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Heterogeneity and limited comprehension of chronic autoimmune disease pathophysiology
cause accurate diagnosis a challenging process. With the increasing resources of single-cell
sequencing data, a reasonable way could be found to address this issue. In our study, with
the use of large-scale public single-cell RNA sequencing (scRNA-seq) data, analysis of
dataset integration (3.1 × 105 PBMCs from fifteen SLE patients and eight healthy donors) and
cellular cross talking (3.8 × 105 PBMCs from twenty-eight SLE patients and eight healthy
donors) were performed to identify the most crucial information characterizing SLE. Our
findings revealed that the interactions among the PBMC subpopulations of SLE patients may
be weakened under the inflammatory microenvironment, which could result in abnormal
emergences or variations in signaling patterns within PBMCs. In particular, the alterations of B
cells and monocytes may be the most significant findings. Utilizing this powerful information,
an efficient mathematical model of unbiased random forest machine learning was established
to distinguish SLE patients from healthy donors via not only scRNA-seq data but also bulk
RNA-seq data. Surprisingly, our mathematical model could also accurately identify patients
with rheumatoid arthritis and multiple sclerosis, not just SLE, via bulk RNA-seq data (derived
from 688 samples). Since the variations in PBMCs should predate the clinical manifestations
of these diseases, our machine learning model may be feasible to develop into an efficient tool
for accurate diagnosis of chronic autoimmune diseases.

Keywords: chronic autoimmune disease, accurate diagnosis, machine learning (ML), scRNA-seq, cellular
cross talking
INTRODUCTION

Systemic lupus erythematosus (SLE), multiple sclerosis (MS), and rheumatoid arthritis (RA) are all
chronic autoimmune diseases associated with progressive widespread organ damage (1–3). The course of
these three diseases is typically progressive with intermittent remission (4, 5). It is generally accepted that
early treatment could increase the remission probability of these diseases and improve their prognosis (6,
7). If appropriate treatment is not given in a timely manner, these diseases may progress, causing work
disability and life quality reduction for patients. Furthermore, such progression would lead to enormous
org April 2022 | Volume 13 | Article 8705311
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financial burdens to the patients, their families, and society (8–10).
Hence, it is crucial to develop an efficient method of accurate
diagnosis to enable early intervention for these diseases.

Unfortunately, it seems that diagnosing SLE, MS, and RA may
still be a challenging process that relies on a set of criteria (11–13),
including clinical manifestations, functional outcomes, and
serological and radiological evidence, that have to be met to make
an accurate diagnosis (14, 15). Under non-specific and insensitive
criteria, the misdiagnosis and underdiagnosis of these diseases are
relatively common (16). The average time from symptom onset to
diagnosis confirmation was approximately two years (17). This may
cause patients to miss the optimal time for treatment. To break the
bottleneck of early diagnosis, many studies have focused on
biomarker detection to develop an accurate diagnostic criterion
(18–21). However, the results were unsatisfying, owing to the
tremendous heterogeneity of these diseases and limited
comprehension of the disease pathophysiology (22).

In detail, although it is well known that the loss of immune
tolerance and persistent release of autoantibodies are the two
important bases for the pathophysiology of chronic autoimmune
disease (23, 24), most studies have focused on investigating the
contribution of certain cellular or molecular mechanisms rather
than comprehensively and systematically illustrating the
pathogenesis. This might be due to the limitation of methods or
means. With the development of single-cell sequencing technology,
the increased resources of data, and the improvement of
bioinformatic tools (e.g., Seurat, SHARP, CellChat, etc.) (25–27),
these would together help us to comprehend the pathophysiology of
these diseases, thus their crucial features would be efficient for being
mined. For example, Nehar-Belaid et al. thoroughly analyzed the
major cell types among peripheral blood mononuclear cells and
revealed an expanded subpopulation that has a specific interferon-
stimulated gene (ISG) expression pattern in SLE patients (28).
Meena Subramaniam et al. also found that monocytes from SLE
patients highly expressed ISGs (29). Both of these studies
comprehensively illuminated the cytological changes of SLEs.

