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Abstract
Evaluating the similarity of different measured variables is a fundamental task of statistics,

and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme

for estimating the correlation between different entities’ measurements based on high-

throughput sequencing data. These entities could be different genes or miRNAs whose

expression is measured by RNA-seq, different transcription factors or histone marks whose

expression is measured by ChIP-seq, or even combinations of different types of entities.

Our Bayesian formulation accounts for both measured signal levels and uncertainty in

those levels, due to varying sequencing depth in different experiments and to varying abso-

lute levels of individual entities, both of which affect the precision of the measurements. In

comparison with a traditional Pearson correlation analysis, we show that our Bayesian cor-

relation analysis retains high correlations when measurement confidence is high, but sup-

presses correlations when measurement confidence is low—especially for entities with low

signal levels. In addition, we consider the influence of priors on the Bayesian correlation

estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels

can lead to highly biased correlation estimates, particularly when different experiments

have widely varying sequencing depths. However, we propose two alternative priors that

provably mitigate this problem. We also prove that, like traditional Pearson correlation, our

Bayesian correlation calculation constitutes a kernel in the machine learning sense, and

thus can be used as a similarity measure in any kernel-based machine learning algorithm.

We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.

Introduction

A fundamental task in data analysis is to assess the relatedness of different measured variables.
In bioinformatics, for example, we may want to know which genes have similar patterns of
expression across conditions [1, 2], which biomarkers correlate to cancer patient survival [3,
4], or which patterns of histone modification reflect to cell identity [5]. Standard linear
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correlation analysis is often used to assess relatedness, or is used as a basis for more sophisti-
cated analysis, such as the construction of RelevanceNetworks [6]. Indeed, some notion of
similarity underlies many machine learning algorithms, including clustering, principal compo-
nents analysis, regression, etc. Kernel-basedmethodsmake the central role of similarity most
explicit [7, 8], but it is important in essentially all algorithms. In this work, we propose a gen-
eral approach for assessing similarity of variables measured by high-throughput sequencing.

High-throughput sequencing (HTS), of course, has become a central technology driving
molecular biology research. For example, it was the basis for the high-profile ENCODE and
modENCODE projects aimed at understanding gene regulatory networks on a large scale [9–
11]. Similarly, it has been used to generate numerous insights into cancer biology and biomark-
ers related to survival [12, 13]. The flexibility of the technology allows it to be used for measur-
ing many different things: gene and microRNA expression, transcription factor binding and
histone modifications,DNA methylation, and so on [14]. The costs of HTS experiments are
generally still higher than for the microarray-based technologies they are starting to displace.
However, HTS is often favored because of its greater dynamic range [15, 16] and because it can
trulymeasure across the whole genome, whereas array-basedmethods—by virtue of choosing
probes—must preselect what portions of the genome or transcriptome are measured.

It is important to realize, however, that the precision of sequencing-basedmeasurements
varies for different experiments and for different things beingmeasured in those experiments.
To understand this, consider that in many cases the outcome of a set of sequencing experi-
ments can be summarized in a matrix of count data. The rows of the matrix correspond to dif-
ferent biological entities beingmeasured. For instance, in an RNA-seq dataset, each row may
correspond to a different gene whose expression is beingmeasured, or perhaps different tran-
scripts. In a miRNA-seq dataset, each row corresponds to a different microRNA. In a ChIP-seq
dataset, each row may represent a different region of the genome. The columns of the matrix
typically correspond to different conditions or factors beingmeasured. For example, they
might represent different tissues or cell types in which expression is beingmeasured, different
drug treatments, or different factors that are being assayed by ChIP-seq. Some or all of the col-
umns might be replicate measurements of the same condition. In this paper we will use R to
denote the read count matrix, with Ric denoting the counts attributed to entity i under condi-
tion c, and Rc denoting the total counts for condition c (that is, the column sum). How counts
are attributed to entities depends on the nature of the data, and is not something we address.
Often the counts are whole numbers, 0, 1, 2, . . ., although sometimes fractional counts are used
when attribution is uncertain.We will require only that the counts are non-negative, and we
will use the term “count” even if some matrix entries are fractional.

The precision of any scientific experiment varies due to many factors, but even at the very
abstract level of the count matrix R, we can identify two important influences on precision.
One is that the total reads sequenced and attributed, Rc, can vary by condition c. The greater Rc

is, that is, the deeper the sequencing, the greater the precision with which every entity is being
measured under that condition. To make an analogy, if we think of measuring a physical object
with a ruler, and we can choose between a ruler with fewer marks on it and one with more
marks—more, finer gradations—then we can make more precise measurements using the ruler
with more gradations (Fig 1A).

Another infuence involves the asbolute level (e.g., expression) of the entity beingmeasured.
For instance, suppose an entity i is attributed just one count out of a million under condition c,
thus Ric = 1 and Rc = 106. Intuitively, if we replicated that experiment, we might get one count
again, or we might get zero, or two or three, maybe more. Thus, there is substantial uncertainty
in the true level of entity i—in fact, approximately a two orders of magnitude uncertainty. (One
way of formalizing this is to assume that the expected value of Ric is some true level T, and the

Bayesian Correlation Analysis for Sequence Count Data

PLOS ONE | DOI:10.1371/journal.pone.0163595 October 4, 2016 2 / 24



observedvalue is binomially distributed with success probability T/Rc on Rc tries. For any given
value of T, we can compute the probability of our observationRic = 1, and we can compute the
probability of all other possible observed counts, {0, 2, 3, 4, . . ., Rc}. A p-value for rejecting a
hypothesized value of T can be computed by summing only those probabilities that are less
than or equal to the probability that Ric = 1; these are the possible outcomes that are considered
“more extreme” than the actual outcome. Performing this calculation for various values of T,
we found that T 2 [0.0520, 5.7550] would not be rejected at the standard p-value threshold of
0.05, indicatingmore than 2 orders of magnitude uncertainty in the true level of entity i). On
the other hand, imagine i is a high-count entity, say receivingRic = 105 reads out of Rc = 106. If
we were to replicate the experiment, we would not expect to see as few as 104 reads or as many
as 106. In fact, we might expect only about a percentage point varability in the measured level.
(Repeating the same analysis described above, we find values of T in the range [99413, 100589]
would not be rejected at p = 0.05, but values farther from 105 would be rejected, so that there is
only about 1.18% uncertainty in the true level). In essence, because the marks on the ruler—
individual reads—are of a fixed size regardless of the size of the object beingmeasured, large
objects are measured with much greater relative precision. Or, to put it yet another way, the sig-
nal-to-noise ratio is much better for high-count entities than for low-count entities.

