area differences were not observed in the CA1 or DG of either sex exposed to

ALAN (Figure S1). Next, the effects of ALAN on themean characteristics of individual segments were exam-

ined. ALAN increased themean tortuosity (Figure S2F) and reduced themean radius (Figure S2H) of vessels

in the CA2/3 of female mice. No other alterations in individual segment characteristics were observed (Fig-

ure S2). Lastly, to examine the effects of ALAN on vascular network topology, we examined branchpoint

and endpoint density as metrics of connectivity. ALAN exposure reduced network branchpoint density

(Figure 3C) and increased endpoint density (Figure 3D) in the CA2/3 of female mice. These effects were

not observed in any male hippocampal regions or the CA1 or DG of female mice (Figure S1).
ALAN alters hippocampal vascular transcriptomic profiles

Finally, to gain initial insight into the mechanisms by which ALAN exposure leads to altered hippocampal

vasculature, we performed bulk-tissue RNA-sequencing on hippocampal dissections of mice exposed to

four nights of ALAN. Several hundred differentially expressed genes were observed (Figures 4A and 4B),

with minor overlap between sexes (Figure 4C). In females, we observed alterations in gene ontologies

associated with extracellular matrix maintenance and organization, which included upregulated Bmp7

and downregulated, Col4a4, Col20a1, and Lamc2, Lama2, among others (Figures 4D and 4F). Additional

alterations in genes associated with angiogenesis were also observed in females exposed to ALAN,

including downregulated Nid1 and Ctsg. In male mice exposed to ALAN, we observed alterations of

gene ontologies associated with blood vessel morphogenesis, angiogenesis, and blood-brain barrier

maintenance, including upregulated Fgfr2, Anxa2, and Mcam and downregulated Notch4, Coro1c, and

Klf4 (Figure 4G).
DISCUSSION

The present study demonstrates that exposure to ALAN on a short timescale can rapidly alter the structure

and density of vasculature in the hippocampus of male and female mice. Our preliminary analysis of

vascular density using lectin perfusion indicates reduced vascularity in both the CA1 and the DG of the hip-

pocampus. Following this preliminary analysis, 3D hippocampal vascular network alterations following

exposure to ALAN were examined using corrosion casting. 3D structural analysis revealed that ALAN re-

duces the density of small-to-medium sized vessels in the CA1 and CA2/3 of female mice and the DG of

male mice. Moreover, in the CA2/3 of female mice, ALAN reduces vascular volume and surface area, in-

creases vessel tortuosity, and alters network topology as indicated by decreased branchpoint and

increased endpoint density. Follow-up examination of hippocampal transcriptome profiles indicates

altered gene patterns associated with vascular morphogenesis and extracellular matrix organization.

The evidence presented in this study is consistent with several lines of work that demonstrate that circadian

rhythm disruption can directly impair vascular structure and function.21 For example, rats exposed to dim
iScience 26, 106996, July 21, 2023 3
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Figure 2. ALAN alters the density of small-to-medium-sized vessels in the hippocampus of female and male mice

(A–F) Vessel density by radius bins was assessed in female hippocampal CA1 (A), CA2/3 (B), and DG (C) and in male hippocampal CA1 (D), CA2/3 (E), and DG

(F) (n = 7–8 females/group, n = 5–7 males/group). Data were analyzed using a two-way ANOVA with ALAN and radius size as the main effects. Sexes were

analyzed separately. The dentate gyri in F have a scale bar from 1.35–25.0 mm. Data are represented as mean G SEM. *p < 0.05, **p < 0.01.
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ALAN at levels of 1–2 lux for 5 weeks exhibited reduced nocturnal systolic blood pressure, altered heart rate

rhythms, and altered cardiovascular responses to norepinephrine.22 In the same study, exposure to ALAN

for 2 weeks elevated aortic expression of endothelial nitric oxide synthase.22 Similar cardiovascular disrup-

tion is observed in spontaneously hypertensive rats exposed to dimALAN.23 ALAN exposure increased sys-

tolic blood pressure and reduced systolic blood pressure variability.23 Humans exposed to a 3-day simu-

lated shift work paradigm exhibited elevated both systolic and diastolic blood pressure as well as

reduced nocturnal systolic blood pressure dipping.24
4 iScience 26, 106996, July 21, 2023
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Figure 3. ALAN alters the structure and topological features of the CA2/3 in female mice