According to these public single-cell RNA sequencing
(scRNA-seq) data of SLE, we seek for a feasible way for SLE
accurate diagnosis. Firstly, integration and cellular cross-talking
analysis were performed to obtain the powerful information
labeling the disease. This information was then combined with
an unbiased random forestry machine learning algorithm which
rendered an efficient mathematical model for SLE diagnosis. The
accuracy of the mathematical model to identify patients with RA
andMS was also validated. Furthermore, the diagnostic precision
of our model was evaluated using an independent SLE
cohort (Figure 1).
MATERIAL AND METHODS

Data Availability
The single-cell RNA sequencing data were deposited in the Gene
Expression Omnibus (GEO), and the accession numbers were
GSE137029 and GSE135779 for SLE patients and GSE164378 for
healthy donors. Bulk RNA-sequencing data were deposited to
Frontiers in Immunology | www.frontiersin.org 2
GSE72509 and GSE164457 for peripheral blood mononuclear
cells (PBMCs) of SLE patients, GSE90081 for PBMCs of RA
patients, GSE89408 for synovial tissues of RA patients,
GSE159225 for PBMCs of MS patients, and GSE89408 for
CD14-positive cells of MS patients, and GSE183204 and
GSE169687 for PBMCs of healthy donors.

Integration of Single-Cell RNA Sequencing
Data
Reciprocal principal component analysis (RPCA)-based
integration could effectively detect a state-specific cell cluster
and run significantly faster on large datasets. Compared with
other integration tools (e.g., BBKNN and LIGER), RPCA could
conserve more distinct cell identities when removing batch effect,
particularly for the data of immune cells (30). Considering its
balancing capability on batch effect removal and biological
variance preserving, RPCA would be used for our dataset
integration. Before the integration, two lists were created: one
containing merged SLE data and the other containing merged
healthy data. These two lists were then combined and integrated
through Seurat (version 4.0.5) following the guidelines at https://
satijalab.org/seurat/articles/integration_rpca.html.

PBMCs and Their Subpopulation
Clustering
To discover SLE-dominant cell clusters, PBMCs and their
subpopulations were clustered through Seurat (version 4.0.5),
respectively. Cell proportions of each cluster were calculated
subsequently. For PBMC cell clustering, each cell subcluster was
annotated based on a canonical marker. Any cluster that has SLE
cells containing more than 75% would be considered as
SLE dominant.

Differential Expression Gene Analysis on
SLE-Dominant Cell Clusters
Within those PBMC subpopulations (e.g., B cells and
monocytes) which contain the SLE-dominated cluster,
differential expression gene (DEG) analysis would be applied
on all of their cell clusters with Function FindAllMarkers
embedded in Seurat (version 4.0.5) to find out useful
information that mark the SLE state. Top five genes based on
their log2 fold change value were selected as the first part of
feature input for machine learning. Meanwhile, these DEG
functions were annotated through literature search.