How do these considerations on precision influence our ability to estimate similarity between
different entities across conditions? Let us consider a simple example. Imagine that we have
measured gene expression across three different conditions, each with exactly 106 sequencing
depth, so that normalization is not an issue. (Expression data is often converted to reads-per-
million, rpm, or fragments per-kilobase-per-million, fpkm, so that changes in sequencing depth
alone do not make expression values appear to go up or down). Suppose that a gene x has counts
(1000, 1000, 10000) across the three conditions, gene y has counts (100, 100, 200) and gene z
has counts (0, 0, 1). A naive Pearson correlation analysis would show that all three genes are per-
fectly (r = 1) correlated with each other. Yet, we know that z’s measured counts are more likely
to be non-representative than those of x or y. Its count of 1 under the third condition could be a
fluke, as could its zero counts in the first two conditions. Thus, we should have more confidence
in the xy correlation than the xz correlation or the yz correlation. More subtly, we should have
more confidence in the xz correlation than the yz correlation because of our greater relative pre-
cision in measuring x than y—even though we shouldn’t have high confidence in either of these
correlations. To solve the “problem” of apparent correlations with gene z, we could adopt some
heuristic rule of discarding genes with low counts. But, exactly what consititues a low count? Is

Fig 1. Concepts in the precision of high-throughput sequencing count data. (A) Deeper sequencing is

analogous to measuring objects using a ruler wither finer gradations—all objects are measured with greater

absolute precision. However, regardless of sequencing depth, lower count entities (e.g. low expression

genes or miRNAs) are measured with less relative precision than higher count entities, similar to the red and

blue objects respectively. (B) The Beta distribution can represent our belief over the true, unknown

expression levels of gene or miRNAs as a fraction of total expression (for example).

doi:10.1371/journal.pone.0163595.g001
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it the average count across conditions, or the total read counts, or the maximum count, or the
difference betweenmaximum and minimum counts? And what is the threshold for discarding
or keeping a gene?Whatever threshold is chosen, there will always be some genes that only just
beat the threshold, and yet those will be treated identically to genes where measurements are of
high precision.What is needed is a more principled and more gradedway of discounting evi-
dence based on the precision of the individual measurements.

Similar phenomena can occurwhen sequencing depth is different under different conditions.
For instance, suppose the sequencing depths in our three conditions are 106, 107 and 106. Fur-
ther, suppose two genes,w and x, have observed counts (10, 0, 0), while two other genes, y and
z, have observed counts (0, 100, 0). The Pearson correlation of w and x is r = 1, as is the correla-
tion of y and z. This is true with or without normalization to library size, and in fact, all four
gene are expressed at the same level, relative to library size. Yet, intuitively, we ought to bemore
confident in the yz correlation than in the wx correlation, because the higher sequencing depth
in condition twomeans its measurements have greater precision. In the analysis of gene expres-
sion in particular, there is a history of noise modeling both for individual conditions and across
replicates [17–19], which then impacts the assessment of differential expression. However,
uncertainty affects all types of HTSmeasurements, not just gene expression, and to our knowl-
edge it has not previously been taken into account rigorously as part of correlation analyses.

In this paper, we lay out a Bayesian scheme for assessing the similarity of different entities
measured by HTS across different conditions. In particular, we use Bayesian models to expres-
sion our beliefs, including uncertainty, about the true levels of different entities across different
conditions, and we show how to use those Bayesian beliefs to estimate the correlations between
different entitites. Interestingly, we show that naive, uniform priors for the entities’ levels can
lead to highly biased estimates of the correlations between them, specificallywhen different
experiments are sequenced to different depths. However, we show that alternative choices of pri-
ors can virtually eliminate this effect.We find that our Bayesian correlation estimate naturally
suppresses spurious correlations between entities whose true levels are highly uncertain, without
the need for arbitrary thresholding.We also show that our Bayesian correlation estimate consti-
tute a kernel in the machine learning sense, opening the door to its use in a wide variety of ker-
nel-basedmachine learning algorithms. R code implementing our approach is available as
supplementary information (S1 Code) or on the web at http://www.perkinslab.ca/Software.html.

Results

Bayesian estimation of true signal levels and their correlations

As described in the Introduction, suppose we have a matrix of counts Ric for entities i 2 {1,
2, . . ., m} and conditions c 2 {1, . . ., k}, and suppose we want to compute the correlation, or
similarity, between two entities i and j (e.g. two genes). As already mentioned, it does not
make sense to correlate the read counts themselves, as mere differences in total read counts
Rc per condition can induce read count correlations. Such spurious correlations can be sup-
pressed by read count normalization, with the most straightforward choice being to compute
the empirical read fractions pemp

ic ¼ Ric=Rc. We could then adopt as our similarity measure the
Pearson correlation of pemp

ic and pemp
jc across conditions c. However, we have presented argu-

ments against this approach in the Introduction, as it does not take into acount the precision
the measurements—that is, the precision of the pemp

ic .
Instead, let us pursue a Bayesian approach to this estimation problem. Bayesian analysis of

digitial expression data goes back at least to the work of Audic and Claverie [20], and we
employ a similar scheme here. First, we consider the precision of our read counts. Although
the Ric are observeddata, let us view them as random variables. Specifically, let us assume that
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any given read in experiment c has probability pic of being attributed to entity i, independent of
any other factors. Then, the total number of reads attributed to entity i under condition c
should follow a Binomial distribution with success probability pic on Rc tries:

Ric � BinðRc; picÞ ¼
Rc

Ric

 !

pRic
ic ð1 � picÞ

Rc � Ric ; ð1Þ

Although pic is unknown, we can use the observeddata to estimate it. In particular, the stan-
dard Bayesian approach would be to adopt prior beliefs over the unknown pic—that is, to define
the likelihoods of different true read fractions before the data is observed—and then compute
posterior beliefs based on the data. This could be done through a high-dimensionalDirichlet
belief distribution. However, for the sake of simplicity, we will assume independent Beta distri-
butions for each entity and each condition. The Beta distribution is defined by two parameters,
α and β. These two parameters encode both our “estimate” of an unknown success probability
p and our uncertainty in that estimate. (See also Fig 1B). Intuitively, we tend to believe p is
large when α is large relative to β, and we tend to believe that p is small when β is large relative
to α. We are uncertain in these beliefs when the total α + β is small, and we are more certain
when α + β is large. More formally, letting Γ(�) denote the gamma function, the belief over p
given belief parameters αic and βic is given by:

p � Betaða; bÞ ¼
Gðaþ bÞ

GðaÞGðbÞ
pa� 1ð1 � pÞb� 1

ð2Þ

In Bayesian approaches to estimation, we beginwith a prior belief that holds before we account
for the data, and then we use the data to update our belief, resulting in a posterior belief. Hav-
ing made the Beta assumption, our prior belief for pic is specified by entity- and condition-spe-
cific prior belief parameters a0

ic and b
0

ic, while, conveniently, our posterior belief is specified by
posterior parameters aic ¼ a0

ic þ Ric and bic ¼ b
0

ic þ Rc � Ric. The mean of that posterior belief
can be taken as our Bayesian estimate of the true read fraction, and can be written in terms of
the read counts and prior parameters. Because we will shortly be treating the condition c as if it
too is a random variable, let us be clear and write the posteriormean for entity i’s true read
fraction under condition c as

EðpicjcÞ ¼
aic

aic þ bic
¼

a0
ic þ Ric

a0
ic þ b

0

ic þ Rc

: ð3Þ

Depending on how large the prior parameters a0
ic and b

0

ic are, this may be only a little different
from the empirical read fraction estimate of Ric/Rc, or it may be substantially different.

