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Abstract 

Pancreatic ductal adenocarcinoma (PD A C) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes 
regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PD A C ha v e re v ealed the dy sregulation of lncRNAs but lack single- 
cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome 
data from 73 multiregion samples in 21 PD A C patients to e v aluate lncRNAs associated with intratumoral heterogeneity and the TME in PD A C. 
We found 1 1 1 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across 
orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were 
obscured in bulk t umor analysis. Lastly, t umor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs 
associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial–mesenchymal transition, metabolism and immune 
signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient 
outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PD A C using single-cell transcriptomic data and 
can serve as a resource, PD A CLncDB (accessible at https:// www.maherlab.com/ pdaclncdb-overview ), to guide future functional studies. 
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ancreatic ductal adenocarcinoma (PDAC) is one of the dead-
iest cancer types and is commonly diagnosed at advanced
tages in ∼50% of patients ( 1 ). Despite research efforts to-
ard this disease, little progress has been accomplished with

espect to treatments for PDAC beyond combinations of cyto-
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is 6 months with a 5-year survival rate of ∼10% ( 1 ). The inci-
dence of PDAC is increasing and is projected to be the second
leading cause of cancer death by 2030 ( 2 ). 

A major obstacle in the treatment of PDAC is the com-
plex landscape of intra- and intertumor heterogeneity and the
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stroma-rich tumor microenvironment (TME). This high level
of heterogeneity in PDAC provides opportunities for tumor
evolution and progression during treatment, ultimately result-
ing in resistant disease. Recent genomic studies have high-
lighted the complex heterogeneity and evolutionary landscape
in PDAC and the associated genomic alterations ( 3–5 ). How-
ever, due to the desmoplastic nature of PDAC tumors with
the often sparse tumor cell populations, bulk sequencing ef-
forts have been challenging to rigorously characterize PDAC
tumors. 

Advances in high-throughput single-cell sequencing have
allowed us to begin to understand the contribution of the
TME and its diverse cell types to cancer progression, tumor
cell diversification and response to treatment ( 6–13 ). Conse-
quently, this has led to a better distinction between tumor-
intrinsic and -extrinsic characteristics such as the recent re-
finement of the classical and basal models as the major tumor-
intrinsic subtyping in PDA C ( 13 , 14 ). Moreover, the hetero-
geneity of these multiple subtypes has been demonstrated in-
tratumorally and throughout tumor progression ( 14 ). As such,
PDAC tumor heterogeneity can also be driven by interactions
between cancer cells and their surrounding TME resulting in
changes in cancer cell states, plasticity and responses to thera-
pies ( 15 ). Therefore, an understanding of tumor heterogeneity
and the TME is crucial toward a better understanding of dis-
ease progression in PDAC. 

Long noncoding RNAs (lncRNAs) are an important class
of transcripts that play major roles in regulating tumor pro-
cesses. The contributions of lncRNAs to PDAC tumor pro-
gression and response to treatments have recently been rec-
ognized ( 16 ). These include examples such as ANRIL and
MEG8 , which are activators of epithelial–mesenchymal tran-
sition (EMT), CCAT1 / 2 , which promote PDAC cell prolifer-
ation, and H19 in cell invasion and migration ( 16 ). Addition-
ally, lncRNAs are known to exhibit strong cell type specificity
with respect to gene expression and therefore can partake in
a wide array of functions between tumor cells and the TME
( 17 ). Hence, understanding the involvement of lncRNAs in tu-
mor heterogeneity and the TME offers a unique opportunity
to explore their diverse roles in PDAC. 

However, prior lncRNA transcriptomic studies in PDAC
have relied primarily on bulk RNA sequencing (RNA-seq),
which represents an admixture of gene expression across cells,
thereby posing challenges in identifying lncRNAs enriched
in TME cell types and associated with tumor heterogeneity
( 3 ,18 ). Moreover, recent single-cell transcriptomic studies of
PDAC investigating tumor heterogeneity and the TME have
largely ignored lncRNAs and focused on the limited number
of highly expressed protein-coding genes ( 6 ,13 ). To address
these limitations, we performed an lncRNA-focused analysis
utilizing single-cell transcriptomics of PDAC patients in mul-
tiple independent cohorts and identified lncRNAs associated
with the PDAC TME, intratumoral heterogeneity, mutational
status, treatment and patient prognosis. LncRNAs identified
in this analysis are available at the PDACLncDB resource:
https:// www.maherlab.com/ pdaclncdb-overview . 

Materials and methods 

Single-cell RNA-seq datasets and clinical cohort 

To evaluate the expression and characterize lncRNA-
associated tumor-intrinsic biology, heterogeneity and
the TME in PDAC, we utilized single-cell RNA-seq (10x 

Genomics, 3 

′ library) of 73 multiregion samples from the 
WUSTL (Washington University in St Louis) cohort of 21 

patients with advanced PDAC, including treatment-naïve and 

those treated with chemotherapies such as FOLFIRINOX ( 6 ).
Additionally, we utilized six independent but small cohorts 
for validation (72 samples; 26 561 cells) ( 7–13 ). 

Preprocessing of single-cell RNA-seq for lncRNA 

analysis 

The single-cell gene expression matrix and cell type classifica- 
tion were obtained from the original study ( 6 ) and used for 
cell type-specific lncRNA analysis. For tumor cell analysis, we 
performed additional preprocessing to account for the lower 
levels of expression and rate of detection for lncRNAs in indi- 
vidual tumor cells. These cells were often found to have high 

ribosomal RNA content. We determined a cutoff for eliminat- 
ing these cells upon manual investigation of the distribution of 
the rate of undetectable genes and percent of ribosomal RNA.

