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Assessing phenotype order in 
molecular data
Ludwig Lausser, Lisa M. Schäfer, Lyn-Rouven Schirra, Robin Szekely, Florian Schmid & 
Hans A. Kestler   

Biological entities are key elements of biomedical research. Their definition and their relationships are 
important in areas such as phylogenetic reconstruction, developmental processes or tumor evolution. 
Hypotheses about relationships like phenotype order are often postulated based on prior knowledge 
or belief. Evidence on a molecular level is typically unknown and whether total orders are reflected in 
the molecular measurements is unclear or not assessed. In this work we propose a method that allows 
a fast and exhaustive screening for total orders in large datasets. We utilise ordinal classifier cascades 
to identify discriminable molecular representations of the phenotypes. These classifiers are constrained 
by an order hypothesis and are highly sensitive to incorrect assumptions. Two new error bounds, which 
are introduced and theoretically proven, lead to a substantial speed-up and allow the application to 
large collections of many phenotypes. In our experiments we show that by exhaustively evaluating all 
possible candidate orders, we are able to identify phenotype orders that best coincide with the high-
dimensional molecular profiles.

Assessing the correspondence between observable phenotypes and their underlying molecular background is 
a challenging task in molecular biology. Even for pairwise comparisons it is not straight forward to confirm 
hypothesised relations in high-dimensional marker representations.

This becomes even more evident for higher order relations among multiple phenotypes. In this case, local 
events and global processes might be confused as they both can lead to the same pattern of observable pheno-
types. While local - pairwise - events might be reflected by any type of pairwise differences, an overall connecting 
pattern is required for global processes. An example, for such higher level relations are ordinal phenotypes of type 

 phenotype phenotype phenotype1 2 3 as they might occur in developmental processes1–4, like embryogenesis5, 
phylogenetic reconstruction6–8 or diagnostic stagings or gradings9–12. Their observable representations suggest an 
order of the phenotypes (), which might lead to hypotheses on a connecting “ordinal” relation or process on a 
molecular level (Fig. 1B). Providing evidence for these hypotheses is quite challenging due to the high dimension-
ality of molecular profiles. Being defined for univariate categorical variables, the concept of ordinality can be 
embedded in many different ways in a multivariate real-valued feature representation. There might also be several 
ordinal relations that coexist in parallel.

In the research field of ordinal classification usually, a known order is used to improve classification perfor-
mance. The assumption is that the given order between the classes (phenotypes) can be mapped to the given rep-
resentation and hence also holds in the feature space. In this work, we instead propose a method that can check 
whether the reflection is provided, by elaborating a performance-based criterion for detecting and comparing 
ordinal structures in multivariate feature representations. We present an algorithm (CASCADES) that allows for 
systematic and exhaustive screens through the search space of all phenotype orders. It is applicable for extract-
ing a small set of candidate orders from a feature representation that fulfils a minimal generalisation ability of a 
predictive model. Based on supervised classification, our method uses the canonical paradigm for learning rela-
tionships between raw uninterpreted feature representations and semantically meaningful phenotypes (classes, 
categories, concepts, etc.)13–15. Utilising feature representations and class memberships these techniques allow 
the extraction of phenotype-specific patterns and the construction of phenotype separating boundaries. In this 
way, classifiers identify characteristics of phenotypes or even learn the key attributes of their concepts. Mainly 
designed for discrimination the learning processes of classification algorithms often neglect the semantic rela-
tionships among classes. Standard training algorithms would neither request nor reconstruct such dependencies 
explicitly16–18.
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For this reason, we focus on ordinal classifier cascades19 of binary base classifiers. They are a specialisation 
of general decision lists20–22. A predefined order of phenotypes constrains the learning algorithm of an ordinal 
classifier cascade. Initially designed for guiding the learning process, we showed that wrong assumptions on the 
class order can lead to severely decreased detection rates of an ordinal classifier cascade23.

In our approach (Fig. 1), we separate the training and evaluation of binary base classifiers from the construc-
tion of the classifier cascade. For the training, no order information is used, and each base classifier is trained 
independently. But the assumed phenotype order defines the evaluation sequence of these pairwise base classifi-
ers. In each step of the evaluation a feature space region is labelled as decision region for a specific class, and the 
remaining space stays unlabelled. If the order is wrong, then samples of classes that are later in the order already 
lie within this region, whereas if it reflects the order they lie within the unlabelled region. Although trained only 
pairwise, the base classifiers show good performance when used to distinguish between a class and all following 
classes in the order.

Here, we utilise this susceptibility as a clear cut criterion for discriminating between class orders that allow a 
high generalisation ability or not. We provide theoretical upper bounds on the class-wise sensitivities of ordinal 
classifier cascades, which would enable the proposed algorithm to scale up to large collections of phenotypes. The 
combination of the pairwise training scheme and these bounds lead to a complexity reduction, as the number 
of base classifier trainings, in a single train-test experiment, for n classes is reduced from (n − 1)n! to (n − 1)n, 
and the number of cascade constructions and trainings is in the worst case n! but decreases by the number of 
cascades that do not pass this bound. We could show the utility of our method to identify reflected orderings in 
experimental evaluations on artificial data and gene expression profiles of developmental and ageing phenotypes.

Results
We evaluated the ability of the CASCADES algorithm to detect reflected orders in feature space based on artificial 
and existing gene expression datasets (see Methods). For our analysis a linear support vector machine (SVM)18 
was chosen as a base classifier for the ordinal cascades due to its superior performance23. The SVM was imported 
from the LIBSVM library24. Its cost parameter was fixed to a value of one.

The performance of the ordinal cascades as well as their base classifiers were evaluated in 10 × 10 
cross-validation (CV) experiments25. The 10 × 10 CV experiments were repeated for all class orders (| |! experi-
ments) and the performance was measured in terms of minimal class-wise sensitivity. All classification experi-
ments were performed with help of the TunePareto software26.