Cellular Cross-Talking Analysis
The machine learning model can be optimized with powerful
sources of information. Thus, CellChat (version 1.1.3) analysis
was performed following the guidelines at https://github.com/
sqjin/CellChat. In details, overall interaction, overall signaling
pattern, outgoing/incoming signaling pattern, and ligand–
receptor pair were checked step by step. Samples were
analyzed independently. Datasets of patients and health donors
were analyzed separately and merged to make a comparison
analysis. Ligand–receptor pairs which disappeared at SLE were
selected as a second part of feature input for machine learning.
April 2022 | Volume 13 | Article 870531
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FIGURE 1 | Workflow for establishment of an accurate machine learning model to diagnose chronic autoimmune diseases. STEP I, to figure out the most crucial
information that characterizes diseases using public scRNA-seq datasets. From analysis of integration and clustering, 67 top five cluster-specific genes basing on the
differential expression gene identification within SLE dominant PBMC subpopulations were derived. From cellular cross-talking analysis, 21 genes constituting ligand–
receptor pairs disappeared in SLE patients and showed that more than two kinds of PBMC subpopulation were derived. A union of these two gene sets would be
used in the next step. STEP II, to establish the machine learning model diagnosing diseases. A random forest machine learning model was implemented, and genes
derived from step I were combined as feature input. 56 and 527 samples were used as sample input for scRNA-seq and bulk RNA-seq data, respectively. STEP III,
to validate the accuracy of our machine learning model. Receiver operating characteristic (ROC) analysis was used to test the accuracy, and multiple times of ten-fold
cross-validation tests were adopted to avoid bias. The diagnostic accuracy of our model was also validated using an independent bulk RNA-seq cohort containing
120 SLE patients and 41 health donors.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8705313
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Machine Learning With the Random
Forest Model
The random forest machine learning model was implemented with
sklearn (version 0.23.2). The gene set which derived from
integration and CellChat analysis were combined as feature input,
aiming at selecting information within the sequencing datasets, thus
improving the performance of the machine learning model. 56 and
527 samples were used as sample input for scRNA-seq and bulk
RNA-seq data, respectively. Samples from patients and healthy
donors were labeled with 1 and 0, respectively. With the function
train_test_split within sklearn.model_selection, the data were split
into two parts, 70% for training and 30% for testing, according to
previous study (31). Data balancing was performed when the cell/
sample ratio between patients and healthy donors was above 1:2, at
random forest model initialization. Receiver operating characteristic
(ROC) analysis was used to test models’ accuracy. The models for
each disease were independent.

To avoid bias of data composition, the sklearn module
StratifiedKFold was used to split data into ten parts preserving
the ratio of samples and perform a ten-fold cross-validation with
a loop of one hundred. The average and standard deviation of
area under curve (AUC) were documented.

Diagnostic Accuracy Validation of the
Machine Learning Model
An independent bulk RNA-seq cohort containing 120 SLE
patients and 41 health donors was enrolled into the diagnostic
accuracy validation of our machine learning model. Basic
information of this cohort including SLE severity, age, and
gender was documented. Genes which were used as feature
input for the machine learning model were confirmed to be
expressed in each sample. The diagnostic accuracy of our
machine learning model for SLE and healthy donors was
tested separately.

Statistical Analysis
The statistical significance of differential gene expression was
analyzed with the Wilcoxon test, a default parameter in function
FindAllMarkers of Seurat packages.

Software Version
All the software mentioned above were based on R (version 4.1.1)
and Python (3.7). Integration analysis and cell clustering were
based on Seurat (version 4.0.5), and cellular cross-talking
analysis was based on CellChat (1.1.3). Machine learning was
based on sklearn (version 0.23.2).
RESULTS

The Limited Alterations of Cell
Composition in SLE Patients From the
Overall PBMC Perspective
To discover the SLE-dominated alterations of PBMC
composition in SLE patients, two single-cell transcriptomic
datasets with more than 3.15 × 105 cells from 15 SLE patient
Frontiers in Immunology | www.frontiersin.org 4
(GSE137029) and 8 healthy donor (GSE164378) samples were
enrolled in our study. The uniform manifold approximation and
projection (UMAP) and Louvain algorithm were applied for
unsupervised dimension reduction and clustering, respectively
(32, 33). As shown in Figures 2A, B, the PBMCs of these two
datasets could be grouped into sixteen molecularly distinct
clusters. The clusters were annotated based on the gene
expression values compared to all other cells. The results
illustrated two clusters of T cells, B cells, natural killer cells,
and erythroid cells, three clusters of monocytes and dendritic
cells, and one platelet cluster (Figures 2A, D). Unfortunately,
SLE-dominated (clusters 13 and 15) clusters were tiny and might
come from erythrocytes (HBB specifically expressed). The rest of
the cell cluster proportions of SLE patients and healthy donors
were evenly balanced or healthy donor dominant (Figure 2C).
This is partly because the difference between SLE patients and
healthy donors might be attenuated under the overall PBMC
perspective. Hence, to strengthen the power of detecting
SLE-dominant information, further analyses were performed in
the subpopulations of PBMCs according to the cluster
annotation above.