The variance of the posterior belief is one way of summarizing our uncertainty in that esti-
mate, or in other words, a way of quantifying the precision of the measurement.

Var ðpicjcÞ ¼
aicbic

ðaic þ bicÞ
2
ðaic þ bic þ 1Þ

¼
ða0

ic þ RicÞðb
0

ic þ Rc � RicÞ

ða0
ic þ b

0

ic þ RcÞ
2
ða0

ic þ b
0

ic þ Rc þ 1Þ
ð4Þ

Now, let us return to the question of correlating entity i with entity j. Instead of correlating
Ric with Rjc across conditions, or pemp

ic with pemp
jc , we propose to correlate pic with pjc. The fact

that we do not know pic or pjc is no obstacle, as long as we can use our belief distribtions over
them. In particular, we define the Bayesian correlation as

rb
ij ¼

Covðpic; pjcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðpicÞVar ðpjcÞ

q ð5Þ
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Here, the covariances and variances are taken with respect to both the condition c and the
uncertainties represented in our posterior beliefs. Of course, if i = j, then the formula above
reduces to Var(pic)/Var(pic) = 1. Otherwise, let us consider how to compute the different terms.

Using the Law of Total Covariance, we can decompose the covariance term into two parts,
one which expresses the average covariance of pic and pjc within conditions, and one which
expresses the covariance of their posteriormeans across conditions.

Covðpic; pjcÞ ¼ EðCovðpic; pjcjcÞÞ þ CovðEðpicjcÞ;EðpjcjcÞÞ ð6Þ

Here, we treat the condition c as a random variable, with each of its k possible values occuring
with probability 1/k. The first expectation above is with respect to c, and the covariance term
on the right is across conditions c. Above, we have describedour beliefs over pic and pjc as being
given by independent Beta distributions. Thus, Cov(pic, pjc|c) is zero by assumption. If we had
chosen a Dirichlet distribution, however, then the covariance would be nonzero, and that term
would have to be computed. To address the second term, let us introduce the overall mean true
read fraction, averaged across conditions and over our belief for each condition.

EðpicÞ ¼
Xk

c¼1

1

k
EðpicjcÞ ð7Þ

Then, the second term in the covariance formula is given by the following.

CovðEðpicjcÞ;EðpjcjcÞÞ ¼
Xk

c¼1

1

k
ðEðpicjcÞ � EðpicÞÞðEðpjcjcÞ � EðpjcÞÞ ð8Þ

That resolves the numerator of the Bayesian correlation formula in Eq 5. For the denominator
of Eq 5, we need to compute the variance of pic. Similar to the covariance, the variance can be
obtained by first applying the Law of Total Variance, dividing the variance into variability across
conditions and variability (uncertainty) within each condition, as quanitified by the posterior.

Var ðpicÞ ¼ EðVar ðpicjcÞÞ þ Var ðEðpicjcÞÞ ð9Þ

¼
Xk

c¼1

1

k
Var ðpicjcÞ þ

Xk

c¼1

ðEðpicjcÞ � EðpicÞÞ
2

ð10Þ

The first term represents our uncertainty in the value of pic (see Eq 4) averaged across conditions
c, while the second term represents variability in the mean of our belief across conditions. This
resolves the denominator of the Bayesian correlation equation, completing our derivation of the
formulas.

Below, we demonstrate Bayesian correlation on some real data. Just to concretize the discus-
sion at this point, however, let us see how the Bayesian correlation plays out on the examples
described in the Introduction. In our first example, we had gene expression counts Rx� = (1000,
1000, 10000), Ry� = (100, 100, 200) and Rz� = (0, 0, 1), with Rc = 106 total sequencing depth in
each condition. And as mentioned above, the Pearson correlation between any pair of genes in
rp = 1. This is true whether considering the raw read counts Rij or the empirical read fractions
pemp

ij . However, the Bayesian correlations between these genes are rb
xy ¼ 0:971, rb

xz ¼ 0:378

and rb
yz ¼ 0:367. Appropriately, the xy correlation is deemed highest, although not quite one,

because of the small uncertainties in the x and y measurements. Also appropriately, the correla-
tions of x and y to z are much smaller, because of the much greater uncertainty in the true levels
of z. These calculations were done with uniform priors for the true read fractions, a0

ij ¼ b
0

ij ¼ 1.
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In our second example, we had gene expression counts Rw� = Rx� = (10, 0, 0) and Ry� = Rz� = (0,
100, 0) out of total read counts Rc = (106, 107, 106). In this example, the standard Pearson corre-
lations of w with x, and of y with z, are one. However, the Bayesian correlations are rb

wx ¼ 0:859

and rb
0:948

. It is sensible that posterior estimate of the wx correlation be lower than yz correla-
tion, because the latter genes are measured with greater fidelity, being expression under a con-
dition with greater read depth. For these simple examples at least, the Bayesian correlation
produces a sensible reduction in estimated correlation towards zero, when there is more uncer-
tainty in the truemeasured levels.

Good priors for Bayesian correlation analysis

One of the most important steps in a Bayesian statistical analysis is the selection of a good
prior—that is, a prior that contains good information of the process so the amount of data nec-
essary to approximate well the exact solution is small, and a prior that does not overly bias the
final result. In this sectionwe consider some of the possible choices and we study which ones
are best for our problem.

The simplest choice is a0
ic ¼ 1 and b

0

ic ¼ 1, for all entitites i and conditions c. With these
parameters, the Beta distribution takes the form of a flat function in the interval [0, 1] (see Fig
1B). We denote by rb1

ij the Bayesian correlation obtained with this prior. The motivation for
this choice is quite simple. A given read in an HTS dataset either is attributable to the entity i
or not. Assuming we know nothing about entity i or the condition c before hand, a noninfor-
mative prior seems a plausible choice. However, this choice turns out to be problematic, espe-
cially for low count entities. To demonstrate this, let us turn to a real dataset.
Bayesian correlations based on the uniform prior can be highly biased. We decided to

analyze the “Wang” dataset from the ReCount resource of analysis-ready RNA-seq gene count
datasets [21, 22]. The ReCount resource conveniently summarizes expression data from a num-
ber of other datasets in terms of read counts attributed to genes. TheWang dataset contains
gene expression data from 15 diverse human tissue samples (with some tissues represented by
more than one sample). From this matrix, we eliminated genes with zero counts under every
condition, and we eliminated identical rows, resulting in 10574 unique, expressed genes.

Fig 2A shows a scatter plot of the Bayesian and Pearson correlations for all 55,899,451 pairs
of expressed genes. The density of points is indicated on a scale from low density (purple) to
high density (yellow). There are many points on or near the y = x line, indicating pairs of genes
for which the Bayesian and Pearson correlations agree. However, there is also a substantial
number of points that are far from the y = x line. There are many pairs of genes that Pearson
estimates as being highly correlated, at or near rp = 1, whereas the Bayesian correlation is sub-
tantial lower, even approximately zero. Inspection of some individual points reveals that these
are pairs of genes where at least one has very low read counts that just happen to match up well
with some high count gene—usually a gene expressed predominantly in a single tissue type.
However, the converse is also true. There are a number of gene pairs where the Pearson corre-
lation is at or near zero, and yet the Bayesian correlation is nonzero (although only as large
about 0.2 to 0.3). There are even gene pairs where the Pearson correlation is negative (say
around −0.3) and the Bayesian correlation is positive (say around +0.3).