Identification of TME cell type-specific lncRNAs in 

single-cell RNA-seq 

TME cell type-specific lncRNAs were identified via differen- 
tial expression analysis comparing cell types of interest and all 
other cell types using the marker identification function Find- 
Markers of the Seurat package ( 19 ). Cell specificity of lncR- 
NAs was defined based on lncRNAs that were found to have 
significantly higher expression in a cell type compared to all 
other cell types [false discovery rate (FDR) < 0.001, log fold 

change (FC) > 1, detectable in > 25% cells]. These genes 
were identified as markers of the corresponding cell types.
To further evaluate the potential association of TME cell 
type-specific lncRNAs with patient outcome, survival analy- 
sis was performed using PDAC TCGA (The Cancer Genome 
Atlas) RNA-seq and clinical data ( n = 186) ( 3 ), where lncRNA 

expression was fit to a Cox proportional hazard linear re- 
gression model for disease-free interval (DFI), disease-free sur- 
vival, progression-free interval (PFI) and overall survival (OS).
FDR was estimated using the Benjamini–Hochberg procedure.

Identification of lncRNAs associated with 

mutational status and FOLFIRINOX treatment 

To identify lncRNAs associated with mutational status of 
KRAS or TP53 , or treatment status, a differential expres- 
sion analysis was performed confining to only the tumor cells 
from single-cell RNA-seq data (27 477 cells from 73 sam- 
ples). The FindMarkers function in the Seurat package ( 19 ) 
was used to compare lncRNA expression between tumor cells 
in samples with mutation and those in samples harboring wild 

type (or between FOLFIRINOX-treated and treatment-naïve 
samples in treatment association analysis). To compare with 

bulk RNA-seq data, a similar differential expression analysis 
was performed using edgeR ( 20 ) (WUSTL, n = 84; TCGA,
n = 186). An FDR of 0.05 was used to identify differen- 
tially expressed genes with log 2 FC > 0 as upregulated and 

log 2 FC < 0 as downregulated. Additionally, lncRNAs in chro- 
mosome X that were associated with FOLFIRINOX were re- 
moved due to an imbalance in the representation of male 
and female samples with this treatment. LncRNAs associated 

with mutation or FOLFIRINOX treatment were grouped into 

those identified exclusively via single-cell sequencing data,
bulk sequencing data or both. 

https://www.maherlab.com/pdaclncdb-overview
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To further dissect potential functional contribution of the
ssociated lncRNAs, pathway analysis was performed by ag-
regating single-cell expression for each sample into pseudo-
ulk data, followed by scoring activity of lncRNAs and hall-
ark pathway genes using the combined z -score approach

 21 ). Pathways with the highest Pearson correlation coeffi-
ients (PCCs) to lncRNA signatures were used for annota-
ion. Validation of activity of FOLFIRINOX-associated lncR-
As derived from single-cell analysis was performed by us-

ng RNA-seq data from PDAC primary tumors ( n = 10) and
rganoids ( n = 10) with half naïve and half treated with
OLFIRINOX as obtained from Farshadi et al. ( 22 ). 

valuation of intratumor heterogeneity via analysis 

f tumor subclusters 

e aimed to evaluate intratumor transcriptional heterogene-
ty of PDAC tumor cells using single-cell RNA-seq data via a
umor subcluster analysis at case level. For each individual pa-
ient, tumor cells identified using PDAC tumor markers were
egregated and reprocessed using the Seurat pipeline ( 19 ). Cell
ycle scoring was performed, and single-cell gene expression
as renormalized using the SCTransform procedure, regress-

ng out mitochondrial content, total read count and unique
olecular identifier count, ribosomal content and cell cycle

cores. Principal component analysis and clustering was sub-
equently performed to group tumor cells to distinct clusters
f cells with similar expression profiles (tumor subclusters)
 Supplementary Figure S1A-C ). 

haracterization of tumor subclusters and 

ssociated lncRNAs 

pon identifying case-level tumor subclusters, these tumor
ubclusters were subsequently analyzed using Seurat to iden-
ify genes that were significantly differentially expressed in
ach tumor subcluster compared to other tumor subclus-
ers from the same patient. These genes, including both
rotein-coding genes and lncRNAs, were called tumor sub-
luster deregulated genes. To further understand biological
rocesses altered during tumor cell diversification among
hese subclusters, we first identified genes that are frequently
eregulated during tumor diversification (found in three pa-
ients) regardless of other clinical and pathological variables
 Supplementary Figure S1D and E ). Frequently deregulated
enes were then clustered based on their levels of deregu-
ation (i.e. FCs) across tumor subclusters to identify groups
f genes that exhibited similar alteration patterns during in-
ratumor diversification (denoted as intratumoral gene sig-
atures). Further annotation of intratumoral gene signatures
as performed using a gene set enrichment analysis (GSEA) to

dentify enriched pathways within each gene signature (both
rotein-coding and lncRNA genes), using ClusterProfiler ( 23 )
nd the MSigDB database ( 24 ). Finally, lncRNAs within each
ntratumoral gene signature were characterized to have as-
ociation with the enriched pathways representing the gene
ignature. 

valuation of intratumoral lncRNAs’ association 

ith patient outcome 

ssociation of genes enriched in PDAC tumor subclusters and
urvival outcomes was performed using TCGA data ( n = 175)
 3 ) for bulk RNA-seq and outcomes of disease-specific sur-
ival (DSS), OS, PFI and DFI. Expression of each intratumoral
gene signatures was performed using GSEA, then categoriz-
ing samples with high or low expression using a median cut-
off, testing for associations with survival outcomes using a
chi-squared test, followed by FDR correction to correct for
multiple hypothesis testing. 