Identification of SLE-Dominated Clusters
in B Cells and Monocytes
Increasing evidence indicates that specialized immune cell subsets
are involved in the pathophysiological process of autoimmune
diseases through multiplex pathways and signals (34–36). Thus,
we re-clustered the subpopulations of PBMCs to identify the SLE-
dominated clusters in which the cell proportion of SLE exceeds
75%. Interestingly, the SLE-dominated clusters were identified
only in B cells (clusters 2, 6, and 7, Figures 3A, B) and monocytes
(clusters 1 and 7, Figures 3E, F); the rest of the PBMC
subpopulation is shown in Figure S2. With differential
expression gene (DEG) analysis on B cells and monocytes, the
top five cluster-specific genes based on their log2 fold change
values are shown in Figures 3C, G, respectively. All DEG analysis
results are shown in Table S1. Interferon inflammatory signatures
are closely related to the SLE (37). Consistently, we found that
cluster 7 of B cells has interferon-stimulated gene (ISG) expression
patterns (IFI27, MX1, ISG15, and IFI44L). Moreover, we identified
that this cluster simultaneously possess the typical expression
patterns of naïve and autoactive B lymphocytes (naïve: IgD+,
CD27-, CD38 low, CD24 low; autoactive: TBX21, ITGAX,
CXCR5, TRAF5, CR2, Figure 3D) (38, 39). In addition, we also
found that cluster 1 of monocyte highly expressed ISGs (IFI27,
MX1, ISG15, IFI44L), and cluster 7 of monocyte had a
proinflammatory character (FKBP5, Figure 3H) (40).

Taken together, these findings revealed that there were
enhanced signals of an autoreactive/inflammatory state in B
cells and monocytes of SLE patients, which suggested the
essential roles in the pathophysiological process of SLE.

Weakened Interactions Among the PBMC
Subpopulations of SLE Patients
To systematically explore the alterations of PBMCs in SLE
patients and obtain a powerful source of information for the
training of the machine learning model, we employed CellChat
April 2022 | Volume 13 | Article 870531
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to analyze cellular cross talking from scRNA-seq data. Three
scRNA-seq datasets (GSE137029, 15 adult patients with SLE;
GSE135779, 13 child patients with SLE; GSE164378, 8 healthy
donors) with more than 3.80 × 105 cells were included in
this analysis.

The total number and strength of ligand–receptor pairs were
significantly reduced in both adult and child SLE patients
compared with healthy donors (Figure 4A). Remarkably, the
interactions of PBMC subpopulations in SLE patients were
weakened (Figure 4B). Comparing overall and detailed
Frontiers in Immunology | www.frontiersin.org 5
outgoing/incoming signaling pattern variations among SLE and
healthy donors, we identified that abundant signal patterns could
be observed for the healthy donors, but in the SLE groups, the
number of involved pathways was reduced (Figures 4C, D). In
detail, there were several signal patterns that specifically
disappeared under the disease state. Among them, FLT3,
CD48, and TGF-beta signal patterns have been reported to
have a negative correlation with SLE development (41–44).
Taken together, the disappearance of multiple signal patterns
might be a potential feature during SLE development.
C