Fig 2B shows for each gene i, sorted in order of increasing total read count, the ratio of the
mean absolute Bayesian correlation with all the other genes to the mean absolute Pearson cor-
relation with all other genes:

1

m� 1

P
j6¼ijr

b1
ij j

1

m� 1

P
j6¼ijr

p
ijj

: ð11Þ
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Fig 2. Analysis of different priors for Bayesian correlation analysis, on the reduced Wang dataset.

(A) Scatter plot comparing traditional Pearson correlations with Bayesian correlations using a uniform prior

for expression levels. (B) Average absolute correlation coefficient for different genes, with increasing

expression along the x-axis. (C-D) Similar to panels A-B, but with the Dirichlet-inspired prior. (E-F) Similar to

A-B, but with the zero count-inspired prior. (G) Histogram of all pairwise correlation coefficients (self-

correlations omitted), for Pearson and all three Bayesian correlation analyses.

doi:10.1371/journal.pone.0163595.g002
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We see that the lower expression genes have smaller Bayesian correlations than Pearson corre-
lations, on average. As expression grows larger, there is an increasing tending for Bayesian and
Pearson correlations to be of the same magnitude.We would like to think of Bayesian correla-
tions as similar to Pearson, but moderated towards zero when signal levels are uncertain. Yet,
the plots show that this is not the whole story. As mentioned above, the two can be of opposite
sign, and the Bayesian correlations can be of even greater magnitude than the Pearson correla-
tion.What is the source of this phenomenon?

Consider, as a special case, an entity with strictly zero counts in every condition: Ric = 0 for
all c. As stated above, we have removed such genes from consideration. But, the analysis of
their Bayesian correlations is particularly clear. With a uniform prior, the posteriormean esti-
mate of pic = a0

ic=ða
0
ic þ b

0

ic þ RcÞ = 1/(2+Rc)� 1/Rc. Thus, despite the lack of any evidence
regarding entity i, the posteriormean estimate can go up or down depending on the sequencing
depth Rc of the experiment.When two different entities, i and j 6¼ i, both have zero counts,
their posteriormeans will be correlated. Indeed, in Eqs 18 and 19, the Bayesian correlation
with this prior can be closely approximated by

rb1

ij �

1

k

Xk

c¼1

1

Rc
�
Xk

c0¼1

1

k
1

Rc0

 !2

Xk

c¼1

1

k
1

R2
c

 !

þ
Xk

c¼1

1

k
1

Rc
�
Pk

c0¼1

1

k
1

Rc0

� �2
: ð12Þ

We can see that if some Rc’s are very different from the mean, the numerator of Eq (12) is large
and, therefore, the correlation is not zero.
Two priors that minimize spurious bias between low count entities. In order to avoid the

problem presented by the uniform prior, we present two possible alternatives. Clearly the process
of attributing reads to entities is not one of flipping a coin. In any practical problem the number
of entities m (e.g., genes) is bigger than two. Thus, for any read, the prior probability that it
comes from gene i should be 1

m, not
1

2
. One way to capture this is with a Beta distribution with

prior parameter values a0
ic ¼

1

m and b
0

ic ¼ 1 � 1

m. This choice could also be justified as the margin-
alization of a Dirichlet distributionD a1 ¼

1

m ;
�

a2 ¼
1

m ; . . ., am ¼
1

mÞ. Any prior with parameters
proportional to these would also produce the same prior mean, but we make this choice because
it offers a weak prior that does not overly influence the posterior estimates. We call this our sec-
ond choice of prior, and denote by rb2

ij the Bayesian correlation obtained with this prior.
Finally, we present a third prior specifically designed to avoid the problem of spurious

correlations between zero-count entities (and by similarity, between low-count entities):

a0
ic ¼

Ric þ 1

Rmax þ 1
; b

0

ic ¼ 1, where Rmax ¼ max
i

Ri. We denote by rb3
ij the Bayesian correlation

obtained with this prior. As we reiterate formally below, the interesting property of this prior is
that if Ric = 0 for all c, or Rjc = 0 for all c, then rb3

ij is exactly zero (see Theorem below and proof
in Appendix A). Although this prior requires some information related with the data, namely
the total read counts in each condition, it does not rely on the entities’ individual read counts,
and thus can be considered a valid prior.

In Fig 2C–2E, we compare Bayesian correlations computed with our second and third priors
to the Pearson correlations, just as we did for the first prior. We see that the second and the
third priors perform better than the first prior, in the sense that they appear moderated towards
zero compared to the Pearson correlations. This is especially true when the read counts are
low. Fig 2G shows histograms of all the correlation coefficients for Pearson and Bayesian
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analyses with the three different choices of priors. We see that there are more high (> 0.7)
Pearson correlations than there are Bayesian correlations with any choice of prior. We also see
that the bulk of the correlations, which hover around −0.1 for Pearson correlation, are closer to
zero for Bayesian correlation with second or third choices of prior. In contrast, Bayesian corre-
lations with the first prior have a concentration just below zero and another concentration
around 0.25–0.3.

While the behavior of Bayesian correlation with second or third priors on theWang dataset
is satisfying, it is important to know whether there is any generality to the results. To further
evaluate performance, we tested the method on two additional datasets. One is an RNA-seq
gene expression time-series take at four days (4, 8, 11 and 14) spanning an erythropoiesis dif-
ferentiation protocol, with each day sampled in duplicate [23]. We treat the replicates as indi-
vidual conditions, although an alternative would have been to pool the reads from replicates. A
comparison of the Bayesian and Pearson correlations can be found in Fig 3A–3F. As in the pre-
vious dataset, we see that Pearson and Bayesian correlations often agree, but there are also
many pairs of genes for which the Bayesian correlation is moderated towards zero compared to
the Pearson correlation. This is true for all three choices of priors. In contrast with the previous
dataset, we do not see the first, uniform prior generating spurious non-zero correlations when
the Pearson correlation is zero.

The third dataset we tried is a miRNA-seq study of the expression of 1143 precursor and
mature microRNAs in 172 normal and cancerous human tissues, available in Table S5 of Land-
graf et al. [24]. The results of Bayesian and Pearson correlation analyses can be seen in Fig 3G–
3L.While the second and third Bayesian priors perform as expected, there is a major problem
with spurious positive correlations when using the first Bayesian prior (Fig 3G). This is due to
the vast differences in sequencing depth between different samples. In this early study, the aver-
age sequencing depth per condition was just 912 reads per condition, and ranged from 60 to
2162. As a result, when looking at the ratio of mean absolute Bayesian correlations to mean abso-
lute Pearson correlations (Fig 3J), we see that for low expression miRNAs the Bayesian correla-
tion is much higher than the Pearson correlation, on average. However, Bayesian analysis with
the second or third priors does not suffer this problem.

