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Abstract

Background: High-throughput sequencing of an organism’s transcriptome, or RNA-Seq, is a valuable and versatile new
strategy for capturing snapshots of gene expression. However, transcriptome sequencing creates a new class of alignment
problem: mapping short reads that span exon-exon junctions back to the reference genome, especially in the case where a
splice junction is previously unknown.

Methodology/Principal Findings: Here we introduce HMMSplicer, an accurate and efficient algorithm for discovering
canonical and non-canonical splice junctions in short read datasets. HMMSplicer identifies more splice junctions than
currently available algorithms when tested on publicly available A. thaliana, P. falciparum, and H. sapiens datasets without a
reduction in specificity.

Conclusions/Significance: HMMSplicer was found to perform especially well in compact genomes and on genes with low
expression levels, alternative splice isoforms, or non-canonical splice junctions. Because HHMSplicer does not rely on pre-
built gene models, the products of inexact splicing are also detected. For H. sapiens, we find 3.6% of 39 splice sites and 1.4%
of 59 splice sites are inexact, typically differing by 3 bases in either direction. In addition, HMMSplicer provides a score for
every predicted junction allowing the user to set a threshold to tune false positive rates depending on the needs of the
experiment. HMMSplicer is implemented in Python. Code and documentation are freely available at http://derisilab.ucsf.
edu/software/hmmsplicer.
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Introduction

RNA-Seq, which applies high-throughput sequencing technol-

ogy to an organism’s transcriptome, has revolutionized the study

of RNA dynamics within a cell [1]. Millions of short read

sequences allow both the presence and abundance of transcripts to

be ascertained. RNA-Seq has been shown to have a better

dynamic range for gene expression levels than microarrays [2] and

enables scientists to view the transcriptome at single nucleotide

resolution. Thus this technique combines the genome-wide scale of

microarrays with the transcript variant detection power of

Expressed Sequence Tags (ESTs).

RNA-Seq reads fall into two main classes: reads with full-length

alignments to the genome and reads that span exon-exon

junctions. Current sequencing runs produce tens of gigabases

and it is likely that terabase sequences will be a reality in the near

future. This massive output necessitates rapid techniques to

analyze the data in a reasonable amount of time. For full-length

alignments of sequence reads back to a reference genome, recent

tools that rely on the Burrows-Wheeler Transform have yielded

significant improvements in speed and accuracy. These include

BWA [3], SOAPv2 [4] and Bowtie [5].

The more difficult RNA-Seq challenge is aligning reads that

bridge exon-exon junctions since they by definition form gapped

alignments to the genome with very short flanking sequence.

These exon-exon junction reads reveal the exact location of

splicing events, an intricate process wherein the intron in a pre-

mRNA transcript is removed and the flanking exons are joined

together. This tightly regulated process is coordinated by the

spliceosome, a complex of many small-nuclear ribonuceloproteins

(snRNPs) (reviewed in [6]). The spliceosome facilitates nucleophil-

ic attack of the phosphodiester bond at the 59 splice site (59SS) by

the branch point sequence. The 39-hydroxyl at the 59SS then

reacts with the start of the next exon, the 39 splice site (39SS),

ligating the exons and releasing the intron lariat. The branch point

sequence, 59SS and 39SS are defined by short motifs within the

intron sequence. In metazoans, the consensus splice site motifs are

GTRAGT for the first six bp of the intron (59SS) and YAG as the

last 3 bp of the intron (39SS). However, these motifs are extremely

degenerate, leaving just ‘GT-AG’ as fairly reliable splice sites,

found in 98% of known human introns [7]. Although most splicing

in eukaryotic cells is performed by the spliceosome, non-

spliceosomal splicing occurs and can be essential. One well-

characterized example is the splicing of yeast HAC1 and the
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homologous XBP1 in metazoans [8]. In yeast, the transcription

factor HAC1p regulates the unfolded protein response. HAC1p is,

in turn, regulated by unconventional splicing of HAC1 mRNA [9].

This splicing is not accomplished by the spliceosome. Instead, the

protein Ire1p cleaves the HAC1 mRNA in two places and the

resulting edges are ligated with tRNA ligase [10]. In metazoans,

XBP1 is cleaved in a homologous manner, with the non-canonical

splice boundaries CA-AG instead of GT-AG.