(A–D) The effects of ALAN on network volume (A) and surface area (B) were examined. Network connectivity was also assessed by examining branchpoint

(C) and endpoint density (D) (n = 7–8 females/group, n = 5–7 males/group). Data were analyzed using a two-way ANOVA and planned multiple comparisons

within sex were made using Fisher’s LSD. # - Main effect of lighting condition. Data are represented as mean G SEM. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.
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In the context of cardiovascular pathology, a week of exposure to ALAN in a rodent model of cerebral

ischemia led to increased mortality, neuroinflammation, and Iba1 immunoreactivity, a marker for activated

microglia/macrophages.25 Moreover, a single night of ALAN exposure increases infarct penumbral volume

following experimental stroke in mice.26 Other work has demonstrated that Per2 is necessary for the proper

function of endothelial progenitor cells following myocardial infarction in mice, although cell function was

examined in vitro.27
iScience 26, 106996, July 21, 2023 5
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Figure 4. ALAN exposure alters gene expression related to angiogenesis, extracellular matrix composition, and blood-brain-barrier integrity

(A and B) Volcano plots visualizing differentially the results of the sequencing analyses.

(C) Venn diagram showing overlap of differentially expressed genes between sexes.

(D and E) Heatmaps visualizing differentially expressed genes tied to relevant extracellular matrix organization, blood vessel morphogenesis, or

angiogenesis pathways.

(F and G) Gene ontology bubble plots demonstrating significantly altered biological pathways (n = 6 animals/group).
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Previous research examining the effects of ALAN on zebra finch physiology has demonstrated hippocam-

pal-specific and sex-differential effects. One study noted that female zebra finch exposed to 5 lux of ALAN

for 7 weeks exhibited increased neuronal recruitment to the medial striatum, hippocampus, and the nido-

pallium caudale. However, ALAN only increased total neuronal density in the hippocampus, highlighting a

hippocampal-specific effect of ALAN.28 A follow-up study examining ALAN exposure onmale zebra finches

observed that ALAN increased neuronal recruitment in several other structures, but not the hippocampus.

In contrast to the observed results in females, ALAN did not increase neuronal density or neuronal recruit-

ment in the hippocampus of male zebra finches after six weeks of 5 lux of ALAN exposure.29 Notably, ALAN

exposure did alter neuronal recruitment and density in other brain regions.29 These region- and sex-spe-

cific effects of ALAN on hippocampal neuronal characteristics are tangential but complementary to the ef-

fects observed in the present study.

ALAN exposure may also have indirectly induced the vascular structural alterations observed in this study

via inflammation. ALAN exposure induces states of neuroinflammation in humans and other species,30 and

inflammation is associated with vascular remodeling.31–33 Siberian hamsters exposed to ALAN exhibit

elevated hippocampal Tnf.34 Male mice exposed to ALAN exhibit elevated hippocampal Tnf and Il-635

as well as medullar Il-6.36 Moreover, in the context of the short-term scale of ALAN exposure demonstrated

in this study, our previous work demonstrated that only 3 nights of exposure to 5 lux of ALAN increased

hippocampal Il-1b in female mice.13 Elevated neuroinflammation may be a determining factor for the pres-

ence of altered cerebral vascular structure in this study, as adult angiogenesis is thought to primarily be

driven by inflammation.33 Future work may seek to examine inflammatory alterations and their relation

to vascular structure and remodeling.

Angiogenesis and vascular remodeling are regulated by clock genes, directly implicating the ability for

circadian rhythm disruption to alter vascular structure.37 Indeed, circadian transcription factor binding

sites, including E-boxes, D-boxes, F-boxes, and ROREs are present in the promoter regions of numerous

angiogenic proteins.8 Disruption of the clock gene expression loop can alter vascular development in ze-

brafish.38,39 An in vitro assessment of angiogenesis demonstrated that clock synchronization of pericytes

and endothelial cells increased tube formation and endothelial cell counts relative to desynchronized cells,

further implicating the circadian clock in vascular remodeling.40 Further, Bmal1 knockout mice exhibit path-

ological carotid artery vascular remodeling.41 Lastly, as previously noted and as supported by our transcrip-

tomic results, ALAN can alter angiogenic signaling in mice.13

The observed regional sex differences in vascular network alterations may be a result of underlying sex

differences in cardiovascular circadian rhythms42 or sex differences in the effects of circadian rhythm

disruption.43 For example, there are sex differences in basal cardiovascular tone44 and heart rate vari-

ability,45 and these differences persist when examined across the day.46–49 Sex differences in inflamma-

tory responses and immune function following ALAN exposure have also been previously noted.13,50,51