D

BA

FIGURE 2 | Integration analysis of single-cell RNA sequencing datasets from SLE patients and healthy donors. (A) UMAP plot of categorized cell clusters. (B) UMAP plot of
single-cell PBMCs from fifteen SLE flare patients and eight healthy donors. (C) Bar plot of cell proportion in each cell cluster. The dashed line represents the 75% threshold.
(D) Dot plot of canonical markers for B cells, monocytes, T cells, natural killer cells, dendritic cells, and platelets. The dot size represents the gene (x-axis) percent expression
on its corresponding cluster (y-axis). The color represents the average expression of the genes (gray: low, red: high).
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Detailed Ligand-Receptor Pair Alterations
in SLE Patients
As the above results indicated that numerous signal patterns
disappeared in SLE compared with healthy states, to find detailed
information, we further explore the discrepancy of ligand–
Frontiers in Immunology | www.frontiersin.org 6
receptor pairs from all PBMC subpopulations (B cells,
monocytes, T cells, natural killer cells, and dendritic cells)
among healthy donor, adult SLE (aSLE), and child SLE (cSLE)
groups (Figures 5A–E). We identified that eighty-seven ligand–
receptor pairs disappeared in SLE patients, which were
BA

DC

FE

HG

FIGURE 3 | Cell proportion analysis of re-clustered B cells and monocytes. (A, E) UMAP plot of re-clustered B cells and monocytes from SLE patients and healthy
donors, respectively. Left panel cells were categorized with Louvain clusters; the right panel cells were categorized by their source (SLE patient/healthy donors).
(B, F) Bar plot of cell proportion in each B cell and monocyte subcluster, respectively. The dashed line represents the 75% cell proportion threshold. Both B cells
(clusters 2, 6, 7) and monocytes (clusters 1, 7) have a unique cell subpopulation where SLE is predominant. (C, G) Heatmap of top five cluster-specific genes of
each subclusters within B cells and monocytes, respectively. The color represents the expression level (blue: low, red: high). (D, H) UMAP plot of selected gene
expression in re-clustered B cells and monocytes, respectively.
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BA

D

C

FIGURE 4 | CellChat analysis of whole PBMCs from SLE patients and healthy donors. (A) Bar plot of the overall difference among healthy donors (HD), adult SLE
patients (aSLE), and child SLE patients (cSLE). The left panel shows the total number of interactions, and the right panel shows the interaction strength. (B) Circle
plot of PBMC subpopulation among HD, aSLE, and cSLE. The line width: the connection strength; dark blue: monocytes, green: B cells, red: T cells, purple: natural
killer cells, orange: dendritic cells and pink: other cells. These together revealed a weakened PBMC subpopulation cross talking and distinct signal pattern under
SLE. (C) Heatmap reveals the overall signal pattern changes in the HD, aSLE, and cSLE groups, and the signal strength is scaled from white (no signal detected) to
dark red (strong). (D) Dot plot for the emergence probability of signal outgoing (left panel) and incoming (right panel) patterns within each PBMC subpopulations
among HD, aSLE, and cSLE. The dot size represents the p value. Patterns which specifically disappeared under disease state were marked with red. The total
number of outgoing and incoming signal reduced significantly in SLE.
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B

A

D

E

C

FIGURE 5 | Ligand–receptor pair alternation of SLE patients compared with healthy donors. Dot plot for the emergence probability of ligand–receptor pairs within
each PBMC subpopulations (A) B cells, (B)monocytes, (C) T cells, (D) natural killer cells, (E) dendritic cells) among HD, aSLE, and cSLE. The dot color represents
the probability. Pairs which specifically disappeared under disease state are marked with red.
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composed of sixty-one genes. The frequency of each gene
appeared at each PBMC subpopulation, as listed in Table S2.
The genes which showed more than two kinds of PBMC
subpopulation were recognized as significant ones to be
selected as a second part of feature input for machine learning.