Validation analysis of TME lncRNA mark er s and 

intratumoral gene signatures 

To validate lncRNAs associated with TME and intratumor
subclusters, single-cell RNA-seq data from ( 13 ), a re-analysis
of six PDAC studies of single-cell transcriptomes was used. For
TME-associated lncRNAs, 88 lncRNAs specific to cell types
identified in the WUSTL discovery cohort were queried in this
validation dataset for similarities in cell-specific expression af-
ter averaging expression values for each cell type using the
Seurat package ( 13 ,19 ). We additionally used single-nucleus
RNA-seq data from ( 25 ) to validate TME lncRNAs. For TME-
associated lncRNAs, 33 lncRNAs specific to cell types identi-
fied in the WUSTL discovery cohort were queried in this val-
idation dataset for similarities in cell-specific expression after
averaging expression values for each cell type using the Seurat
package ( 13 ,19 ). 

To validate intratumoral lncRNA signatures, a tumor cell
clustering was performed in the Chijimatsu et al. validation
dataset to define tumor subclusters and their associated gene
signatures. These signatures, which represented tumor het-
erogeneity in the validation dataset, were then matched with
intratumor signatures in the discovery cohort via a correla-
tion analysis. More specifically, marker genes for each PDAC
tumor subcluster identified in the Chijimatsu et al. (valida-
tion) dataset were then correlated with intratumoral signa-
tures discovered in the original (WUSTL) cohort after aver-
aging gene expression for each patient (72 samples; 26 561
cells; Supplementary Figure S2A ). Subsequently, each intra-
tumoral gene signature of tumor subclusters in the WUSTL
cohort was matched with a gene signature of tumor sub-
cluster identified in the validation cohort with the maximum
PCC. After assignments, permutation testing for 500 itera-
tions was done to assess statistical significance by analyzing
correlations with gene signatures of tumor subclusters in the
WUSTL cohort and a random set of 500 genes. Empirical
P -values were calculated as the fraction of permuted corre-
lation coefficients greater than the observed correlation be-
tween assigned tumor subclusters, followed by FDR correc-
tion ( Supplementary Figure S2B ). UMAP (uniform manifold
approximation and projection) plots for visualization were
generated for gene sets using the AddModuleScore function
in the Seurat package ( 19 ). 

Results 

Detection of lncRNA expression in tumor and TME 

cell types 

Single-cell transcriptome sequencing allows for the quantifica-
tion of gene expression at the individual cellular level. How-
ever, these data are often sparse with many undetectable genes
(i.e. dropout), due to limited per-cell RNA quantity and se-
quencing depth ( 26 ). We evaluated and compared the detec-
tion levels for lncRNAs across different cell types identified in
the TME of PDAC. For this analysis, we used PDAC single-
cell transcriptome data from a recent publication of 73 multi-
region samples from a cohort of 21 patients with PDAC (Fig-
ure 1 A) ( 6 ). Of all annotated lncRNAs, 56% were expressed

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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Figure 1. Comparison of rate of detection for lncRNA and protein-coding genes in single-cell transcriptome sequencing data in the WUSTL cohort. ( A ) 
UMAP plot of cell types identified in 73 tumor and adjacent normal samples from 21 PD A C patients. ( B , C ) Percentage of lncRNA and protein-coding 
genes detected in single-cell transcriptome sequencing data. ( D ) Percentage of PD A C tumor cells with detectable expression for lncRNAs and selected 
protein-coding cancer genes. 
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lncRNAs identified to be associated with TP53 mutations in 
n this dataset across all cells compared to 93% of all an-
otated protein-coding genes (Figure 1 B and C). Overall, the
etection rate of lncRNAs was lower than that of protein-
oding genes with most lncRNAs only detectable in < 20%
f cells and an average detection rate of 4.95% (compared to
n average detection rate of 18% for protein-coding genes).
s a result, an average of 1001 lncRNAs were detectable in
 1% of cells with several lncRNAs detected at similar lev-

ls to protein-coding genes. These included lncRNAs known
o be highly expressed, such as MALAT1 and NEAT1 (Fig-
re 1 D and Supplementary Figure S3A ). We also observed
hat detection rates for lncRNAs varied by cell types with
uct-like 1 cells showing the highest detection rate (6.3%)
nd acinar cells showing the lowest detection rate (3.4%)
 Supplementary Figure S3A ). Taken together, a significant
umber of lncRNAs were detectable at reliable levels for sub-
equent analyses. 