In order to establish the generality of these observations,we analyzed Bayesian correlations
with different priors theoretically. The following Theorem, proved in Appendix A, shows that
the second and third priors have properties of correctly suppressing correlations between low-
count entities for any dataset.
Theorem 1 Let R be the count matrix for m entities under k conditions. Let i and j 6¼ i be two

entities. Let ni = maxc Ric, and similarly for nj. Let k1, k2, k3 and k4 be, respectively, the number of
conditions for which: Ric = 0 and Rjc > 0; Ric > 0 and Rjc = 0; Ric = 0 and Rjc = 0; and Ric > 0
and Rjc > 0. Then, if ni = 0 and nj = 0, we have

1. rb3ij ¼ 0 , and

2. rb2ij � 1
m r

b1
ij :

If ni > 0 or nj > 0, then

3. jrb3ij j � ninj
4R2

max
kR2

min

k1

k
þ
k2

k
þ
k3

k2
þ k4

� �

:

Note that rb1
ij 2 ½� 1; 1� and typically m� 1. Therefore, priors 2 and 3 both suppress the artifi-

cial correlations from strictly zero-count entities. And, for low-count entities (i.e., when ni and
nj are small compared to the number of conditions, hence read counts are zero under most
conditions) then Bayesian correlation with the third prior is provably small.
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Kernel property and use in clustering

In machine learning, a kernel is any way of measuring similarity between objects that can be
expressed as an inner product in some (possibly infinite dimensional) feature space [25, 26]. It is
an important property because there are many machine learning algorithms that are designed to
work with any kernel, including kernel-based clustering, kernel principal components analysis,
classification by support vector machines, and so on. Regardless of choice of priors, it turns out
that the Bayesian correlation, like the Pearson correlation, is a kernel. The proof is relatively
straightforward and not of independent interest, but can be found in Appendix B.
Theorem 2 Given any count matrix R and entity- and condition-specific priors αic, βic > 0,

the Bayesian correlation as defined above consititutes a kernel.
Although this is true for any choice of priors, in this sectionwe focus on the third notion of

prior defined above, and compare the behaviour of Pearson and Bayesian correlations in clus-
tering theWang data.
Agreement betweenBayesian and Pearson correlations. To further assess how the

Bayesian and Pearson correlation schemes compare, we plotted the correlation coefficients

Fig 3. Comparison of Bayesian versus Pearson correlation analysis for first (left), second (middle)

and third Bayesian priors (right) in erythropoeisis and miRNA datasets. (A-C) Bayesian versus

Pearson correlations for erythropoiesis, using first, second and third priors respectively. (D-F) Ratios of

mean Bayesian to Pearson correlations for erythropoiesis as a function of increasing gene expression. (G-I)

Bayesian versus Pearson correlations for the miRNA dataset. (J-L) Ratios of mean Bayesian to Pearson

correlations.

doi:10.1371/journal.pone.0163595.g003
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between the genes in theWang dataset (omitting genes with zero counts) and arranged them
into square matrices. For easy visualization, we then applied hierarchical row and column clus-
tering to the Bayesian matrix using the Euclidean distance metric and average linkage. The
Pearson matrix was then reordered to reflect the same ordering scheme of the clustered Bayes-
ian matrix. The rearrangedmatrices are shown in Fig 4A and 4B. Clearly, both the Bayesian
and the Pearson correlations schemes agree to a great extent. They show essentially the same
block structures along the main diagonal, and similar relationships away from the main diago-
nal. The most prominent difference in the plots is that the Bayesian heatmap has a cluster of
genes with mutual correlations near zero, producing near-black vertical and horizontal bars.
The corresponding part of the Pearson plot shows a mixture of positive and negative correla-
tions. These are low expression genes for which the Bayesian scheme discounts apparent corre-
lations due to uncertainty in true expression levels.
Hierarchical clustering using the correlations as distance metrics. A very useful applica-

tion of the kernel property of the Bayesian correlation function is its use as a similarity measure
for clustering. As a demonstration, we carried out hierarchical clustering of the rows of the
Wang data matrix (resulting in clustering genes) using one minus the pairwiseBayesian corre-
lation as the distance metric. (Our software takes distance rather than similarity matrices. The
third prior was employed). For comparison, in parallel, we also clustered the genes using one
minus the Pearson correlation as the distance metric. Fig 4C and 4D display the clustergram
heatmaps for the two cases, where the colors map to standardized expression levels (read
counts). There are many similarities between the two clusterings. Both include a set of genes
enriched in samples 1 to 5, and another group enriched in samples 11 to 14. Sample 22 is nota-
ble for high expression of genes that are unexpressed or weakly expressed in other samples.

To further assess the biological relevance of the results of the Bayesian and the Pearson cor-
relation methods, we used theWang dataset and the corresponding correlation coefficients as
scores to predict the role of a gene in a tissue-specific biological process. We downloaded the
Biological Process (BP) Complete Gene Ontology (GO) terms for all the genes in the dataset
from the PANTHER database (http://pantherdb.org/citePanther.jsp). Out of a total of 10574
genes (after pre-processing theWang dataset as described earlier), PANTHER found matches
for 10506 genes, thus ignoring 68 genes from the list. We reasoned that genes with strong tis-
sue-specific expression patterns would likely be similar to at least some other tissue-specific
genes. Thus, a Bayesian and a Pearson correlation score was assigned to each gene by finding
the highest value at which the gene correlates with any other gene in the dataset. Using this
score as a predictor and a moving threshold value, we built receiver operatic characteristic
(ROC) curves for the two correlation metrics. The ground truths were taken to be the genes
that have at least one of the following tissue-specificword stems corresponding to the tissues in
theWang dataset: “adipose”, “brain”, “breast”, “neur”, “cereb”, “heart”, “liver”, “lymph”,
“musc”, “testes”, “hepat”, “cardi”, “arter”, “mamm”, “sperm”, “epidid”, “intes”. (We verified
that each stem matched only appropriate, tissue-specificGO terms). From the ROC curves, it
is clear that the Bayesian correlation metric serves as a better predictor for tissue-specific co-
expression of genes, or in other words, participation of a given gene in a tissue-specific biologi-
cal process. Specifically, it has superior performance on the highest score genes, where it has
eliminated low-expression genes to which the Pearson correlation falls pray.

Discussion

In this paper, we have developed a Bayesian approach to correlation analysis of entities mea-
sured by high-throughput sequencing. Its central feature is that the precision of measurements
are taken into account. In particular, Bayesian estimates of true signal levels allow us to
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Fig 4. Clustering using Bayesian correlation as a similarity measure. (A-B) Heatmaps for Bayesian

(prior 3) and Pearson correlations between genes in the Wang dataset, using the same row- and column-

orderings for both. (C-D) Hierarchical clustering of genes by one minus the Bayesian or Pearson correlation

respectively. (E) ROC curve for genes with tissue-specific GO terms, ordered by decreasing maximum

correlation to any other gene.

doi:10.1371/journal.pone.0163595.g004
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quantify uncertainty due to both differing true signal levels between entities and due to differ-
ent sequencing depths between experiments. In empirical results on a multi-tissue RNA-seq
gene expression dataset, we found that the Bayesian correlation approach acts as intended.
For low-expression genes, whose true expression levels are less well measured in the signal-to-
noise-ratio sense, correlations are naturally suppressed in a gradedmanner, without resorting
to some arbitrary expression-level or significance cut off. Conversely, for high-expression
genes, for which measurements are relatively certain, Bayesian and Pearson correlation esti-
mates closely agree. Although we have demonstrated the approach so far only on an RNA-seq
dataset, the same approach could be used for many other types of data. miRNA-seq, ChIP-seq
and Methyl-seq data, for example, could also be analyzed by the same approach, as well as cor-
related with each other.