Sex differences in angiogenic transcript alterations in the hippocampus following ALAN exposure

have also been reported.13 As noted, VEGF-A was decreased in both sexes, but Vegfr-1 was only

increased in female hippocampal tissue.13 Of note, the observed sex differences were only detected

in the 3D casting data. This is likely because, in contrast to 2D lectin staining, network analysis with

3D can detect fine-grained differences in vasculature.19 Lastly, the observed sex differences may also

be an effect of circulating estrogen, as estrogen does play a role vascular reactivity52 and vascular

remodeling.53

Future work may seek to directly examine the effects of restoring hippocampal vascularization on hippo-

campal function, for example via intraventricular infusion of VEGF. To assess the contribution of female

sex hormones to the observed sex differences in ALAN-induced hippocampal vascular alterations, future

experiments may examine effects in ovariectomized mice or stratify female mice by estrus phase for

vascular structure comparisons.

The present study provides further insight into a growing body of work relating disrupted circadian rhythms

and impaired cardiovascular function. The effects of ALAN exposure on cerebrovascular structure on such a

rapid timescale highlight the continuing need to consider ALAN as a dangerous and pervasive circadian

rhythm disruptor.
iScience 26, 106996, July 21, 2023 7
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Limitations of study

There are several limitations present in this study. An important limitation is that the presented evidence

is primarily characteristic and correlative in the context of previously published results. Next, the vascular

characterizations in this study were conducted ex vivo, preventing inferences about blood flow dynamics

and real-time insights into vascular remodeling. A further limitation was our narrowed examination of

dorsal hippocampal vascular alterations because of the limitations of our manual structure segmentation

from the 3D reconstructions. Future work may seek to examine vascular alterations using 3D LSFM ap-

proaches that allow for automatic region registration and segmentation. Moreover, we did not directly

examine the concentration of circulating sex hormones to determine their potential role in the underly-

ing observed sex differences. A final noted limitation of this study was the single timepoint examination

of the effects of ALAN on hippocampal vascular structure. Future multi-timepoint examinations may

elucidate whether there are underlying circadian differences in structural alterations that are disrupted

by ALAN exposure.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

DyLight-594 tagged tomato (Lycopersicon

esculentum) lectin

Vector Laboratories DL-1177-1

Chemicals, peptides, and recombinant proteins

Heparin Sulfate McKesson Corporation 63739-931-28

Paraformaldehyde Acros Organics 416780030

PU4ii Resin and Hardener VasQTec NA

Methyl Ethyl Ketone Fisher Chemical M209

Formic Acid VWR International BDH4554

Potassium Hydroxide VWR International BDH7622

Phosphate Buffered Saline Gibco 10010-023

Osmium Tetroxide Sigma Aldrich 75632

Isoflurane VetOne 502017

Deposited data

RNA Sequencing Results Harvard Dataverse https://doi.org/10.7910/DVN/5EKYEM

Statistical Analysis Summary Tables Harvard Dataverse https://doi.org/10.7910/DVN/C6QPR9

Experimental models: Organisms/strains

Female and Male CFW Mice Charles River Laboratories #024

Software and algorithms

microCT 3D.SUITE Software Bruker NA

Prism 9.3.0 GraphPad https://www.graphpad.com/scientific-

software/prism/

ImageJ 2.3.0 Schneider et al., 2012 https://imagej.nih.gov/ij/

VesselVio Application Downloads and

Terminal-Build Instructions

Bumgarner and Nelson, 2022 https://jacobbumgarner.github.io/VesselVio/

Other

Teklad Global 18% Protein Rodent Chow Teklad 2018

Skyscan mCT Scanner Bruker 1272

BZ-X710 microscope Keyence NA
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources related to this study should be directed to and will be ful-

filled by the lead contact, Jacob Bumgarner (jrbumgarner@mix.wvu.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