Figure 1.  Assessment of phenotype order in molecular data (four phenotype/class example). (A) (Data): 
The data consists of a set of molecular measurements labelled with their phenotype names. (B) (Hypothesis): 
Is an ordinal relation on the phenotypes reflected in feature space? A trend in observable characteristics of 
phenotypes often induces hypotheses about ordinality on their molecular background. Its confirmation requires 
a reflection in the corresponding feature representation. (C) (Analysis): The analysis incorporates four different 
steps and evaluates which hypotheses are reflected in the specific feature representation. First, for all pairwise 
combinations binary base classifiers are trained in a pairwise manner. Second, for each possible order a cascade 
is built using the previously trained base classifiers. Third, the performance of these ensemble classifiers is 
analysed. The cascade classifier analyses each sample in a stepwise manner. For each base classifier it holds that 
if the sample belongs to its first class it is labelled and if not it is transferred to the next classifier. By doing so, 
regions of the feature space are defined and labelled dependent on the order of the base classifiers’ first class. 
Finally, a set of possible candidate cascades that show a good performance measured by the class-wise minimal 
sensitivity is returned.
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Artificial datasets.  We performed experiments on three different kinds of artificial datasets, two of them 
reflect an ordered sequence of sample clouds in the feature space (d1 and d2) and one does not (d3) (Supplementary 
Fig. S1). Each dataset comprises | | = 10  classes (i = 1, …, 10) of 100 samples. The instances of class y are drawn 
independent and identically distributed from a normal distribution ~ sdx x( , )y  in dependence of a class spe-
cific centroid my ∈ ℝ2. The standard deviation sd was identical for all classes. Experiments were performed for 
standard deviations sd ∈ {0.1, 0.2, …, 1.0}.

The analysis on the simple artificial datasets show that our method can distinguish between phenotype orders 
that are reflected and are not reflected in the two dimensional data. The ordinal assumption is imposed by a com-
mon increase in both features. The results for sd = 0.2 are given in Table 1. It can be seen that for d1 and d2 the 
correct order and its inverse are returned. All other possible orders show a minimal class-wise sensitivity lower 
than 50%. For d3 (non-ordinal) no order passed the threshold of 50%.

We additionally analysed the performance in dependency of the standard deviation of the artificial data 
clouds. For the dataset d1 (linear) and d2 (curved) the sensitivities under the correct assumption decline with 
increasing standard deviations (Supplementary Fig. S2). The corresponding bounds lie above the real sensitivities. 
For the wrong order, the sensitivity of at least one class drops. In the given example the sensitivities of classes y1 to 
y5 and the corresponding bounds are mainly identical to those of the correct class order but largest changes can be 
observed for classes y6 and y7. For the non-ordinal dataset d3 the minimal class-wise sensitivity is zero independ-
ent of the standard deviation (Supplementary Fig. S2).

For each dataset and each setting, all 10! ≈ 3.6⋅106 possible class orders are screened and the number of 
remaining class orders is reported (Supplementary Fig. S3). Datasets d1 and d2 show comparable results. Our 
method returned at most four candidate cascades for each experiment. With increasing standard deviation the 
distinction of classes became harder. Candidate cascades could only fulfil lower sensitivity thresholds t. The 
bounds of all rejected cascades predicted minimal sensitivities below 0.5. With lower thresholds the chance of 
finding more than two candidate cascades increased. As expected, no candidates were proposed for dataset d3 
(non-ordinal). Evaluating the real minimal class-wise sensitivities of the remaining cascades revealed that addi-
tional candidates were rejected.

Gene expression datasets.  Furthermore, experiments on existing gene expression data were performed 
(see Methods). We chose ordinal multi-class expression data for which the classes correspond to specific points 
in time of a process. In three datasets (d4, d5, d7) the classes correspond to developmental stages of Drosophila 

Id Name Ordinal Cascades Bound Min Sens.

d1: linear
(10!−2 cascades rejected)

(a) y y1 10… 

100% 100%

(b) …y y10 11 

100% 100%

d2: curved
(10!−2 cascades rejected)

(a) y y1 10… 

100% 100%

(b) 
 y y10 1… 100% 100%

d3: non-ordinal
(all cascades rejected) — — —

d4: Drosophila melanogaster
(21 cascades rejected)

(a)   embryo larva pupa adult 94.4% 89.4%

(b)   adult pupa larva embryo 72.3% 72.3%

(c)   adult pupa embryo larva 71.0% 71.0%

d5: Danio rerio
(117 cascades rejected)

(a)    adult adult embryo embryo embryo2 1 3 2 1 85.0% 85.0%

(b)    adult adult embryo embryo embryo2 1 3 1 2 85.0% 85.0%

(c) adult adult embryo embryo embryo2 1 1 2 3   

54.7% 54.7%

d6: Human muscle adaptation
(20 cascades rejected)

(a) age age age age1 2 3 4  

73.1% 62.5%

(b)   age age age age1 2 4 3 73.1% 62.5%

(c) age age age age3 4 2 1  

50.5% 46.1%

(d)   age age age age3 4 1 2 50.5% 31.6%

d7: Caenorhabditis elegans, stages
(116 cascades rejected)

(a) stage stage stage stage stage1 2 3 4 5   

91.7% 91.7%

(b) stage stage stage stage stage5 4 3 2 1   

75.0% 66.7%

(c)    stage stage stage stage stage1 2 3 5 4 58.6% 58.6%

(d)    stage stage stage stage stage5 4 3 1 2 50.0% 50.0%

d8: Caenorhabditis elegans, time
(10!−1 cascades rejected) (a) t t t t t t t t t t1 2 3 4 5 6 7 8 9 10        

66.7% 66.7%

d9: Various cancer cell lines
(all cascades rejected) — — —

Table 1.  Evaluation of the CASCADES algorithm on the artificial datasets d1, …, d3 and the real datasets d4, …, 
d9. Screening experiments were performed for sensitivity thresholds t ∈ {1.00,0.95, …, 0.50}. Each screening 
experiment comprises all | |! class orders. All candidate cascades that pass a minimal sensitivity threshold 
bound t ≥ 0.5 are reported. The bound and the real minimal class-wise sensitivities are reported. The highest 
bounds and minimal class-wise sensitivities are marked in boldface.
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melanogaster1, Danio rerio2, and Caenorhabditis elegans4. Additionally, d7 was used with a different labelling. 
This further labelling was not based on stages but based on the point in time at which the sample was taken. The 
further dataset in our analysis d6 comprises transcriptome samples of human muscles3. The data was categorised 
into four classes according to the age (in years) of the participants. For all these datasets it is expected that the 
assumed order based on the order of points in time is reflected within the expression profiles. To test our method 
(CASCADES algorithm) on real data for which no order is assumed, we included gene expression profiles from 
cell lines that are derived from 9 different cancer tissue types27.