ncRNAs associated with TME cell types 

he contribution of the TME as a whole to cancer pro-
ression and response to treatments has recently been rec-
gnized ( 15 ). LncRNAs have also been shown to be in-
olved in the TME in PDAC ( 27 ). To understand the land-
cape of lncRNAs in the PDAC TME, we first sought to
uantify the levels of lncRNA expression throughout TME
ell types. As expected, cell type marker analysis identified
 large number of lncRNAs ( n = 111) specific to a subset
f TME cell types that were distinct from the original genes
sed to annotate cell types ( Supplementary Table S1 ). Ex-
mples of known cell-specific lncRNAs that were detected
nclude SMIM25 expressed specifically in macrophages ( 28 )
nd LINC00926 expressed specifically in B cells ( 29 ) (Fig-
re 2 A). Among the top TME cell type-specific lncRNAs were
CAT19 , which was predominantly expressed in endothelial
ells, and LINC01943 in regulatory T cells (Figure 2 A). LncR-
As enriched in fibroblasts included DNM3OS , while those

xpressed specifically in PDAC tumor cells were CASC8 and
RNDE (Figure 2 A). 
Next, we sought to validate cell-specific lncRNAs by us-

ng orthogonal datasets of PDAC single-cell transcriptome
rom recent publications ( 7–13 ). Of the lncRNA markers
rom the original WUSTL cohort, 88 / 111 lncRNAs exhib-
ted expression in the validation cohorts. Several cell types
ad a high degree of overlap for cell-specific lncRNAs in
he validation datasets, such as lncRNAs assigned to PDAC
ells (6 / 8), T cells (9 / 14), B cells (5 / 6), macrophages (4 / 4)
nd fibroblasts (6 / 9), with less overlap for lncRNAs corre-
ponding to endothelial cells (2 / 6), normal ductal cells (7 / 21)
nd islet cells (1 / 2). We found similarities in cell specifici-
ies for many individual lncRNAs, including PCAT19 and
INC01943 (Figure 2 B). The lncRNAs enriched in PDAC
ells, such as CASC8 and CRNDE , were also highly ex-
ressed in ductal type 2 cells in the validation cohort as
hese are the corresponding malignant cell population in this
ataset ( Supplementary Figure S4A ) Moreover, many lncR-
As specific to fibroblasts, such as DNM3OS and DIO3OS ,
ere also expressed in fibroblasts in the validation cohort

 Supplementary Figure S4A ). 
Furthermore, we have analyzed data in ( 25 ), which pro-

led 42 primary PDAC tumors using single-nucleus RNA-
eq. This dataset only profiled the expression of 33 / 111
TME lncRNAs. However, we observed high level of cell-
specific concordance in comparison with the WUSTL cohort
( Supplementary Figure S4B and Supplementary Table S2 ). For
example, validated TME lncRNAs included genes such as
PDAC lncRNAs CASC8 and CRNDE, endothelial lncRNA
PCAT19 and fibroblast lncRNA DIO3OS. Hence, the val-
idation of these lncRNAs across different sequencing plat-
forms and datasets highlights the cell-specific nature of these
genes. 

Lastly, to evaluate the potential clinical significance of cell
type-specific lncRNAs, we performed survival analysis using
bulk RNA-seq data from the TCGA PDAC cohort ( 3 ). Inter-
estingly, we found that 21 tumor and TME cell type-specific
lncRNAs were associated with patient outcome (Figure 2 A).
This included the tumor-specific lncRNA CASC8 and the reg-
ulatory T cell-specific LINC01943 , which are both associated
with poor survival (Figure 2 C–E). The level of expression of
these lncRNAs likely corresponded to the proportion and ac-
tivity of their specific TME lineages. Consequently, this re-
sult is consistent with earlier studies suggesting that high tu-
mor burden or increased regulatory T-cell activity contribute
to tumor progression and are associated with poor survival
( 30 ,31 ). 

LncRNAs associated with mutational status 

We next wanted to evaluate whether single-cell transcriptome
sequencing could enable better identification of lncRNAs as-
sociated with mutational status of KRAS or TP53 , which are
the most frequently mutated genes in PDAC ( 3 ). For each
gene, we performed lncRNA differential expression analysis
comparing PDAC tumor cells between mutant and wild-type
patients. 

Our analysis of TP53 mutational status revealed 245 differ-
entially expressed lncRNAs, including NORAD , NEAT1 and
MALAT1 , which have been shown to be associated with TP53
mutations in prior reports ( 32 ) (Figure 3 A and Supplementary 
Table S3 ). Next, we performed pathway analysis of these
TP53 mutant-associated lncRNAs by correlating lncRNAs
with predefined signatures related to various biological pro-
cesses. This demonstrated a correlation with genes implicated
in KRAS, Notch and mitotic signaling (Figure 3 B) and was
similar to pathway analysis performed using protein-coding
genes ( Supplementary Figure S5A ). 

Next, a similar analysis was performed using bulk RNA-seq
data from the same patient cohort. We found a large discrep-
ancy between TP53 mutant-associated lncRNAs identified us-
ing single-cell data and bulk RNA-seq data. Among genes ex-
pressed in both single-cell and bulk RNA-seq, 233 lncRNAs
were found to be associated with TP53 mutations in only
single-cell data, 140 lncRNAs in only bulk data and 12 lncR-
NAs as detected by both datasets (Figure 3 A). LncRNAs asso-
ciated with TP53 mutation in single-cell data but not in bulk
data tended to be expressed in many TME cell types in ad-
dition to tumor cells such as the established TP53 -associated
lncRNAs NORAD , NEAT1 and MALAT1 (Figure 3 C) ( 32 ).
This suggests that single-cell data enable the delineation of
expression in tumor cells from TME cells, which is obscured
with bulk sequencing data. LncRNAs found to be associated
with TP53 mutation in bulk data only often showed low ex-
pression that is likely not detectable in single-cell data. Lastly,