All RNA Sequencing data have been deposited at Harvard Dataverse and are publically available as of the

date of publication. DOIs are listed in the key resources table. This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

Adult female and male Swiss Webster (CFW) mice (7-8 weeks old; Charles River Laboratories) were ob-

tained and given 1 week to acclimate to standard vivarium conditions (14:10 h light: dark; 150G25:0 lux,

22G2�C; 12.0 x 6.5 x 5.5’’ polycarbonate cages). Upon arrival, mice were housed in groups of five per

cage. Following the acclimation period, mice were singly housed and randomly assigned to either the vi-

varium light-dark (LD) cycle or dim artificial light at night (ALAN; 14:10 h; 150G25: 5G1 lux) housing con-

ditions with lights on at 05:00 h and off at 19:00 h. ALAN sources were Luma5 Standard LED light strips

(1.5 W/ft, 5000K ‘‘cool white’’, 1200 lumens; Hitlights Inc.); lux calibrations were conducted by placing a Ma-

volux 5023C illuminance meter (Gossen) in the center of an empty cage with the light sensor facing towards

the ceiling. After group assignment, the animals were placed in their respective lighting conditions for a

total of four nights prior to lectin perfusion, corrosion casting, or tissue collection. Food (2018 Teklad; En-

vigo) and reverse osmosis water were provided ad libitum throughout the entire duration of the experi-

ment. All studies were approved by theWest Virginia University Institutional Animal Care and Use Commit-

tee, and animals were maintained in accordance with NIH Animal Welfare guidelines.

METHOD DETAILS

Resin perfusions

Between 12:00-16:00 h on the day following the 4th experimental night of LD or ALAN conditions, resin cast-

ing perfusions were conducted as described previously.19 Prior to perfusion, animals were deeply anesthe-

tized with isoflurane and injected intraperitoneally (i.p.) with 25 U of heparin (63739-931-28; McKesson Cor-

poration) in 250 mL of saline. Following absence of a response to the pedal reflex tests (confirming deep

anesthetization), mice were transcardially perfused at a flow rate of 4 mL/min first with 15 mL of 25U/mL

heparin in saline and then with 15 mL of 4% paraformaldehyde dissolved in 1x PBS (#416780030; Acros Or-

ganics). Next, animals were perfused with PU4ii resin that was formulated as described by the manufac-

turer’s guidelines (VasQTec). Experimental groups were stratified across multiple days of perfusions.

Five days following the resin perfusions, the craniums were dissected and decalcified with a 12 h wash of 5%

formic acid (BDH4554; VWR International). The brains were then dissected, and the remaining tissue was

removed from the casts with two 12 h washes of 7.5% KOH (BDH7622; VWR International) at 50ºC. Casts

were rinsed with Milli-Q water and subsequently osmicated in 1% osmium tetroxide (#75632; Sigma Al-

drich) for 12 h. Casts were then washed, frozen, and lyophilized prior to being mounted for mCT scanning.

mCT scanning

The resulting cerebrovascular casts were imaged on a SkyScan 1272 (Bruker) with the following parameters:

50 kV/ 200 mA with no filter; 360� rotation in step sizes of 0.17�; 900 ms exposures; 4 frame averages/step to

produce an isotropic voxel resolution of 2.7 mm3. Scans were reconstructed using NRecon (Bruker) with the

following parameters: beam hardening corrections at 15%, ring artifact reduction at 3, smoothing at 0,

custom alignment compensations set for each sample, and 0.02-0.40 dynamic image ranges. Scan and

reconstruction parameters were determined based on the manufacturer’s guidelines. Following recon-

structions, the volumes were resliced coronally. Volumes were then loaded into CTAn (Bruker), and the dor-

sal hippocampal CA1, CA2/3, and dentate gyrus volumes between the approximate bregma -1.6 and -2.6

coordinates were manually segmented using the transverse hippocampal vessels and main vessels of the

hippocampus54 as intra- and inter-regional boundary guides alongside the p56 Allen Institute mouse brain

atlas. Manual segmentations were interpolated at distances of 0.1 mm. Segmented vasculature volumes

from the casting data were analyzed using VesselVio 1.1.1,55 with a 10 mm filter for isolated segments

and a 5 mm filter for endpoint segment pruning to account for skeletonization errors.