The results of the real datasets are shown in Table 1. As the performance of the cascade depends on a sensitiv-
ity bound which depends only on the performance of the independent base classifiers, first those candidate cas-
cades are reported that pass a sensitivity bound t ≤ 0.5. For the temporal ordinal datasets d4–d8, the CASCADES 
algorithm rejected at least 83.3% of all candidate cascades. No candidate passed the CASCADES algorithm for 
the non-ordinal dataset d9. The number of candidates is further depleted by analysing the minimal class-wise sen-
sitivity of the full cascades. For dataset d4, the highest minimal class-wise sensitivity (89.4%) was achieved by the 
correct class order. It was followed by the correct inverse class order (72.3%) and an incorrect class order (71.0%).

Three candidates passed the CASCADES algorithm for dataset d5. The highest minimal class-wise sensitivity 
was achieved by two candidate cascades (85.0%). Both reflect the inverse class order. The first one corresponds to 
the correct inverse class order. The second one assumes an incorrect class order  embryo embryo embryo3 1 2. 
The third candidate achieved a minimal class-wise sensitivity of 54.7%. A general division between the adult and 
embryo samples can be observed. The order might be explained by the duration between the different states. 
Whereas all three embryonic samples cover a range of 10 days after birth, the first adult class comprises samples 
taken at month 3 and the adult2 class is 1–2 years after birth. As a result the order assumption 

 embryo embryo embryo1 2 3 might only be reflected ambiguously.
Four class orders passed the CASCADES algorithm on dataset d6. Two of these candidates dropped out due to 

a minimal class-wise sensitivity lower than 50.0%. The remaining two achieved minimal class-wise sensitivities of 
62.5%. One of these class orders corresponds to the correct class order. The second one proposes a partially con-
sistent class order ( age age4 3). As age3 and age4 comprise 10 years each and age1 and age2 20 years it can be argued, 
similar to the cascades of d5. The two classes age3 and age4 might be too similar under the order assumption lead-
ing to comparable results.

For dataset d7, the minimal class-wise sensitivity of the correct class order outperformed the performance 
of other candidate cascades (91.7%). All other candidate cascades achieved a minimal class-wise sensitivity of 
at most 66.7%. Only one candidate cascade passed the CASCADES algorithm when analysed on the level of 
points in time (d8). The correct class order gained a minimal class-wise sensitivity of 66.7%, which was achieved 
for class t2. All other classes achieved class-wise sensitivities of at least 80.0%. Especially this dataset shows that 
our analysis does not aim at improving the classification performance as much as possible, but rather finding the 
order that outperforms other orders and this independent of a specific performance, as long as the performance 
is better than 50%.

Discussion
Ordinal relations between phenotypes are often defined on a semantic level. These relations are assumed to be 
reflected in a given feature representation without evaluating whether these assumptions hold. It might be the 
case that independent causes lead to ordinal phenotype characteristics or that the order is not reflected in the 
chosen feature space because the measured features are not responsible for the observed order.

In this work, we present ordinal classification as an example of a supervised learning task that incorporates 
semantic relations in the training process of classification models. By constraining the learning process, ordinal 
classification results in a restricted model class, which is no longer able to separate an arbitrary landscape of 
classes. This property is used to falsify wrong assumptions on the dependencies of the classes and the chosen 
feature space.

We provide two theoretical upper bounds on the minimal class-wise sensitivity, which are utilised for acceler-
ating the training of ordinal classifier cascades and allow an exhaustive evaluation of all possible class orders. In 
this way, ordinal classifier cascades are used as an explorative tool to screen for unknown ordinal dependencies. 
In our experiments, we give examples for up to 10 different classes resulting in the evaluation of over 3.6 million 
class orders. Although our algorithm requires pairwise training of the ensemble members, both the bounds and 
the algorithm are independent of the chosen type of base classifier, the binary training type and might be trans-
ferred to alternative ensembles.

Our experiments on the artificial data showed that only if any ordinality is reflected in the feature space pos-
sible sets of candidate orders are returned. If there is no ordinal sequence reflected no cascade passes the bound 
of 0.5. No order was detected for non-ordinal datasets. Always the correct order and its reverse were found as 
dominant order if cascades were returned for the artificial ordinal datasets.

For all datasets independent of the chosen standard deviation, at least 80% of all candidate cascades could be 
rejected due to minimal class-wise sensitivities lower than 50%. However, although the procedure can reconstruct 
the correct class order for all datasets, alternative ordinal class structures might be detected. In our experiments, 
these alternatives differ from the assumed class order in the position of the last two classes. A reason might be the 
lower number of constraints for these classes.

For biological applications, we evaluated our method on observable ordinal phenotypes for which a reflection 
in gene expression levels can be assumed. For three different model organisms we analysed developmental stages 
characterised by their morphology (D. melanogaster)1, age (Danio rerio)2 and number of C-lineage cells (C. ele-
gans)4. For C. elegans also the sampling time points were used in the analysis.
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Our screening procedure allowed to reveal ordinal structures within the gene expression profiles of all three 
model organisms. The hypothesised time relation or its inverse is always included in the set of best-performing 
cascades. In three out of those four datasets the hypothesised relation dominates with a performance gap towards 
all other cascades. This strongly indicates a reflection of these orderings in the profiles.

For the Danio rerio dataset (d5) two cascades rank first before a performance gap. There is a swap observed 
between the two youngest embryo phenotypes. This might be caused either by a data intrinsic reason that those 
classes are not distinct enough, as staging by days post fertilization has been shown to exhibit high variation in 
growth rate28, or by the technical aspect of the lower number of constraints for later classes.