During the past decade, there has been a growing appreciation

of the importance of alternative splicing as a mechanism for

organisms to increase proteomic diversity and regulatory com-

plexity (reviewed in [11] and [12]). The model of static exon and

intron definitions yielding a single mRNA transcript and single

protein sequence from each gene has proven overly simplistic. In

reality, alternative splicing, the creation of multiple mRNA

transcripts from a single pre-mRNA sequence by differential

splicing, is extensive in multicellular organisms, increasing with

organismal complexity. Recent RNA-Seq studies suggest that

virtually all multi-exonic human transcripts have alternative

isoforms [13], [14]. The extent of alternative splicing, as well as

the balance between types of alternative splicing (e.g. alternate

59SS versus exon-skipping splicing), differs by organism [15]. The

regulation of splicing in different tissues and developmental stages,

as well as the mechanisms for its regulation, is a subject of ongoing

research [11,16,17]. Therefore, the ability to detect alternative

splice isoforms with accuracy and sensitivity is key to comprehen-

sive RNA-Seq analysis.

Aligning exon-spanning reads to the genome is difficult. Instead

of a single full-length alignment, an algorithm must break a short

read into two even shorter pieces and align each piece accurately.

One early approach to short read splice junction detection was

alignment using existing gene annotations, as done by ERANGE

[18]. While this approach was necessary to align very short reads

(36 nt or less) back to mammalian genomes, it does not address the

question of novel junctions and cannot be used for organisms with

incomplete or inaccurate genome annotations. Another early

approach was to use BLAT [19], a tool developed for the

alignment of longer EST sequence. This method can provide good

results but requires extensive effort by the researcher to post-

process and filter the search results, which could be achieved by

the construction and training of a support vector machine specific

to the organism and dataset [20]. In addition, BLAT searches on

mammalian genomes can be slow.

The current leading algorithm for finding novel junctions in

RNA-Seq data is TopHat [21]. TopHat uses full-length read

alignments to build a set of exon ‘islands’, then searches for short

reads that bridge these exon islands. The strength of this approach

is that the resulting set of putative gene models can be used to

estimate transcript abundance, as in the recently released Cufflinks

software [22]. However, the algorithm must be able to define exon

islands, which can be difficult when the coverage is low or uneven

or when introns are small. While TopHat can find GT-AG, GC-

AG, and AT-AC splice sites under ideal conditions, it does not

extract any other splice sites. As a result, TopHat performs best on

mammalian transcripts with relatively high abundance, but can

stumble in more compact genomes and with non-canonical

junctions.

Recently, several algorithms have been published that match

reads more directly to the genome, including SplitSeek [23],

SuperSplat [24], and SpliceMap [25]. SplitSeek divides the read

into two non-overlapping anchors and initially detects junctions as

places where the two anchors map to different places on a

chromosome (i.e. the two exons with the intron between them),

with no requirement for specific splice sites. These initial junctions

are further supported by reads where only a single anchor maps to

an exon - however, the requirement for at least one read split

evenly across the exon-exon boundary reduces sensitivity in low

coverage datasets and transcripts. Additionally, SplitSeek only

supports ABI SOLiD reads currently. SuperSplat is another

algorithm that reports non-canonical junctions (junctions with

intron edges other than GT-AG, GC-AG, or AT-AC). However,

this algorithm requires both pieces of a read to be exact matches to

the reference sequence so it is not robust against sequencing errors

or SNPs. SpliceMap divides reads in half, aligns each read half to

the genome, then locates the remaining part of the read

downstream within the maximum intron size. However, this

algorithm considers only canonical splice junctions and requires

read lengths of 50 nt or greater. In addition, although SplitSeek,

SuperSplat, and SpliceMap all provide methods to filter the

resulting junctions by the number and types of supporting reads,

none provide a score that predicts the accuracy of a junction.

Here we introduce HMMSplicer, an accurate and efficient

algorithm for finding canonical and non-canonical splice junctions

in short-read datasets. The design of HMMSplicer was conceived

to circumvent the inherent bias introduced by relying upon

previously defined biological information. HMMSplicer begins by

dividing each read in half, then seeding the read-halves against the

genome and using a Hidden Markov Model to determine the exon

boundary. The second piece of the read is then matched

downstream. Both canonical and non-canonical junctions are

reported. Finally, a score is assigned to each junction, dependent

only on the strength of the alignment and the number and quality

of bases supporting the splice junction. The scoring algorithm is

highly accurate at distinguishing between true and false positives,

aiding in novel splice junction discovery for both canonical and

non-canonical junctions. HMMSplicer was benchmarked against

TopHat and SpliceMap. It outperformed TopHat across a range

of genome sizes, but most dramatically in compact genomes and in

transcripts with low sequence read coverage. Compared to

SpliceMap, it performed similarly in a human dataset and

outperformed SpliceMap on an A. thaliana dataset.