RNA-sequencing

Between 1200-1400 h on the day following the fourth night of experimental housing conditions, brains were

collected from a separate cohort of mice. Following rapid cervical dislocation and decapitation, brains

were dissected and stored in RNAlater at -80�C (Thermo Fisher) until subsequent hippocampal dissections.

RNA was extracted from hippocampal tissue using TRIzol (Invitrogen), and the quantity and purity of RNA

were examined using a NanoDrop One (Thermo Fisher). All samples had 260/280 nm absorption ratios

above 1.8. Short-read paired-end 150 bp sequencing was conducted by Genewiz using Illumina HiSeq X

machines, with a sufficiently high RNI integrity number (RIN) confirmed by Genewiz prior to sequencing.
12 iScience 26, 106996, July 21, 2023
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Sequence reads were trimmed using Trimmomatic v.0.36,56 and trimmed reads were mapped to the

GRCm38 reference genome using STAR v.2.5.2b.56,57 ENSEMBL gene ids were converted to gene symbols

using biotools.fr. RNA-Seq data were analyzed using DESeq2.58 Prior to analysis, lncRNA, miRNA, and

pseudogenes were removed from the results list. Gene ontology and pathway analyses were conducted

with Metascape.
Tomato lectin perfusion and lectin analysis

Mice were intravenously (tail vein) injected with 200 mL of DyLight-594 tagged tomato (Lycopersicon escu-

lentum) lectin in 0.1M PBS (0.5 mg/ml; Vector Laboratories). The lectin solution was allowed to circulate for

5 minutes, and then mice were given a lethal overdose of sodium pentobarbital followed by transcardial

perfusion with �50 ml 4% paraformaldehyde (PFA) in 0.1 M PBS. The brain was dissected and post-fixed

overnight in fresh 4% PFA solution. Tissues were cryoprotected in 30% sucrose in 0.2 M phosphate buffer

until sunk. Tissues were frozen on dry ice and then maintained at -80�C until sectioning. Tomato lectin in-

jections and tissue collection occurred between 14:00 and 16:00 h.

Tissue was subsequently sectioned at 40 mm, and hippocampal regions between bregma -1.23 and -3.63

were imaged using a BZ-X710 microscope (Keyence). The images were loaded into ImageJ, and the

RGB channels were split. The three hippocampal regions of interest – the CA1, CA2/3, and dentate gyrus

(DG) – were then manually outlined on the DAPI channel (blue) with reference to the adult mouse Allen

Brain Reference Atlas. Outlines were then applied to the lectin channel (red), which was thresholded using

the default algorithm to measure percent area fraction of lectin staining. Percent area fractions were then

weighted across the area of all sections for individual animals. Lectin image processing was conducted with

FIJI v2.3.0.59
QUANTIFICATION AND STATISTICAL ANALYSIS

The CA1 & DG region lectin data were analyzed using unpaired t-tests and the CA2/3 region lectin data

were analyzed with a Mann-Whitney test based on a non-normal distribution of data. The specific test

used for the analysis of each region was determined by examining the normality of residuals as determined

by the Shapiro-Wilk test and the similarity between variances as determined by F-test for variance. Outliers

were detected in the lectin data using the Grubb’s test; no more than one outlier was removed per group.

All lectin perfusion tests were one-tailed based on our a priori hypothesis supported by previous evi-

dence.13 The vascular corrosion cast data were analyzed using 2-way ANOVAs; a priori planned compari-

sons between LD and ALAN conditions within sexes were made using Fisher’s LSD. Outlier detection in the

lectin vascular data was conducted using the Grubb’s test; outliers were not examined in the casting data

due to reduced sample sizes. Mean differences with p-values < 0.05 were considered statistically signifi-

cant. All analyses were conducted using Prism 9 (GraphPad). All statistical results and analyses are available

in the Summary Table uploaded to Harvard Dataverse; the DOI can be found in the key resources table.
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