In contrast to the developmental processes, of which the order of stages is tightly regulated by a genetic pro-
gram5,29, ageing is influenced by multiple factors30. Nevertheless we resulted in comparable results for the dataset 
that measures age related gene expression changes. On the human muscle adaptation dataset 91.7% of all candi-
date orders were rejected. Among the remaining two candidates the expected order and only one false positive 
can be found. For non-ordinal phenotypes, as given by the collection of distinct cancer cell lines, no candidate 
cascades were observed. This indicates that ordinal relations are not a common phenomenon among multiple 
phenotypes.

Our method can, however, not only be used to confirm proposed hypotheses but also to explore the feature 
space for potential ordinal structures. This might become relevant if the relation is not easily accessible due to 
sampling. In surgery, for example, histologically distinguishable tissue regions can be defined in the same biopsy 
or in single-cell experiments various cell types are extracted from one sample. Within these feature spaces our 
procedure allows for screening of total ordinal cascades and additionally of ordinal sub-cascades embedded in 
a larger set of non-ordinal classes. It can hence be used to screen for intrinsic molecular ordinal structures and 
hypothesis relational axes, which might not be detected in a standard multi-class analysis.

Methods
We will use following notation throughout the description of the methodology behind the algorithm. An object 
is represented by a vector of real-valued measurements x = (x(1), …, x(n))T ∈ ℝn. Each object is assumed to be cat-
egorisable in one out of | | ≥ 2 predefined classes ∈y  , where = =

| |y{ }i i 1   denotes the space of all class labels. 
The general classification task will be to identify a function mapping c, a classifier, that allows the accurate predic-
tion of the class labels of new unseen objects   → = … .| |c y y: { , , }n

1
As quality measures, we utilise the conditional prediction rates of c. These estimate the probability of classifier 

c to predict the class label yj for samples of class yi based on a set of test samples i . In its basic version, a condi-
tional prediction rate can be calculated as


 

∑| =
| | ∈

=p y( ) 1 ,c j i
i x

c x y[ ( ) ]

i
j

where [⋅] denotes the indicator function. Other (re-) sampling strategies might be used for determining condi-
tional prediction rates. However, they will not alter the theoretical characteristics discussed in this work. We 
distinguish between three types of conditional prediction rates: 1. sensitivities if yi = yj and ∈y y,i j  , 2. confusions 
if yi ≠ yj and ∈y y,i j  , 3. external rates if ∉yi  and ∈yj .

While (class-wise) sensitivities and confusions build the standard quality measures of a confusion matrix31, 
the external rates describe the classifiers behaviour on foreign classes. They will especially be of interest when 
dealing with different label spaces.

In the basic multi-class classification scenario, a classifier is typically adapted in a data-driven training proce-
dure based on a set of training samples = =

| |yx{( , )}tr i i i 1
tr  . The basic assumption of this scenario are pairwise dis-

tinct classes 
≠ … ≠ | |y y ,1  which can be separated in the chosen feature space. In the ordinal classification 

scenario it is additionally assumed that the labels in   are totally ordered … .| | y y(1) ( )  In this context, the 
symbol y i( ) denotes the ith class of the order. We utilise the symbol  to indicate that the order relationship is only 
known for the label space. It is unclear, if this relationship is reflected by the chosen measurements. Nevertheless, 
ordinal classifiers rely on this assumption. The order of the classes is utilised for guiding the construction of the 
decision regions. It is provided as additional information to the training algorithm.

Ordinal classifier cascades.  In the following, we will discuss ordinal classifier cascades of type

 → … .+ +{ }h y y y: , , , (1)i j
n

i i j, ( ) ( 1) ( 1)

The cascade hi,j can be seen as a late-aggregation multi-classifier system32, where indices ≤ ≤ < | |i j1   indi-
cate the base classifiers of the corresponding ensemble  = …c c{ , , }i j( ) ( ) . The members of the ensemble are 
designed for separating two neighboured classes c(i):ℝn → {y(i),y(i+1)}.

An ordinal cascade will be called a full cascade if it is designed for predicting all labels of the label space  . Full 
cascades will be denoted by = | |−h h1, 1. Other ordinal cascades will be called partial cascades.

The fusion strategy of an ordinal cascade can be interpreted as a sequence of logical conjunctions of its base 
classifiers
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A scheme of this architecture can be found in Fig. 2. For classifying a sample x, the ensemble members c(k)(x) 
are evaluated sequentially according to the assumed order of classes. If a base classifier c(k)(x) predicts its first class 
label y(k), the procedure stops and hi,j(x) = y(k). If it predicts class label y(k+1) the sample is passed to the subsequent 
base classifier c(k+1). This fusion scheme implies following three characteristics on hi,j:

	 1.	 Each class y(k), i < k < j + 1 can be predicted by two base classifiers.
	 2.	 The lowest class y(i) can only be predicted by the first classifier c(i)(x). The highest classes y(j+1) can only be 

predicted by the last classifier c(j)(x).
	 3.	 A sample x will only be passed to a base classifier c(k)(x), 1 < k ≤ j, if all its predecessors c(l)(x), l < k, decide 

for their second class y(l+1).

Training algorithms for ordinal classifier cascades mainly focus on the training of the base classifiers. In the 
following, we utilise a pairwise inductive training, in which the training set  k( ) of a base classifier c(k) consists of 
the samples of classes y(k) and y(k+1)

= | ∈ ∈ .+{ }y y y y yx x( , ) ( , ) , { , } (3)k tr k k( ) ( ) ( 1) 

In a previous study, this type of training showed to induce the highest susceptibility to incorrect assumptions 
on the class order23.

Upper bounds on class-wise sensitivities.  The structural properties of the ordinal classifier cascade 
allow for the construction of upper limits on their empirical class-wise sensitivities. These bounds are based on 
the training of the cascade’s base classifiers and postulated in Theorem 1. Although this theorem is formulated for 
full cascades, the corresponding bounds can directly be applied for partial cascades.