Among them, TGFBR1, TGFBR2, CCL5, CD48, CD244A,
and CD72 have been reported to be closely related to the
pathophysiologic processes of autoimmune diseases (41, 43,
45–47). For example, TGFBR1, TGFBR2, and CCL5 levels are
negatively correlated with SLE development (43, 45). CD48, also
known as SLAMF2, which could regulate both natural killer cells
and cytotoxic CD8+ T cells (48), could protect mice from
autoimmune nephritis (41), CD244A and CD72 were
specifically decreased in monocytes and B cells during SLE
development (47, 49). Interestingly, all these selected pairs are
all in B cells or monocytes, suggesting the key roles of monocytes
and B cells on the pathophysiologic processes of autoimmune
diseases. All these findings were consistent with our results of
integration analysis.

Efficient Machine Learning Models for
Chronic Autoimmune Disease Diagnosis
To establish a mathematical model of unbiased random forest
machine learning for SLE accurate diagnosis, sixty-seven top five
cluster-specific genes derived from integration analysis and
twenty-one significant genes identified via cellular cross-talking
analysis were combined as feature input. The dataset GSE135779,
containing 3.60 × 105 PBMCs (derived from 33 cSLE, 7 aSLE,
and 11 healthy children, 5 healthy adults), was included to
evaluate the diagnosis efficiency of our mathematical model.

The results indicated that our machine learning model could
separate SLE and healthy status with acceptable accuracy (AUC =
0.776 ± 0.097, Figure 6A). The feature importance of our gene set
for SLE is shown in Figure 6C. Considering the signal intensity of
our gene sets and the denoising ability of machine learning, a further
investigation was conducted to evaluate the disease distinguishing
the efficiency of our mathematical model using bulk RNA-seq data.
The bulk RNA-seq datasets (GSE72509, GSE183204), which include
99 SLE patients and 30 healthy donors were used in this
investigation. The results indicated that our mathematical model
has great adaptability (AUC = 0.998 ± 0.004, Figure 6B). The
corresponding feature importance was also calculated (Figure 6D).
This revealed that combined with the unbiased random forestry
machine learning model, our gene sets rendered a powerful
mathematical tool for distinguishing SLE.

It is reported that chronic autoimmune diseases including
SLE and RA might share some similar cellular pathogeneses with
MS (50). Thus, we investigated whether our machine learning
model could efficiently distinguish RA and MS based on bulk
RNA-seq data. Three datasets were included in this study,
including a set of PBMC datasets (GSE90081, GSE183204)
with 12 RA patients and 24 healthy donors, a synovial tissue
dataset (GSE89408) with 152 RA patients and 28 healthy donors,
and a PBMC dataset (GSE159225) with 20 relapse-and-
remission MS patients, 10 secondary progressive MS patients,
and 20 healthy donors.
Frontiers in Immunology | www.frontiersin.org 9
Surprisingly, our machine learning model could separate
patients with RA/MS and healthy donors with excellent
accuracy in RA patients (AUC = 0.967 ± 0.099 in RA PBMC
datasets, Figure 7A; AUC = 0.997 ± 0.006 in the RA synovial
dataset, Figure 7C). For MS patients, our figure rendered an
acceptable accuracy (AUC = 0.775 ± 0.236 in MS PBMC datasets,
Figure 7E). The corresponding feature importance shown in
Figures 7B, D, F illustrated that although our gene sets have
extensive applicability and great accuracy for these diseases, each
gene has different importance across each of these diseases. It
suggested that our machine learning model requires a fine
adjustment when applied to these diseases.

To determine the contribution of positive signals to the accuracy
of our machine learning model, we obtain a public bulk RNA-seq
dataset (GSE137143, 122 MS patients and 22 healthy donors),
which consists of only CD14-positive monocytes. Unfortunately,
the AUC value dropped to 0.673 ± 0.136, indicating that the
accuracy sharply decreased (Figure S4). This result suggested that
the distinguishing power of our model was reduced on account of a
loss of positive signals, for example, the signals from B cells.