Beyond empirical results, we have also established several key theoretical properties of our
Bayesian correlation estimates. First, to our initial surprise, we found that assuming a uniform
prior over signal levels can result in highly biased correlation estimates, especially for low-
count entities. By understanding the source of this problem, however, we were able to propose
two alternative priors, both of which are provably well behaved, in the sense of producing zero
or near-zero correlations for low-count entities. We also proved that, regardless of the choice
of prior, the Bayesian correlation constitutes a kernel, and thus a valid similarity measure that
can be used in any number of kernel-basedmachine learning algorithms.We put this to use by
showing a Bayesian correlation-based hierarchical clustering of the RNA-seq data, and com-
paring it to Pearson-based clustering.

Despite our positive results, there is more work to be done in the area of Bayesian correla-
tion analysis for sequencing data. For one thing, we assume only a set of independent condi-
tions, and a desire to compute correlations between entities across those conditions. We have
not considered the issue of replicate experiments, besides simply treating them as additional
conditions. Treated this way, the number of replicates seems to have little effect on either
Bayesian or Pearson correlations (see simulation study in Appendix D). However, one may
want to “average out” variability within replicates, and compute correlations only across
groups of replicates. Relatedly, we have only modeled uncertainty resulting from a generic
model of randomly sampling reads from a pool in which the entities are fractionally repre-
sented. However, in RNA-seq analysis especially, and ChIP-seq analysis to some degree,
there are more sophisticated noise models in use, attempting to account for biological vari-
ability, PCR-amplification artifacts, and so on. Thus, a more comprehensive treatment of
Bayesian correlation analysis would allow for a more general class of random sampling
models.

Another major generalization of the current work would be to consider other measures of
similarity. For instance, Spearman correlation and mutual information [27, 28] are two other
often-usedmethods of measuring the similarity of gene expression profiles. These measures
can differ significantly from Pearson correlation (see Appendix E for Spearman correlation
applied to the datasets in this paper). Yet, like Pearson correlation, they can yield artificially
high similarities under certain conditions. A fundamental contribution of the present paper is
to suggest incorporatingmeasurement uncertainty into the similarity metric, and we showed
how to do this in the case of Pearson correlation. Figuring out how to do this for other similar-
ity measures is an important direction for future work.

Appendix A: Proof of Theorem 1

Our empirical results show that priors 2 and 3 suppress artificial correlations. In this appendix
we give some bounds on the Bayesian correlations. The proofs are straightforward, but tedious.
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For the sake of convenience, we introduce the following notation.

E1 ¼ fc such that Ric ¼ 0 and Rjc 6¼ 0g;

E2 ¼ fc such that Rjc ¼ 0 and Ric 6¼ 0g;

E3 ¼ fc such that Ric ¼ 0 and Rjc ¼ 0g;

E4 ¼ fc such that Ric 6¼ 0 and Rjc 6¼ 0g;

fic ¼
a0

ic þ Ric

a0
ic þ b

0

ic þ Rc

;

lic ¼
Ric

a0
ic þ b

0

ic þ Rc

;

fi ¼
Xk

c¼1

1

k
a0

ic þ Ric

a0
ic þ b

0

ic þ Rc

;

f j
i ¼

X

c2Ej

1

k
a0

ic þ Ric

a0
ic þ b

0

ic þ Rc

;

lji ¼
X

c2Ej

1

k
Ric

a0
ic þ b

0

ic þ Rc

;

kj ¼ jEjj:

With the new notation, the formula for the covariance reads

Covðpic; pjcÞ ¼
1

k

X

l

X

c2El

ðfic � f 1

i � f 2

i � f 3

i � f 4

i Þðfjc � f 1

j � f 2

j � f 3

j � f 4

j Þ: ð13Þ

It is possible to obtain a simplified expression for the covariance with the third prior. The
original formula for the covariance is

Covðpic; pjcÞ ¼
1

k

Xk

c¼1

a0

ic þ Ric

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
a0

ic0 þ Ric0

a0
ic0 þ b

0

ic0 þ Rc0

 !

a0

jc þ Rjc

a0
jc þ b

0

jc þ Rc

�
Xk

c0¼1

1

k
a0

jc0 þ Rjc0

a0
jc0 þ b

0

jc0 þ Rc0

 !

:

Note that some terms can be spliced.

a0
ic þ Ric

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
a0

ic0 þ Ric0

a0
ic0 þ b

0

ic0 þ Rc0

 !

¼

a0
ic

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
a0

ic0

a0
ic0 þ b

0

ic0 þ Rc0
þ

Ric

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
Ric0

a0
ic0 þ b

0

ic0 þ Rc0
:

ð14Þ

With the third prior, the first two terms are cancelled. Recall

a0
ic ¼

Rc þ 1

Rmax þ 1
;

b
0

ic ¼ 1:
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Thus,

a0

ic

a0
ic þ b

0

ic þ Rc

¼

Rcþ1

Rmaxþ1

Rcþ1

Rmaxþ1
þ 1þ Rc

¼
ðRc þ 1Þ 1

Rmaxþ1

ðRc þ 1Þ 1

Rmaxþ1
þ 1
¼

1

Rmaxþ1

1

Rmaxþ1
þ 1
¼

1

2þ Rmax
:

Therefore,

a0
ic

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
a0

ic0

a0
ic0 þ b

0

ic0 þ Rc0

¼
1

2þ Rmax
�
Xk

c0¼1

1

k
1

2þ Rmax
¼ 0:

ð15Þ

Therefore, for the third prior the formula for the covariance is

Cov3ðpic; pjcÞ ¼
1

k

X

m

X

c2Em

ðlic � l1i � l2i � l3i � l4i Þðljc � l1j � l2j � l3j � l4j Þ: ð16Þ

Analysis in the case of zero counts

In this section, we analyse the case in which the total number of read counts is zero for a row.
According to Eq (25), it is trivial that if all Ric = 0, then the covariance of the third prior is zero.
Therefore,

rb3

ij ðpic; pjcÞ ¼ 0 ; ð17Þ

and we have proved the first property of the Theorem stated in the main manuscript.
The covariance of the first prior is

Cov1ðpic; pjcÞ ¼
Xk

c¼1

1

k
1

1þ 1þ Rc
�
Xk

c0¼1

1

k
1

1þ 1þ Rc0

 !2

�
Xk

c¼1

1

k
1

Rc
�
Xk

c0¼1

1

k
1

Rc0

 !2

;

ð18Þ

and its variance is given by

Var 1ðpicÞ ¼
Xk

c¼1

1

k
1ð1þ RcÞ

ð1þ 1þ RcÞ
2
ð1þ 1þ Rc þ 1Þ

 !