Theorem 1 Let h denote an ordinal classifier cascade   → = … | |{ }h y y: , ,n
(1) ( )

 with base classifiers 
= … | |−c c{ , , }(1) ( 1)E Y . Let furthermore i( )  be a non-empty set of samples of class y(i). Then the sensitivity of h for y(i) 

is limited by

| ≤ |p y p y( ) ( ) (4)h i i c i i( ) ( ) ( ) ( )i( )
 

 | ≤ | .
< +p y p y( ) min ( ) (5)h i i

k i c k i( ) ( ) ( 1) ( )k( )

Proof. The theorem is a direct consequence of Lemmata 1 and 2 (see Supplementary).
Theorem 1 states that the sensitivities of an ordinal classifier cascade h can be upper bounded by several 

conditional prediction rates of its base classifiers. For class y(i), the sensitivity of the cascade is limited by the 
corresponding sensitivity of its ith base classifier c(i) (Eq. 4). It is also bounded by the predictions of all previous 
base classifiers c(k), k < i (Eq. 5). A sample of class y(i) will not be classified correctly, if it is classified as y(k) by c(k). 
The sensitivity of the cascade for class y(i) is therefore also limited by the conditional prediction rate of c(k) for pre-
dicting class label y(k+1) for samples of class y(i). A detailed theoretical proof can be found in the Supplementary.

Detection of ordinal class structures.  Ordinal classifier cascades can be used for detecting wrong 
assumptions about the ordinality of the real class structures. Due to their susceptibility, these classifiers will fail 
when the real feature structures reflect a different class order or no class order at all. In a screening process, 

Figure 2.  Structure of a full ordinal classifier cascade h. The cascade consists of a fixed order of base classifiers 
c(i), ≤ < | |i1 . A sample x is passed sequentially from one base classifier to another. If a base classifier c(i)(x) 
predicts class label y(i), the procedure stops and the ensemble h predicts y(i). Otherwise the ensemble h predicts 

| |y( ) .
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ordinal classifier cascades can be used for revealing unknown ordinal class structures. We have proposed the 
minimal class-wise sensitivity p* of an ordinal classifier cascade as a measure of the correctness of the assumed 
class order = | .≤ ≤| |

⁎p p ymin ( )i h i i1 ( ) ( )XY  A sensitivity threshold t ≤ p* is used for determining whether an ordinal 
class structure can be assumed or not. The criterion can be evaluated for each order of the classes in  .

The findings of Theorem 1 allow an alternative evaluation of this criterion. As a direct consequence of 
Theorem 1, the value of p* can again be upper bounded by conditional prediction rates of the base classifiers

 ∀ ≤ | ≤ |⁎i p p y p y: ( ) ( ) (6)h i i c i i( ) ( ) ( ) ( )i( )

∀ ≤ | ≤ | .
< +

⁎i p p y p y: ( ) min ( ) (7)h i i
k i c k i( ) ( ) ( 1) ( )k( )

 

Ordinal classifier cascades that are based on wrong assumptions about the ordinality of the classes can there-
fore be sorted out by the training of the corresponding base classifiers. A graphical illustration describing this 
sorting out based on a four class example and dependent on Eqs 6 and 7 can be found in Supplementary Fig. S4.

Coupled to a pairwise inductive training of the base classifiers (Eq. 3) the bounds of Theorem 1 can reduce 
complexity of screens for ordinal structures. As the training of a base classifier c(i) is only based on the samples of 
classes y(i) and y(i+1), it is no longer dependent on the position of the base classifiers within the cascade h. Cascades 
trained on different orders of   will therefore consist of common building blocks. The exhaustive training of all 
| |!  cascades, each consisting of | | − 1 base classifiers, can therefore be accelerated by precalculating and evalu-
ating all possible  | | − | |( 1)  base classifiers ci,j:ℝn → {yi, yj}. Note that symbols yi, yj and ci,j no longer rely on an 
assumed class order.

In any case, the complexity of the exhaustive evaluation is mainly determined by the training and evaluation 
complexity of the base classifiers. A comparison of the precalculation scheme and a de novo calculation of all 
cascades in dependency on the numbers of classes | |  can be found in Table 2. For the presented numbers we 
assume an evaluation via a single training-test split. For three classes, the de novo strategy already requires twice 
the number of base classifier trainings and evaluations than the precalculation strategy. For ten classes, the de 
novo strategy trains more than 3⋅107 base classifiers while the precalculation scheme only demands 90 base clas-
sifiers. The number of base classifier trainings and evaluations might be increased by a constant factor if resam-
pling strategies are applied.

The following quality measures are needed for the application of Theorem 1:

= | = | .FC p y SC r p y( ) and ( ) ( ) (8)i j c i i i j c j r, ,i j i j, ,
 

Here, FCi,j denotes the class-wise sensitivity of ci,j for predicting its first class label yi. The term SCi,j(r) denotes the 
conditional prediction rates of ci,j for samples of class yr that are classified as yj. Both quantities can be precalcu-
lated and memorised for all binary base classifiers (Table 3).

The CASCADES algorithm.  We propose the recursive enumeration scheme Y C y tCASCADES( , , , )i  for the 
exhaustive training of all orders of   (Fig. 3). It can be seen as a filter routine that rejects ordinal cascades that will 
not achieve a minimal class-wise sensitivity t ≤ p* according to the bounds of Theorem 1. The remaining cascades 
will be returned as a set of candidates .

The CASCADES algorithm is based on the evaluation of an extended confusion table as shown in Table 3. It 
will replace the training procedure of each base classifier (training-test split or resampling strategy) by looking up 
| | − k  conditional prediction rates, where k is the base classifiers position within the cascade. As there exist 




| |

+




k 1
 possibilities of constructing subcascades (prefixes) of k base classifiers, at most  | | = ∑





| |

+




=

| |f k
k

( ):
1k 2

 

comparisons are required in a worst case scenario. Nevertheless, this number will rapidly break down by utilising 
early stopping criteria.

Number of 
Classes

Number of Base Classifiers

Precalculation De Novo Training

| |  ( 1)| | | |−  ( 1) !| | | |−

2 2 2

3 6 12

4 12 72

5 20 480

10 90 >3⋅107

20 380 >4⋅1019

30 870 >7⋅1033

Table 2.  A comparison between the precalculation strategy and a de novo calculation is given. Number of base 
classifiers required for an exhaustive training of all | |!  ordinal classifier cascades is shown. The table gives the 
number of base classifiers that are required to be trained and evaluated within the screening process based on a 
single training-test training.

https://doi.org/10.1038/s41598-019-48150-z


8Scientific Reports |         (2019) 9:11746  | https://doi.org/10.1038/s41598-019-48150-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

A single cascade is represented as an ordered vector of class labels … ∈ .| |y y( , , )(1) ( ) CY
 Each candidate cascade 

is constructed sequentially. It is extended by a new class label in each recursive call of the algorithm. The construc-
tion stops, if the performance measures of the current base classifier falls under the chosen threshold t. In this 
case the candidate cascade is rejected.