Diagnostic Accuracy Validation of the
Machine Learning Model
To evaluate the diagnosis accuracy of our machine learning model,
an independent cohort containing 120 SLE patients (GSE164457)
and 41 healthy donors (derived from GSE169687) were enrolled
into the study. The basic information and the gene expression
pattern of objects within this cohort are shown in Figures 8A, C.
Notably, the precision rate of our machine learning model diagnosis
was 100% (120/120) and 92.7% (38/41) for SLE patients and healthy
donors, respectively (Figure 8B). This result confirmed the
diagnostic accuracy of our machine learning model, which
suggested that it may be feasible to develop into an efficient tool
for accurate disease diagnosis in the future.
DISCUSSION

We aimed to develop a feasible strategy for distinguishing patients
with SLE and other major chronic autoimmune diseases in the early
stage from healthy people. To achieve our purpose, the most crucial
information that characterizes diseases should be filtered out first.
From public single-cell RNA sequencing datasets, we found that B
cells and monocytes were the only two subpopulations containing
SLE-dominated clusters in the PBMCs of patients, which suggested
that they might carry much stronger signals that indicate SLE than
other PBMC subpopulations. To date, conclusions about the
contribution of PBMC subpopulations to the development of SLE
and other autoimmune diseases are not consistent, even when based
on single-cell RNA sequencing data (51–55). Most studies mainly
focus on specific disease aspects, which might result in imbalanced
data selection, background noise interference, and biased
conclusions. Hence, we selected the single-cell RNA sequencing
data from over 1.50 × 105 cells for each category with a balanced
ratio between patients and controls (approximately 1:1) to avoid
rushing into any prejudicial conclusions.
April 2022 | Volume 13 | Article 870531
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Further investigation of differentially expressed genes
revealed the details of the most significant information that
marks a disease within B cells and monocytes. A few
interferon-stimulated genes were active in the SLE-dominated
B cells and monocytes, indicating that these cells might be a
consequence of the inflammatory microenvironment. It is well
known that the inflammatory microenvironment may be crucial
Frontiers in Immunology | www.frontiersin.org 10
to the progression of SLE and other chronic autoimmune
diseases. Tsokos et al. reported that the production of
autoantibodies triggered by both the innate and adaptive
immune responses against self-antigens in SLE patients
resulted in the accumulation of monocytes and activation of
lymphocytes (56). Our results confirmed this suggestion.
Interestingly, we found an activated naïve cluster of B cells in
BA

D

C

FIGURE 6 | Machine learning model accurately distinguish SLE. (A) The performance of distinguish SLE using scRNA-seq data of PBMCs (AUC = 0.776 ± 0.097).
(B) The performance of distinguish SLE using bulk RNA-seq data of PBMCs (AUC = 0.998 ± 0.004). (C, D) Bar plot for the corresponding feature importance within
the correlated model using scRNA-seq and bulk RNA-seq data, respectively. The bar length: feature importance.
April 2022 | Volume 13 | Article 870531

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ma et al. Accurate Diagnosis of Autoimmune Disease
the SLE-dominated clusters. Recently, Jenks et al. reported a
distinctive differentiation fate of autoreactive naïve B cells (39).
This was similar to our finding and suggested that B cells should
play an important role in the development of SLE.

All of the PBMC subpopulations were influenced mutually in
the progression of chronic autoimmune diseases, and analyses
based on individual subpopulations may lose important
information of reciprocities that accounts for disease
progression. Most current scRNA-seq data analysis tools focus
on detailed categorizations and trajectories of cells (28, 57–59).
Recently, bioinformatic tools (e.g., CellChat, CellPhoneDB,
iTALK) were developed to infer cellular cross talking from
Frontiers in Immunology | www.frontiersin.org 11
scRNA-seq data, which make it possible to decipher reciprocities
among cells under a single-cell level (57, 60–62). Therefore, we
carried out cellular cross-talking analyses to reveal dynamic
interactions across PBMC subpopulations and systematically
decipher the etiology of diseases. Surprisingly, we found that the
interactions among the PBMC subpopulations of SLE patients
were weakened. It was reported that monocytes might contribute
to the hyperactivity of B cells in SLE patients (63). A study also
revealed that monocytes may function as a bridge during RA
pathogenesis, and colocalization of CD14+ cells with CD4+ T
effectors was found at sites of the inflamed rheumatoid synovium
(64). Together, these reports illustrate that immune cells weave a
A B