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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Figure 2. LncRNA markers of TME cells in PD A C. ( A ) Expression of 1 1 1 cell-specific lncRNAs in PD A C tumor and TME cell types identified in the WUSTL 
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both single-cell and bulk data included the lncRNA CASC8 ,
a tumor-specific lncRNA that has been shown to be associ-
ated with p53 signaling in PDAC ( 33 ) and was also identified
via a similar analysis of TCGA PDAC data ( Supplementary 
Figure S5B ). These findings illustrate the ability of single-
cell transcriptome data to refine analysis performed using
bulk sequencing data and allow for the identification of
PDAC cell-specific changes in lncRNAs associated with TP53
mutations. 
In a similar analysis with KRAS mutation, we identified 47 

lncRNAs associated with KRAS mutation ( Supplementary 
Figure S5C and Supplementary Table S4 ). As most patients 
harbored KRAS mutation that also co-occurred with TP53 

mutation, many of the lncRNAs associated with KRAS muta- 
tion also associated with TP53 mutation such as NORAD .
Pathway analysis identified common upregulated pathways 
with TP53 mutations, such as Notch and mitotic signaling, as 
correlated with KRAS mutations ( Supplementary Figure S5C ).

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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LncRNAs associated with FOLFIRINOX treatment 
status 

Treatment with FOLFIRINOX is common in the neoadju-
vant setting for patients with PDA C ( 34 ). However, lncR -
NAs in response to FOLFIRINOX therapy have not been
well established. We performed differential expression anal-
ysis of PDAC tumor cells derived from single-cell transcrip-
tomic data between patients who received FOLFIRINOX and
those naïve to treatment. Due to an imbalance in the represen-
tation of male and female patients in this analysis, we chose
to filter out lncRNAs on the X chromosome. Nevertheless, we
identified several lncRNAs differentially expressed in tumor
cells after treatment, such as SNHG8 and EBLN3P (Figure 3 D
and Supplementary Table S5 ). Subsequent pathway analysis of
lncRNAs derived from single-cell analysis identified metabolic
and DNA repair pathways as upregulated in FOLFIRINOX-
treated cells, which have been implicated in prior work focus-
ing on protein-coding genes ( 22 ) (Figure 3 E). We subsequently
performed a similar analysis using bulk RNA-seq data from
the same patient cohort and identified 36 differentially ex-
pressed genes via both methods ( Supplementary Figure S5D ).
Common lncRNAs identified in both datasets included the
lncRNA SNHG8 , which has been identified in a prior report
as associated with resistance to chemotherapy treatment in
PDAC ( 35 ). 

To validate our list of FOLFIRNOX-associated lncRNAs
in an orthogonal dataset, we analyzed an independent pa-
tient cohort ( 36 ) and validated 67 FOLFIRINOX-associated
lncRNAs ( Supplementary Table S6 ). This includes lncRNAs
upregulated with FOLFIRINOX, such as SNHG7 (average
log 2 FC = 0.22) and EPB41L4A-AS1 (average log 2 FC = 0.29),
and downregulated lncRNAs such as KCNQ1OT1 (average
log 2 FC = −0.42) and PLAC4 (average log 2 FC = −0.25). Due
to discrepancy and lack of cell type annotation, we were not
able to validate all FOLFIRINOX-associated lncRNAs in this
dataset. However, we further analyzed data from a prior re-
port on patient-derived PDAC primary tumor samples and
organoids isolated from patients who received ( n = 5) or did
not receive neoadjuvant therapy ( n = 5) ( 22 ). We found that
while lncRNAs derived using single-cell data that were iden-
tified as up- or downregulated during treatment in the origi-
nal cohort did not show significant expression differences in
PDAC primary tumors, there was a large expression increase
for upregulated lncRNAs in PDAC organoids after FOLFIRI-
NOX exposure ( t -test P -value = 0.051) (Figure 3 F). These
results highlight the strong association between tumor cells
and the set of therapy-associated lncRNAs derived via single-
cell sequencing as these organoids are enriched for PDAC cells
and depleted for components of the TME relative to primary
tumors ( 22 ). 

In summary, our findings identify lncRNAs associated with
FOLFIRINOX treatment in PDAC and demonstrate the utility
of single-cell sequencing to nominate PDAC-derived changes
in the lncRNA landscape during neoadjuvant therapy. 

Identification of lncRNAs associated with 

intratumor heterogeneity 

PDAC is among the most heterogeneous cancer types. Ear-
lier studies have reconstructed substantial intratumor hetero-
geneity represented by tumor subclones with unique muta-
tional signatures within a tumor ( 6 ). Single-cell transcriptome
data allow for an opportunity to identify subgroups of tu-
mor cells with distinct expression profiles (tumor subclusters).
Here, we aimed to understand the contribution of lncRNAs 
to distinct tumor subclusters via tumor subcluster analysis by 
leveraging the original (WUSTL) dataset ( 6 ) for discovery and 

additional independent smaller datasets ( 7–13 ) for orthogo- 
nal validation. To achieve better representation of lncRNAs 
in the WUSTL dataset, we removed tumor cells with a low 

percentage of detectable genes and excessive ribosomal con- 
tent, corrected for cell cycle signaling, renormalized and per- 
formed case-level clustering of tumor cells (see the ‘Materi- 
als and Methods’ section). Our reanalysis identified 99 tumor 
subclusters from 21 patients with 1–7 clusters (mean = 3) per 
patient ( Supplementary Figure S1A ). We observed substan- 
tial spatial heterogeneity in tumor from individual patients 
whose tumor regions often harbored different proportion cells 
representing the tumor subclusters identified in each patient 
( Supplementary Figure S6 ). This highlighted the importance 
of multiregion sequencing to mitigate sampling bias due to 

spatial heterogeneity. 
Tumor subcluster marker analysis identified 9560 genes in- 