The sequential extension of a partial cascade h1,k−1 improves the runtime of the exhaustive search. If the kth 
(candidate) base classifier does not fulfil the minimal criteria, all full ordinal cascades that utilise h1,k as prefix can 
be withdrawn. This corresponds to | | − −k( 1)! full ordinal cascades. A single early stopping will reduce the 
number of lookups by at least | | −f k( ) .

The algorithm is initialised with the full set of labels  , an empty set of candidate cascades  = ∅, the chosen 
threshold t and yi = ∅. The parameter yi will later on indicate the class label selected in the previous recursion. In 
each recursion, the class labels ∈yj  are tested as possible extensions of the candidate cascades in . If FCi,j ≥ t 
and ∀ ∈ ≥y r t: SC ( )r i j,  the current base classifier ci,j fulfils the bounds on p*. In this case, class label yj can be 
added to the current candidate cascade and can be removed from the set of remaining labels  . The next base 
classifier will be chosen by a recursive call CASCADES( y\{ }j , r, yj, t). If the current base classifier does not fulfil 
the minimal criteria, the corresponding (partial) candidate cascades are erased and an empty set ∅ is returned. 
All suitable candidate cascades are collected at the end of the recursive call. Although the algorithm CASCADES 
rejects cascades with too low minimal class-wise sensitivities, the remaining candidates are not guaranteed to 
fulfil the minimal criterion t ≤ p*. Each of the final candidates must therefore be cross-checked by an evaluation 
of the full cascade. CASCADES can directly be applied for the evaluation of partial ordinal cascades. By replacing 
the initial set of class labels   by a subset ′ ⊂  , the algorithm will evaluate all orders of the class labels in ′ .

Datasets.  An overview of the characteristics of all datasets can be found in Supplementary Table S1. The 
datasets d5–d9 were collected from the gene expression omnibus repository33 (GSE13371, GSE47881, GSE2180, 
GSE32474) and processed using the robust multi-array average (rma) normalisation as implemented in the affy 
package34. For d4 the processed data was downloaded.

Linear dataset (d1).  For a first series of experiments, the centroid of the ith class yi is chosen as = i im ( , )y
T

i
. In 

this way, the class centroids lie on a line.

Curved dataset (d2).  For the second dataset, the class centroids were chosen depending on their predecessors. 
= = + +

− −
m m m u m um ( , ) ( , )y y y

T
y i y i

T(1) (2) (1) (1) (2) (2)
i i i i i1 1

, where  .~u u, (0 5, 2)i i
(1) (2) . As a starting point =m (0, 0)y

T
0

 
was chosen. This dataset has a curved shape.

ci,j(x)
First Class 
FCi,j Second Class SCi,j(r)

class i class j yi y1 … yr …
| |y

     

yi yj |p y( )ci j i i,


|p y( )ci j j r,




     

Table 3.  Training table of binary classifiers ci,j in a multi-class scenario (| | > 2 ). Each classifier ci,j is trained on 
the samples of classes ∈y y,i j  and evaluated on the samples of all classes in . The sensitivity of ci,j on detecting 
samples of yi is denoted by FCi,j. The conditional prediction rates of ci,j of predicting class yj for samples of class yr is 
given by SCi,j(r).

Figure 3.  CASCADES algorithm for an exhaustive screening of all orders of class labels ∈y  . The function 
parameters are the set of class labels  , a set of candidate cascades , the threshold t and yi which specifies the 
class label that was selected in the previous recursion.
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Non-ordinal dataset (d3).  The third artificial dataset is designed to be non-ordinal. The centers of the classes are 
arranged on a predefined two dimensional grid in the range [1, 4]2 (Supplementary Table S2).

Drosophila melanogaster (d4).  The drosophila dataset generated by Arbeitman et al.1 consists of gene expression 
profiles of the fruit fly Drosophila melanogaster. These profiles consist of 4028 measurements and were collected 
at different points in time during the life cycle of the model organism. They can be categorised according to the 
developmental stages of Drosophila melanogaster: .  embryo larva pupa adult  Overall the dataset contains pro-
files for 31 embryos, 10 larvae, 18 pupae and 8 adults. We use the natural order of the developmental stages as 
ordinal class labels for our experiment.

Danio rerio (d5).  The dataset collected by Toyama et al.2 consists of gene expression profiles of the pineal glands of 
zebrafish (Danio rerio). The expression profiles were collected at five different time points:  embryo embryo embryo1 2 3
 adult adult ,1 2  where embryo1-embryo3 were collected 3, 5 and 10 days after birth and adult1 and adult2 were collected 
at an age of 3 months and 1–2 years. The dataset comprises 12–15 samples for each class. The age of the samples will be 
used as class order.

Human muscle adaptation (d6).  Philips et al.3 have compared the transcriptome of human muscle cells before 
and after 20 weeks of supervised resistance-exercise training (RET). The corresponding dataset consists of paired 
gene expression profiles. For our experiments, the data was categorised into four classes according to the age (in 
years) of the participants: .  age age age age1 2 3 4  The class labels denote age intervals of [20; 40) years (18 sam-
ples), [40; 60) years (38 samples), [60; 70) years (16 samples) and [70; 80) years (16 samples). In order to avoid 
overoptimistic results, we ensured that the profiles of a subject are not used for training and testing the classifier 
simultaneously.