þ

Xk

c¼1

1

k
1

1þ 1þ Rc
�
Xk

c0¼1

1

k
1

1þ 1þ Rc0

 !2

�
Xk

c¼1

1

k
1

R2
c

 !

þ
Xk

c¼1

1

k
1

Rc
�
Xk

c0¼1

1

k
1

Rc0

 !2

:

ð19Þ
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The covariance of the second prior is

Cov2ðpic; pjcÞ ¼
Xk

c¼1

1

k

1

m
1

m
þ

m � 1

m
þ Rc

�
Xk

c0¼1

1

k

1

m
1

m
þ

m � 1

m
þ Rc0

0

B
@

1

C
A

2

¼
Xk

c¼1

1

k

1

m
1þ Rc

�
Xk

c0¼1

1

k

1

m
1þ Rc0

0

B
@

1

C
A

2

¼
1

m2

Xk

c¼1

1

k
1

1þ Rc
�
Xk

c0¼1

1

k
1

1þ Rc0

 !2

�
1

m2

Xk

c¼1

1

k
1

Rc
�
Xk

c0¼1

1

k
1

Rc0

 !2

¼
1

m2
Cov1ðpic; pjcÞ:

ð20Þ

and the variance is

Var 2ðpicÞ ¼
Xk

c¼1

1

k

1

m

� �
m � 1

m
þ Rc

� �

1

m
þ

m � 1

m
þ Rc

� �2
1

m
þ

m � 1

m
þ Rc þ 1

� �

0

B
B
B
@

1

C
C
C
A
þ

Xk

c¼1

1

k

1

m
1

m
þ

m � 1

m
þ Rc

�
Xk

c0¼1

1

k

1

m
1

m
þ

m � 1

m
þ Rc0

0

B
@

1

C
A

2

¼
Xk

c¼1

1

k

1

m

� �
m � 1

m
þ Rc

� �

ð1þ RcÞ
2
ð1þ Rc þ 1Þ

þ

Xk

c¼1

1

k

1

m
1þ Rc

�
Xk

c0¼1

1

k

1

m
1þ Rc0

0

B
@

1

C
A

2

¼
1

m

Xk

c¼1

1

k

1
m � 1

m
þ Rc

� �

ð1þ RcÞ
2
ð1þ Rc þ 1Þ

þ

Xk

c¼1

1

k
1

m
1

1þ Rc
�
Xk

c0¼1

1

k
1

1þ Rc0

 !2

�
1

m

Xk

c¼1

1

k
1

R2
c

þ
Xk

c¼1

1

k
1

Rc
�
Xk

c0¼1

1

k
1

Rc0

 !2

�
1

m
Var 1ðpicÞ:

ð21Þ
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Therefore,

rb2

ij ðpic; pjcÞ ¼ O
1

m

� �

rb1

ij ðpic; pjcÞ: ð22Þ

This concludes the proof of the second property.

Analysis in the case of non-zero read counts

In this sectionwe consider a more general case. Given two different entities i and j, let

ni ¼ max
c

Ric; ð23Þ

nj ¼ max
c

Rjc: ð24Þ

The covariance for the third prior is given by

Cov3ðpic; pjcÞ ¼
1

k

X

m

X

c2Em

ðlic � l1i � l2i � l3i � l4i Þðljc � l1j � l2j � l3j � l4j Þ: ð25Þ

Note that some of that terms are zero, so that

Cov3ðpic; pjcÞ ¼
1

k

X

c2E1

ð� l2i � l4i Þðljc � l1j � l4j Þ þ
1

k

X

c2E2

ðlic � l2i � l4i Þð� l1j � l4j Þþ

1

k

X

c2E3

ð� l2i � l4i Þð� l1j � l4j Þ þ
1

k

X

c2E4

ðlic � l2i � l4i Þðljc � l1j � l4j Þ:

Note that

jð� l2i � l4i Þðljc � l1j � l4j Þj � jð� l2i � l4i Þmaxfljc; � l1j � l4j gj � ðni þ niÞðnj þ njÞ: ð26Þ

Thus,

jCov3ðpic; pjcÞj �
1

k
k1

k
2ni

Rmin

2nj

Rmin
þ

k2

k
2ni

Rmin

2nj

Rmin
þ

k3

k2

2ni

Rmin

2nj

Rmin
þ k4

2ni

Rmin

2nj

Rmin

� �

¼
4ninj

kR2
min

k1

k
þ

k2

k
þ

k3

k2
þ k4

� �

:

ð27Þ

The last step is to obtain a lower bound for the variance.

Var 3ðpicÞ ¼
Xk

c¼1

1

k
ða0

ic þ RicÞðb
0

ic þ Rc � RicÞ

ða0
ic þ b

0

ic þ RcÞ
2
ða0

ic þ b
0

ic þ Rc þ 1Þ

 !

þ

Xk

c¼1

1

k
a0

ic þ Ric

a0
ic þ b

0

ic þ Rc

�
Xk

c0¼1

1

k
a0

ic0 þ Ric0

a0
ic0 þ b

0

ic0 þ Rc0

 !2
ð28Þ

¼ DðpicÞ þ Covðpic; picÞ ; ð29Þ
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where

DðpicÞ ¼
Xk

c¼1

1

k
a0

icðb
0

ic þ Rc � RicÞ

ða0
ic þ b

0

ic þ RcÞ
2
ða0

ic þ b
0

ic þ Rc þ 1Þ

þ
Xk

c¼1

1

k
Ricðb

0

ic þ Rc � RicÞ

ða0
ic þ b

0

ic þ RcÞ
2
ða0

ic þ b
0

ic þ Rc þ 1Þ

�
Xk

c¼1

1

k
a0

icRc

R2
c Rc
þ
Xk

c¼1

1

k
RicRc

R2
c Rc

�
1

k

Xk

c¼1

R2
c

RmaxR3
c

þ
k2 þ k4

k
Rc

R3
c

�
1

R2
max

:

ð30Þ

In this way, we obtain that the Bayesian correlation is bounded by

jrb3

ij ðpic; pjcÞj � ninj
4R2

max

kR2
min

k1

k
þ

k2

k
þ

k3

k2
þ k4

� �

:

Appendix B: Proof of the kernel property

Our proof of the kernel property is divided in two steps. The first step concerns the correlation
of two different entities (i 6¼ j). Define

gic ¼ EðpicjcÞ � EðpicÞ

gi ¼ ðgi1; gi2; . . . ; gikÞ

Vi ¼ Var ðpicÞ

Si ¼
ffiffiffiffiffi
Vi
p

�i ¼ gi=Si

In words, gic is the difference between our posterior mean estimate of the true read fraction for
entity i in condition c, pic, and the average of those estimates across conditions. This term
occurs in Eq 6 where, multiplied with a corresponding term for entity j, it contributes to the
covariance computation. gi is the vector of those terms across all k conditions. Vi is the variance
of pic, with respect to our beliefs and across conditions, or in other words, the quantity given by
Eq 10. Thus, ϕi is the vector of deviations of our condition-specificmean estimates of pic from
the overall mean estimate, normalized by the standard deviation of those estimates. With this
notation, the reader may verify that the Bayesian correlation in Eq 5 can be written as

rb
ij ¼ < �i; �j > ; ð31Þ

where< �, �> denotes the inner product. Therefore, for different entities i 6¼ j, the Bayesian
correlation can be written as an inner product in a suitable feature space.