cluding 514 lncRNAs differentially expressed in at least one 
subcluster when compared with other subclusters from the 
same patient. Genes frequently deregulated in tumor sub- 
clusters (at least three patients) were then subsequently clus- 
tered based on their levels of deregulation (estimated as 
FC across subclusters). We identified eight commonly dereg- 
ulated subsets of genes including 89 lncRNAs that were 
enriched in signatures of tumor progression and tumor- 
related biological processes, including immune responses, gly- 
cosylation, metabolism, angiogenesis and EMT (Figure 5 A 

and Supplementary Table S7 ). These deregulated gene sub- 
sets defined eight groups of tumor subclusters, each com- 
posed of subclusters from multiple patients with no obvious 
shared clinicopathological features. This suggests that these 
subsets of genes were commonly deregulated and contribute 
to PDAC intratumoral heterogeneity. We herein defined these 
commonly deregulated subsets of genes as intratumoral gene 
signatures. 

Intratumoral lncRNAs are associated with TME 

interactions and tumor-intrinsic cellular processes 

We further characterize the pathways enriched in the intratu- 
moral gene signatures using GSEA of the combined protein- 
coding and lncRNA genes. The largest subset of intratumoral 
genes deregulated across tumor subclusters was enriched in 

immune signatures (WUSTL gene signature 1) whose top en- 
riched gene sets included tumor necrosis factor- α signaling,
T-cell activation and T-cell interaction (Figure 4 A). We found 

24 lncRNAs associated with the immune gene signature in- 
cluding MEG3 , which has been shown to repress regulatory 
T-cell differentiation and immune escape in esophageal cancer 
( 37 ) and is associated with immune infiltrates in glioma ( 38 ).
The lncRNA KCNQ1OT1 was also clustered in this gene set 
and is known to promote immune evasion and malignant pro- 
gression in prostate and colorectal cancers ( 39 ,40 ). Lastly, the 
lncRNA MALAT1 in this gene set has also been implicated in 

mechanisms related to immune evasion in pancreatic cancer 
( 41 ). 

The second largest subset of intratumoral genes was en- 
riched for metabolism and glycosylation pathways (WUSTL 

gene signature 2) whose top enriched signatures included alco- 
hol metabolism and O-linked glycosylation. The deregulated 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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enes in this subset included 26 lncRNAs, among which were
everal lncRNAs known to promote tumor progression such
s XIST and COLCA1 ( 16 ,42 ). Additionally, we also identi-
ed lncRNA FTX , which is known to promote aerobic glycol-
sis and tumor progression in hepatocellular carcinoma ( 43 ).

The third largest subset of intratumoral genes was en-
iched for signatures of angiogenesis (WUSTL gene signature
) whose top-ranked gene sets were cadherin adhesion and
ascular endothelial growth factor signaling pathways. We
dentified 10 lncRNAs associated within the angiogenesis sub-
et including UCA1 , which was previously shown to promote
ngiogenesis in pancreatic cancer ( 44 ). 

The fourth subset of deregulated intratumoral genes was
nriched for gene signatures of EMT (WUSTL gene signature
). We identified 12 lncRNAs associated with EMT including
KILA , which has been known to promote EMT in liver can-

er ( 45 ), LINC00842 ( ELIT-1 ), a known activator of trans-
forming growth factor- β (TGF- β)-mediated EMT ( 46 ), and
CRNDE , which has been demonstrated to promote aggressive
tumor phenotypes including EMT in multiple cancers ( 47 ). 

Lastly, we found a subset of intratumoral deregulated
genes enriched for the signature of oxidative phosphorylation
(WUSTL gene signature 5), whose members included eight
lncRNAs. Additionally, two small subsets of intratumoral
genes were found to be associated with peptidase activity
(WUSTL gene signature 6) and response to calcium (WUSTL
gene signature 7), respectively. Several lncRNAs were included
in these gene signatures, including HOXA-AS2 (associated
with peptidase activity) ( 48 ) and HOTAIRM1 (associated
with calcium handling) ( 49 ). In summation, we identified eight
PDAC intratumoral gene signatures that are independent of
clinicopathological features, with seven containing lncRNAs
correlated with biologically relevant pathways representing
tumor-intrinsic biology and interactions with the TME. 
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relevant associations between PDAC tumor subclusters and 
PD A C intratumoral gene signatures are associated 

with patient outcomes 

Next, we wanted to assess the clinical significance of lncRNAs
associated with intratumoral heterogeneity. As prior work
has delineated an association between subtypes of PDAC and
outcomes ( 4 ), we sought to define any relationships between
the intratumoral gene signatures identified in the WUSTL co-
hort with clinical outcomes using TCGA data (see the ‘Ma-
terials and Methods’ section). Analysis of intratumoral gene
signatures and various survival outcomes found a statisti-
cally significant relationship between WUSTL intratumoral
gene signatures 3 (angiogenesis), 4 (EMT) and 5 (oxidative 
phosphorylation), and DSS, OS and PFI in PDAC patients 
(Figure 5 A). This suggests that a subset of tumor subclus- 
ters enriched for these signatures likely represent more ag- 
gressive tumor cell subpopulations. In fact, prior studies have 
shown that patients whose tumors are enriched for EMT 

markers demonstrated poor prognosis ( 4 ). Individual Kaplan–
Meier (KM) curves further established this association be- 
tween these tumor subclusters and poor prognosis (Figure 5 B 

and Supplementary Figure S7 ). Hence, we identified clinically 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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Figure 6. Evaluation of intratumoral lncRNAs and gene signatures in additional PD A C datasets. ( A ) River plots of the correlation between intratumoral 
gene clusters in the original dataset (WUSTL) and those identified in validation cohorts (Valid) exhibiting maximum PCC between marker genes and 
significant P -value after permut ation testing . W idth of connections is proportional to the PCC. ( B ) UMAP plot of activity of hallmark EMT signature genes 
(left) and WUSTL EMT gene cluster (cluster 4) (center), and correlation plot of the score for the two (right). 
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atient outcomes, highlighting the role for their correspond-
ng lncRNAs in determining prognosis. 