Caenorhabditis elegans (d7 and d8).  Baugh et al.4 analysed the influence of the homeodomain protein PAL-1 of the 
C-lineage-specific gene regulatory network in the model organism C. elegans. They gathered gene expression data of 
samples of wild-type embryos and mutant embryos with additional C blastomeres, as well as on samples of mutants 
without any C blastomeres. For our experiments we used data of the C-cell-free organisms, taken at 10 points in time 
after the 4-cell-stage of the embryo. We labelled these samples in two different ways. In the first experiment (d7) the 
samples were labelled according to the developmental stages proposed in the original publication: 

   stage stage stage stage stage ,1 2 3 4 5  where 0 and 23 minutes samples were merged in the stage1 class, 41 and 53 min-
utes samples in stage2, and samples taken at 66, 83 and 101 minutes after the 4-cell stage in the class stage3. stage4 only 
consists of samples taken at 122 minutes, and stage5 contains time points 143 and 186 minutes. In the second experi-
ment (d8), the points in time were analysed solely: .        t t t t t t t t t t1 2 3 4 5 6 7 8 9 10

Various cancer cell lines (d9).  Pfister et al.27 collected gene expression profiles from cell lines that derived from 
9 different cancer tissue types (breast (15 samples), central nervous system (18 samples), colon (21 samples), leu-
kemia (18 samples), melanoma (26 samples), non-small cell lung (26 samples), ovarian (21 samples), prostate (6 
samples), renal (23 samples)). In contrast to d1–d8, the classes of this dataset are not assumed to fulfil an ordinal 
relationship as each group originates from a different tissue type: line1 ≠ line2 ≠ line3 ≠ line4 ≠ line5 ≠ line6 ≠ line
7 ≠ line8 ≠ line9.

Data Availability
The drosophila dataset is available from http://flygenome.yale.edu/Lifecycle/. The other datasets are available 
from the GEO repository https://www.ncbi.nlm.nih.gov/gds: GSE13371, GSE47881, GSE2180, GSE32474.

References
	 1.	 Arbeitman, M. N. et al. Gene expression during the life cycle of Drosophila melanogaster. Sci. 297, 2270–2275, https://doi.

org/10.1126/science.1072152 (2002).
	 2.	 Toyama, R. et al. Transcriptome analysis of the zebrafish pineal gland. Dev. Dyn. 238, 1813–1826, https://doi.org/10.1002/dvdy.21988 

(2009).
	 3.	 Phillips, B. E. et al. Molecular networks of human muscle adaptation to exercise and age. PLOS Genet. 9, 1–15, https://doi.

org/10.1371/journal.pgen.1003389 (2013).
	 4.	 Baugh, L. R. et al. The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Dev. 

132, 1843–1854, https://doi.org/10.1242/dev.01782 (2005).
	 5.	 Long, C., Li, W., Liang, P., Liu, S. & Zuo, Y. Transcriptome comparisons of multi-species identify differential genome activation of 

mammals embryogenesis. IEEE Access 99, 1–1, https://doi.org/10.1109/ACCESS.2018.2889809 (2018).
	 6.	 Kearney, P. E., Hayward, R. B. & Meijer, H. Evolutionary trees and ordinal assertions. Algorithmica 25, 196–221, https://doi.

org/10.1007/PL00008274 (1999).
	 7.	 Guénoche, A. Ordinal properties of tree distances. Discret. Math. 192, 103–117, https://doi.org/10.1016/S0012-365X(98)00068-5 

(1998).
	 8.	 Kannan, S. & Warnow, T. Tree Reconstruction from Partial Orders. SIAM J. on Comput. 24, 511–519, https://doi.org/10.1137/

S0097539793252195 (1995).
	 9.	 Buchholz, M. et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24, 6626–6636, 

https://doi.org/10.1038/sj.onc.1208804 (2005).
	10.	 Feldmann, U. & Steudel, I. Methods of ordinal classification applied to medical scoring systems. Stat. Medicine 19, 575–586, 

doi:10.1002/(SICI)1097-0258(20000229)19:4<575::AID-SIM357>3.0.CO;2-A (2000).
	11.	 Bender, R. & Grouven, U. Ordinal logistic regression in medical research. J. Royal Coll. Physicians Lond. 31, 546–51 (1997).
	12.	 Cardoso, J. S., da Costa, J. F. P. & Cardoso, M. J. Modelling ordinal relations with svms: An application to objective aesthetic 

evaluation of breast cancer conservative treatment. Neural Networks 18, 808–817, https://doi.org/10.1016/j.neunet.2005.06.023 
(2005).

	13.	 Bishop, C. Pattern Recognition and Machine Learning (Springer, New York, 2006).

https://doi.org/10.1038/s41598-019-48150-z
http://flygenome.yale.edu/Lifecycle/
https://www.ncbi.nlm.nih.gov/gds
https://doi.org/10.1126/science.1072152
https://doi.org/10.1126/science.1072152
https://doi.org/10.1002/dvdy.21988
https://doi.org/10.1371/journal.pgen.1003389
https://doi.org/10.1371/journal.pgen.1003389
https://doi.org/10.1242/dev.01782
https://doi.org/10.1109/ACCESS.2018.2889809
https://doi.org/10.1007/PL00008274
https://doi.org/10.1007/PL00008274
https://doi.org/10.1016/S0012-365X(98)00068-5
https://doi.org/10.1137/S0097539793252195
https://doi.org/10.1137/S0097539793252195
https://doi.org/10.1038/sj.onc.1208804
https://doi.org/10.1016/j.neunet.2005.06.023


1 0Scientific Reports |         (2019) 9:11746  | https://doi.org/10.1038/s41598-019-48150-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	14.	 Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of Statistical Learning (Springer, New York, 2001).
	15.	 Webb, A. R. Statistical Pattern Recognition, 2nd edn (John Wiley & Sons Ltd., Chichester, 2002).
	16.	 Fix, E. & Hodges, J. L. Discriminatory analysis: Nonparametric discrimination: Consistency properties. Tech. Rep. Project 21-49-

004, Report Number 4, USAF School of Aviation Medicine, Randolf Field, Texas (1951).
	17.	 Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees. The Wadsworth statistics/probability 

series (Chapman and Hall/CRC, Boca Raton, 1984).
	18.	 Vapnik, V. N. Statistical Learning Theory (John Wiley & Sons Ltd., New York, 1998).
	19.	 Frank, E. & Hall, M. A simple approach to ordinal classification. In Raedt, L. D. & Flach, P. (eds) Machine Learning: ECML 2001 - 

12th European Conference on Machine Learning. Proceedings, vol. 2167, 145–156, https://doi.org/10.1007/3-540-44795-413 
(Springer, Berlin, 2001).