To proceed further, we consider the case i = j, which requires a slight modification. The rea-
son for this is that the formula above only works when the first term on the right hand side of
Eq 8 is zero. This is true by assumption when i 6¼ j, but it is most definitely not true when i = j.
Indeed, when i = j that first term is such that the numerator and denominator of Eq 5 are
equal, and thus the self-correlation is one. In contrast, if one blindly applied the formula above
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to compute the correlation of an entity with itself, one would generally get an answer less than
one.

To acount for this, we consider each entity to be represented not only by its number of counts
under the different conditions, but also by a unique identifying label in L = {1, 2, . . ., M}, where
M is the number of entities. Then, for entity i inRk � L we propose the feature mapping:

ci : ðRk � LÞ ! Rk � RM

¼ ð�ðpiÞ; 0; . . . ; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� < �ðpiÞ; �ðpiÞ >

p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiþ 1Þ
st element

; 0; . . . ; 0Þ:

If i 6¼ j, then<ψi, ψj > =< ϕi, ϕj>. However, if i = j, then<ψi, ψj> =<ψi, ψi> =
< �i; �i > � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� < �ðpiÞ; �ðpiÞ >

p
Þ

2 = 1. So, in either case, we can express the Bayesian cor-
relation of two entities i and j (where j may or may not be the same as i) as an inner product in
a certain feature space. This concludes the proof that the Bayesian correlation is a kernel.

Appendix C: Computational complexity and run-time

Pearson and Bayesian correlation computations have the same order of computational com-
plexity. Recall that we have m entities and k conditions, and we start with an m × k matrix of
read counts R. The equations in the main text describe how to compute the Pearson and Bayes-
ian correlations between a single pair of entities, A and B. However, in the experiments in this
paper, and often in practice, we want to compute all pairwise correlations. We will analyze the
complexity of both computations.

For the Pearson correlation, we first need to compute the empirical read fractions, or equiv-
alently, divide each column of R by its own column sum. This takes O(mk) operations. Even if
we are only interested in correlating one pair of entities, the complexity is the same, because of
the need of computing the row sums. Then, for each entity, we need to compute its mean read
fraction across conditions, takingO(k) per entity or O(mk) for all. Similarly, we need to com-
pute the variance of the empirical read fractions across conditions, takingO(k) per entity or
O(mk) for all. For a pair of entities, computing the covariance across conditions takes O(k)
time, thus O(m2 k) for all pairs. Computing the correlation based on the covariance(s) and
the variances takes O(1) time per pair, thus O(m2) for all pairs. All together, the complexity for
correlating one pair of entities is O(mk) and the complexity for correlating all pairs of entities
is O(m2 k).

For Bayesian correlation, the story is similar. We need to know the total read counts per
condition, which takes O(mk) to obtain, so that we can compute the posterior α and β values—
whether we are interested in a pair of entities or all entities. Then, computing posteriormeans
and variances takes O(k) time per entity, or O(mk) for all entities. The covariance of the poste-
rior means takes O(k) per entity pair, and thus O(m2 k) for all pairs. Finally, the correlation
takes O(1) per entity pair or O(m2) for all. Thus, identical to the case for Pearson correlation,
we require O(mk) to correlate a single pair or O(m2 k) to correlate them all.

In our R-language implementation, the computations can be represented in terms of vectors
and matrices, which allows software- and/or hardware-level parallelism to speed the computa-
tions compared to a naive loop-based implementation. For the Bayesian computation, for
example, we begin by producing m × k matrices of the priors α0 and β0, along with a matrix
Rc.s. where each element in column c equals the sum of column c in the read count matrix R.
From these, the posteriors are obtained as α = α0 + R and β = β0 + Rc.s. − R. The posteriormean
matrix is M = α/(α+β), where the division is element-wise. The cross-conditional posterior
means are given by the row sums of M, which we then place into an m × k matrix Mr.s. with k
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identical values on each row. Letting Z = M − Mr.s., the covariances are obtained as C = MMT,
where the superscript T denotes the matrix transpose. The variances can be obtain similarly.
As an example, computing all pairwiseBayesian correlations for theWang dataset of over
10,000 genes using our R code (see S1 Code) on a Macbook Pro with 2.6 GHz Intel Core i7 pro-
cessor and 16 GB RAM takes approximately 3.1 seconds.

Appendix D: Simulation study on the influence of numbers of

replicates

As mentioned in the main text, our approach to Bayesian correlation analysis does not account
for replicate data, except to treat replicates as additional conditions. As a partial test of how the
number of replicates influences both Pearson and Bayesian correlations, we simulated addi-
tional replicates for the Erythropoiesis dataset. Recall that the original data comprises two rep-
licates of four biological conditions, which we treat as eight conditions. From each of those
eight conditions, we resampled, with replacement, the same number of reads four different
times.We then analyzed: a 16-condition dataset comprising the original eight conditions
and resampled versions of the same, a 24-condition dataset comprising the original eight plus
two resampled versions, a 32-condition dataset comprising the original eight plus three resam-
pled versions, and a 40-condition dataset comprising the original eight plus four resampled
versions.

We computed Pearson and Bayesian correlations, using the third prior, for each of these
augmented datasets. The results are shown in Fig 5. Visually, the additional, simulated repli-
cates have little effect on Bayesian or Pearson correlations. As a more formal analysis, we first
assessed the similarity of the Pearson and Bayesian correlations, in the original eight condi-
tions, across all 602,131,753 pairs of genes. To assess similarity, we computed the Pearson

Fig 5. Bayesian versus Pearson correlations with increasing numbers of simulated replicates of the

Erythropoiesis data, both of which seem largely insensitive to the number of replicates.

doi:10.1371/journal.pone.0163595.g005
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correlation coefficient between the Pearson and Bayesian correlations for all gene pairs. In the
original eight conditions, this turned out to be 0.9540.With eight, 16, 24 and 32 additional sim-
ulated replicates, the similarity between Pearson and Bayesian correlations increased to 0.9643,
0.9692, 0.9719 and 0.9738 respectively. Thus, with these simulated replicates, and on this spe-
cific dataset, the effect is only to increasemodestly the agreement between Pearson and Bayes-
ian correlation estimates. There remain many gene pairs where the Bayesian correlation is
substantially moderated towards zero compared to the Pearson correlation estimate.

Appendix E: Comparison to Spearman correlation

We computed Spearman (rank) correlations for the three datasets studied above. Fig 6 shows
the results, in comparison with Pearson correlations and Bayesian correlations computed using
the third prior. The Spearman correlations are quite different from either Bayesian or Pearson
correlations. Compare also to Figs 2E, 3C and 3I.

Fig 6. Spearman correlations compared to Pearson and Bayesian (third prior) correlations, on each

of the three datasets.

doi:10.1371/journal.pone.0163595.g006
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Supporting Information

S1 Code. R code implementing Bayesian correlation computations.
(R)
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