rthogonal evidence of intratumoral lncRNAs and 

heir associations with TME and tumor-intrinsic 

ellular processes 

o further validate our findings of lncRNAs associated with
ntratumoral heterogeneity in PDAC, we used an orthogo-
al dataset consisting of six previously published single-cell
ranscriptomic analyses of PDAC ( 7–13 ). Tumor subcluster
nalysis was performed in the prior report and was used to
uery lncRNAs associated with tumor diversification. By ana-
yzing the correlation of intratumoral genes in this orthogonal
ataset, we were able to find that intratumoral gene signatures

dentified in the WUSTL cohort exhibited strong correlation
nd statistical significance with gene signatures of tumor sub-
lusters in the validation (Valid) dataset (see the ‘Materials
and Methods’ section) (Figure 6 A and Supplementary Figure 
S2A and B ). 

As an example, the EMT gene signature (WUSTL gene
signature 4) demonstrated a strong positive correlation
(PCC = 0.75) with gene signatures of tumor subcluster 6 in
the validation cohort (Valid cluster 6), which were also en-
riched for canonical EMT signaling genes (Figure 6 B). In an-
other example, the glycosylation–metabolism gene signature
(WUSTL gene signature 2) exhibited the strongest association
(PCC = 0.86) with gene signature of tumor subcluster 1 in
the validation cohort (Valid cluster 1), which was enriched
for metabolism-related signaling pathways and a robust cor-
relation ( Supplementary Figure S8A ). Finally, the angiogenesis
gene signature (WUSTL gene signature 3) showed positive cor-
relation (PCC = 0.87) with the gene signature of tumor sub-
cluster 2 in the validation cohort (Valid cluster 2) that was also
enriched for cadherin signaling ( Supplementary Figure S8B ).
In summary, our findings demonstrate that PDAC intratumor

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad055#supplementary-data
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heterogeneity and the associated intratumoral lncRNAs repre-
sent universal features of tumor progression and interactions
with the TME. 

Discussion 

In this study, we presented a characterization of lncRNAs in
PDAC TME and intratumor heterogeneity using single-cell
transcriptomic data. While the level of expression of lncRNAs
is typically lower than that of protein-coding genes, a signif-
icant number of lncRNAs were detectable in the single-cell
RNA-seq data used in this study. This allowed us to identify
novel lncRNA markers of TME cell types, as well as lncRNAs
associated with intratumor heterogeneity and tumor-intrinsic
processes. 

The expression of lncRNAs was found to be highly cell
type specific. Our analysis utilizing single-cell RNA-seq data
revealed cell-specific lncRNA markers seen in orthogonal
datasets, including those that have been characterized in the
literature and can be queried using our resource PDACLncDB.
For example, PCAT19 was found to be enriched in endothelial
cells, which has been implicated in regulating the switch from
quiescence to proliferation in these cells upon vessel injury
( 50 ). As fibroblasts are known to be important components of
the TME in pancreatic cancer, we identified several lncRNAs
enriched in these cell types. These include DNM3OS , which
has been demonstrated to participate in TGF- β signaling in
lung fibroblasts and contribute to pulmonary fibrosis ( 51 ). In
addition, the lncRNA CRNDE was identified as enriched in
PDAC tumor cells, and studies have shown it to be upregu-
lated in PDAC and associated with poor prognosis due to its
role in cancer cell proliferation and apoptosis ( 47 ). Due to cell-
specific expression, the level of TME-specific lncRNAs could
represent the proportion and activity of the corresponding cell
type. However, we also identified tumor-specific lncRNAs as-
sociated with patient outcome that were known to drive tu-
mor progression, such as CASC8 and UCA1, suggesting the
potential of our analysis to identify functionally significant
lncRNAs. 

The ability to establish the cellular identity of genes repre-
sents a major advantage of single-cell sequencing data com-
pared with bulk sequencing data. This is exemplified by our
discovery of tumor-intrinsic associations between lncRNA ex-
pression and TP53 mutations using single-cell data that were
obscured in bulk transcriptome data. For example, by con-
fining our analysis to tumor cells in single-cell transcriptome,
we identified the lncRNA NORAD and its association with
TP53 mutations. Earlier studies have showed that NORAD is
a downstream target of TP53 and acts as a tumor suppressor
to maintain genome stability ( 32 ). This is consistent with our
result showing NORAD upregulation in TP53 mutant PDAC
cells, suggesting an alternative mechanism of genome stability
maintenance. Additionally, pathway analysis of lncRNAs that
were correlated with TP53 mutations included KRAS signal-
ing, which has been described as an early mutation in pan-
creatic cancer progression ( 52 ), Notch signaling, which has
been described to elicit crosstalk with TP53 signaling ( 53 ),
and mitotic signaling, indicating a failure of cell cycle ar-
rest that has been described as associated with these muta-
tions ( 54 ). Results from both single-cell and bulk sequenc-
ing datasets showed a robust upregulation of the lncRNA
CASC8 , which is a PDAC-specific lncRNA and has been de-
scribed as implicated in TP53 signaling and proliferative path-
ways in PDAC through an interaction with H19, miR-671 and 