	20.	 Rivest, R. L. Learning decision lists. Mach. Learn. 2, 229–246, https://doi.org/10.1007/BF00058680 (1987).
	21.	 Kestler, H. A., Lausser, L., Lindner, W. & Palm, G. On the fusion of threshold classifiers for categorization and dimensionality 

reduction. Comput. Stat. 26, 321–340, https://doi.org/10.1007/s00180-011-0243-7 (2011).
	22.	 Meyer, L. H. et al. Early Relapse in ALL Is Identified by Time to Leukemia in NOD/SCID Mice and Is Characterized by a Gene 

Signature Involving Survival Pathways. Cancer Cell 19, 206–217, https://doi.org/10.1016/j.ccr.2010.11.014 (2011).
	23.	 Lattke, R., Lausser, L., Müssel, C. & Kestler, H. A. Detecting ordinal class structures. In Schwenker, F., Roli, F. & Kittler, J. (eds) 

Multiple Classifier Systems (MCS 2015), vol. 9132, 100–111, https://doi.org/10.1007/978-3-319-20248-89: (Springer International 
Publishing, Cham, 2015).

	24.	 Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Transactions on Intell. Syst. Technol. 2, 27:1–27:27, 
https://doi.org/10.1145/1961189.1961199 (2011).

	25.	 Japkowicz, N. & Shah, M. Evaluating Learning Algorithms: A Classification Perspective (Cambridge University Press, New York, 
2011).

	26.	 Müssel, C., Lausser, L., Maucher, M. & Kestler, H. A. Multi-objective parameter selection for classifiers. J. Stat. Softw. 46, 1–27, 
https://doi.org/10.1007/1179085329 (2012).

	27.	 Pfister, T. D. et al. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray 
analysis and correlation with indenoisoquinoline sensitivity. Mol. Cancer Ther. 8, 1878–1884, https://doi.org/10.1158/1535-7163.
MCT-09-0016 (2009).

	28.	 Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. Normal table of postembryonic zebrafish development: 
Staging by externally visible anatomy of the living fish. Dev. Dyn. 238, 2975–3015, https://doi.org/10.1002/dvdy.22113 (2009).

	29.	 Dong, P. & Liu, Z. Shaping development by stochasticity and dynamics in gene regulation. Open Biol. 7, 170030, https://doi.
org/10.1098/rsob.170030 (2017).

	30.	 Rodríguez-Rodero, S. et al. Aging Genetics and Aging. Aging Dis. 2, 186–195, http://www.aginganddisease.org/EN/abstract/
article_147277.shtml (2011).

	31.	 Zuo, Y.-C. et al. Predicting peroxidase subcellular location by hybridizing different descriptors of Chou’ pseudo amino acid patterns. 
Anal. Biochem. 458, 14–19, https://doi.org/10.1016/j.ab.2014.04.032 (2014).

	32.	 Lorena, A. C., de Carvalho, A. C. P. L. F. & Gama, J. M. P. A review on the combination of binary classifiers in multiclass problems. 
Artif. Intell. Rev. 30, 19–37, https://doi.org/10.1007/s10462-009-9114-9 (2009).

	33.	 Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. 
Nucleic Acids Res. 30, 207–210, https://doi.org/10.1093/nar/30.1.207 (2002).

	34.	 Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinforma. 20, 
307–315, https://doi.org/10.1093/bioinformatics/btg405 (2004).

Acknowledgements
The research leading to these results has received funding from the German Research Foundation (DFG, SFB 
1074 project Z1, and GRK 2254 HEIST), and the Federal Ministry of Education and Research (BMBF, Gerontosys 
II, Forschungskern SyStaR, id 0315894 A; e:Med, SYMBOL-HF, id 01ZX1407A; conFirm, id 01ZX1708C) all to 
H.A.K.

Author Contributions
L.L. designed the algorithm and conceived the experiments, L.M.S. and L.-R.S. performed data acquisition and 
conducted the experiments, L.L., L.M.S. and L.-R.S. analysed the results, L.L., R.S. and F.S. implemented the 
algorithm, L.L. and F.S. drafted the manuscript, H.A.K. supervised and guided the study. L.L., L.M.S., L.-R.S. and 
H.A.K. wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-48150-z.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-48150-z
https://doi.org/10.1007/3-540-44795-413
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/s00180-011-0243-7
https://doi.org/10.1016/j.ccr.2010.11.014
https://doi.org/10.1007/978-3-319-20248-89
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/1179085329
https://doi.org/10.1158/1535-7163.MCT-09-0016
https://doi.org/10.1158/1535-7163.MCT-09-0016
https://doi.org/10.1002/dvdy.22113
https://doi.org/10.1098/rsob.170030
https://doi.org/10.1098/rsob.170030
https://doi.org/10.1016/j.ab.2014.04.032
https://doi.org/10.1007/s10462-009-9114-9
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1038/s41598-019-48150-z
http://creativecommons.org/licenses/by/4.0/

	Assessing phenotype order in molecular data

	Results

	Artificial datasets. 
	Gene expression datasets. 

	Discussion

	Methods

	Ordinal classifier cascades. 
	Upper bounds on class-wise sensitivities. 
	Detection of ordinal class structures. 
	The CASCADES algorithm. 
	Datasets. 
	Linear dataset (d1). 
	Curved dataset (d2). 
	Non-ordinal dataset (d3). 
	Drosophila melanogaster (d4). 
	Danio rerio (d5). 
	Human muscle adaptation (d6). 
	Caenorhabditis elegans (d7 and d8). 
	Various cancer cell lines (d9). 


	Acknowledgements

	Figure 1 Assessment of phenotype order in molecular data (four phenotype/class example).
	Figure 2 Structure of a full ordinal classifier cascade h.
	Figure 3 CASCADES algorithm for an exhaustive screening of all orders of class labels .
	Table 1 Evaluation of the CASCADES algorithm on the artificial datasets d1, …, d3 and the real datasets d4, …, d9.
	Table 2 A comparison between the precalculation strategy and a de novo calculation is given.
	Table 3 Training table of binary classifiers ci,j in a multi-class scenario ().