D

E F

C

FIGURE 7 | Machine learning model accurately distinguish RA and MS. (A) The performance of distinguish RA (rheumatoid arthritis) using bulk RNA-seq data of
PBMCs (AUC = 0.967 ± 0.099). (B) Bar plot for the feature importance with the correlated model. (C) The performance of distinguish RA using bulk RNA-seq data
of synovial tissue (AUC = 0.997 ± 0.006). (D) Bar plot for the feature importance with the correlated model. (E) The performance of distinguish MS (multiple sclerosis)
using bulk RNA-seq data of PBMCs (AUC = 0.775 ± 0.236). (F) Bar plot for the feature importance with the correlated model. The bar length: feature importance.
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network and that their interaction would provide significant
information for autoimmune disease pathogenesis. Further
detailed analysis revealed that the major changes occurred in B
cells or monocytes, including FLT3, CD48, TNF, and TGF-beta
signal patterns that have been reported to have a negative
correlation with SLE development (41–44). Our results were
consistent with previous studies on the variations in B cells (65–
67) and monocytes (68–70) in SLE. Considering the repeatable
results gained from our study, it should be convincing that the
interactions among the PBMC subpopulations of SLE patients
may be weakened, which could result in abnormal emergences or
variations in signaling patterns within PBMCs.

Based on our finding of powerful information that
characterizes diseases, we tried to establish a machine learning
Frontiers in Immunology | www.frontiersin.org 12
model to distinguish chronic autoimmune diseases. Several
reports have proven that the random forest (RF) machine
learning method would give a high accuracy in disease
classification when abundant features were included (71, 72),
and another reason for the random forest model was its
interpretability—each gene contribution in the RF machine
learning model was visible. Our area under curve (AUC) score
for SLE indicates that our machine learning model has the
potential to become an efficient tool for accurate diagnosis of
SLE at the single-cell RNA level. Considering that the
information we identified was not specific to the early stage of
the disease, further optimization should be performed to identify
the sensitive information in the early stage of the disease to
strengthen the diagnostic power of our machine learning model.
B

C

A

FIGURE 8 | Diagnostic accuracy validation of the machine learning model. (A) Table of cohort basic information. (B) Bar plot of the amount of SLE patients and
healthy donors being distinguished accurately by the model (blue: SLE patients, red: HD); the bar with black stripe represents the model-predicted number, while the
other represents the real number. (C) Heatmap of genes used for machine learning setup within the validation cohort (the upper panel: genes derived from the
differential expression gene identification within integration analysis, the lower panel: genes derived from CellChat analysis).
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Further investigation is also needed to evaluate the efficiency
of our machine learning model using bulk RNA-sequencing
data. Our AUC score illustrates that although other immune
cell background noise might be introduced into RNA-seq data,
the gene set still has high accuracy in distinguishing patients
with the disease from healthy donors. This might be attributed
to the low correlation between each gene since they were
derived from the two different analysis frameworks, and this
low gene correlation in turn increased the random forest model
accuracy (73). Given the cost and convenience of bulk RNA
sequencing, our results suggested that this machine learning
model should be highly applicable going forward. In addition,
our classification results for bulk RNA sequencing data of
PBMCs and synovial tissues derived from RA and MS
patients indicated that this machine learning model also
showed high accuracy in distinguishing these diseases.
Numerous studies have reported that chronic autoimmune
diseases, such as SLE, RA, and MS, might share some similar
cellular pathogeneses (46, 50, 74). Our findings further
confirmed this viewpoint and suggested that this machine
learning model with the information we filtered out might be
powerful enough to discriminate patients with common
chronic autoimmune diseases from healthy donors, not just
SLE patients.
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