SMAD7 ( 33 ). 
Similar to mutational association analysis, our tumor- 

intrinsic analysis of FOLFIRINOX-associated lncRNAs re- 
vealed novel genes such as SNHG8 to be increased in PDAC 

cells, which is consistent with reports of its role in chemosensi- 
tivity to gemcitabine in PDAC ( 35 ). However, lncRNAs iden- 
tified in a prior report using bulk sequencing ( 22 ), such as 
TMEM51-AS1 , AC020656.2 , AL365181.2 and AL365181.3 ,
demonstrated relatively weaker differential expression. Cor- 
related pathways with single cell-derived lncRNAs demon- 
strated an association with DNA repair and metabolic path- 
ways. Prior work focusing on protein-coding genes in PDAC 

has shown a similar increase in DNA repair and alterna- 
tive metabolism signaling genes upon FOLFIRINOX treat- 
ment ( 22 ). As a proof of concept, we showed the utility of 
single-cell analysis to separate FOLFIRINOX-treated from 

treatment-naïve PDAC organoids in a validation dataset based 

on lncRNA expression profiles. Future studies profiling lncR- 
NAs from larger cohorts of PDAC cells exposed to FOLFIRI- 
NOX treatment will be needed to verify these findings. Collec- 
tively, these results highlight the advantage of single-cell anal- 
ysis to delineate previously underappreciated tumor-intrinsic 
alterations of lncRNAs in response to TP53 inactivation and 

FOLFIRINOX treatment that can be further explored mech- 
anistically in functional studies using our resource. 

Our final analysis of tumor subclusters revealed widespread 

intratumor heterogeneity and diversification based on con- 
sistent changes in PDAC tumor cells across patient samples 
and validated across various PDAC datasets. These mecha- 
nisms of heterogeneity involved altered activity of common 

oncogenic pathways, including immune responses and EMT.
Through a joint analysis of protein-coding genes and lncR- 
NAs, we were able to discover and associate lncRNAs com- 
monly deregulated during intratumor diversification with var- 
ious oncogenic pathways. These include the lncRNA MEG3 ,
which was associated with genes involved in immune and in- 
flammatory signaling. This is consistent with prior reports on 

the role of MEG3 in esophageal cancer to decrease expres- 
sion of FOXP3 and subsequently regulatory T-cell differentia- 
tion and immune escape ( 37 ). Another lncRNA in this gene set 
that was uncovered was MALAT1 , which has been associated 

with increased expression of PD-L1 expression in PDAC via 
METTL3 ( 41 ). We identified a PDAC gene signature enriched 

for metabolism and glycosylation pathways, which included 

the lncRNA FTX and is consistent with reports of FTX and 

its role in regulating expression of carbohydrate metabolism 

genes such as PPAR γ , leading to increased aerobic glycoly- 
sis in hepatocellular carcinoma ( 43 ). EMT signaling was also 

found to be enriched in a subset of PDAC tumor subclusters 
and associated with a subset of intratumoral lncRNAs. The 
lncRNAs LINC01615 and LINC00842 were both detected 

in this signature, similar to recent reports of their associations 
with EMT genes through SIPA1 and TGF- β signaling, respec- 
tively ( 46 ,55 ). Moreover, testing of these genes with survival 
outcomes in PDAC patients identified a statistically significant 
association between high EMT signaling and poor progno- 
sis that was independent of clinicopathological features, sug- 
gesting a role for this biological pathway and its correspond- 
ing lncRNAs in driving aggressiveness in PDAC. This is simi- 
lar to prior reports on quasi-mesenchymal subtypes of PDAC 

showing high expression of mesenchymal markers and asso- 
ciations with poor outcomes ( 4 ). In addition, other pathways 
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ere found to be commonly associated with PDAC intratumor
eterogeneity, including angiogenesis and oxidation phospho-
ylation, which both also demonstrated significant associa-
ions with patient survival. Prior literature has found a poor
rognostic association between protein-coding genes associ-
ted with angiogenesis and PDA C outcomes ( 56 , 57 ), as well
s data showing that oxidative phosphorylation drives PDAC
ells toward a cancer stem cell phenotype, which is known
o be associated with aggressive disease and poor prognosis
 58 ,59 ). The lncRNAs associated with intratumor diversifica-
ion collected in our resource can aid in further mechanistic
nd functional characterizations of their roles in diverse and
linically important tumor processes. 

In summary, we utilized single-cell transcriptomic data from
DAC patients coupled with bulk transcriptomic, genomic
nd clinical data to comprehensively characterize the lncRNA
andscape in this disease. In doing so, we identified lncR-
As associated with the TME, TP53 mutations, FOLFIRI-
OX treatment and intratumoral heterogeneity. In addition,
ur findings highlight the utility of single-cell sequencing to
scribe lncRNA alterations to particular cell types and nomi-
ate potential mechanisms of action. These results contained
n PDACLncDB will serve as a resource to inform future work
n identifying the biological roles of these lncRNAs and their
ontributions to PDAC. 

ata availability 

he lncRNAs associated with the TME, TP53 mutations,
OLFIRINOX treatment and tumor subclusters are avail-
ble at the PDACLncDB resource ( https://www.maherlab.
om/pdaclncdb-overview ). All data analyzed during this study
re included in the following published articles and their sup-
lementary information files ( 3 , 6 , 13 ). 
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