Results

Algorithm Overview
An overview of the HMMSplicer algorithm is shown in Figure 1.

Before the HMMSplicer algorithm begins, full-length alignments

to the genome are detected using Bowtie [5] and removed from

the dataset. HMMSplicer begins by dividing the remaining reads

in half and aligning each half to the genome. All alignments for

both read halves are considered autonomously and are not

resolved until the final scoring step. Once a read-half is aligned, a

Hidden Markov Model (HMM) is used to detect the most

probable splice position. The HMM is trained on a subset of read-

half alignments to best reflect the quality and base composition of

the dataset and genome. Next, the remaining portion of the read is

aligned downstream of the exon-intron boundary, completing the

junction definition. Finally, identical junctions are collapsed into a

single junction and all junctions are scored, filtered by score, and

divided by splice-site edges, with canonical (GT-AG and GC-AG)

junctions in one result set and non-canonical edges in a second

result set.

Algorithm parameters
Our first step was to test the assumptions underlying

HMMSplicer’s algorithm by evaluating performance relative to

key parameters: the required read length, the robustness of the

HMM, and the ability to match the second piece of a read. First

HMMSplicer
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we examined the ability of read-halves to seed within a genome by

measuring the fraction of read-halves aligned in the Bowtie read-

half alignment step for various read-half sizes and genome sizes

(Figure 2a). For the human genome, HMMSplicer performs

optimally for reads 45 nt or longer (read-halves of 22 nt or longer),

though shorter reads can be used. Simulation results, described

below, confirm this assessment, showing a higher false positive rate

when aligning 40 nt reads to the human genome. Next, we

validated the robustness of the HMM training. An essential feature

of HMMSplicer is that the HMM used to determine where the

splice occurs within the read is trained from a subset of the input

read set by an unsupervised algorithm. For the HMM training to

be robust, it must train to similar values for an input read set,

regardless of the initial values or the subset of reads used for

training. This was validated using the human read set. Training

sets ranging from 50 to 50,000 read-half alignments were used to

train the HMM with two different sets of initial HMM values. For

the first set of initial values, we used completely even values, i.e. a

50/50 probability of a match or mismatch for each quality score.

For the second set, we used values close to those we expected as

trained HMM values (Table 1). Training for each combination of

training set size and initial value was repeated 10 times with

different random subsets to measure the mean and standard

deviation of the trained values. The results show that the HMM

training converges on similar values regardless of training set size

and initial values. The two most variable parameters are shown in

Figure 2b, all other parameters showed less variability across the

conditions (data not shown). Smaller training sets showed more

variability so a default training set size of 10,000 was selected for

HMMSplicer as sufficient to sample the space. Finally, mapping of

sequences of various sizes within an 80 kbp maximum intron was

analyzed to determine the optimal anchor size (Figure 2c). In the

human genome, for sequences less than 8 nt in length, the most

common result was multiple matches, whereas at 8 nt and above,

a unique, correct match was the most likely result. Based on these

data, the default anchor size was set at 8 nt for the default

maximum intron size of 80 kbp. For compact genomes with

smaller maximum intron sizes, such as the P. falciparum and A.

thaliana datasets below, a shorter anchor size of 6 nt can be

matched uniquely (data not shown).

Benchmark Tests
HMMSplicer’s performance was analyzed on simulated reads

and three publicly available experimental datasets (Tables 2 and

3). The simulation dataset, generated from human chromosome

20, provides a measurement of the number of junctions detected

Figure 1. HMMSplicer pipeline. After removing reads that have full-length alignments to the genome, reads are divided in half and aligned to the
genome (step 1 as defined in the Materials and Methods). The HMM is trained using a subset of the read-half alignments (step 2a). The HMM bins
quality scores into five levels. Although only three levels are shown in this overview for simplification, the values for all five levels can be found in
Table 1. The trained HMM is then used to determine the splice position within each read-half alignment (step 2b). The remaining second piece of the
read is then matched downstream to find the other intron edge (step 3). The initial set of splice junctions then proceed to rescue (step 4) and filter
and collapse (step 5) to generate the final set of splice junctions.
doi:10.1371/journal.pone.0013875.g001

HMMSplicer
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Figure 2. Algorithm parameters. a) Percent of oligos able to map within a genome as a function of oligo size. The solid lines show the
percentages if oligos are able to map up to 50 times within the genome (the value used in HMMSplicer seeding). The dashed lines show the
percentages if a unique match is required. b) HMM training. The values for the two most variable parameters of the HMM are shown here, with the x-
axis representing different training set sizes and initial HMM parameters. The error bars show the standard deviation of ten repetitions of training.
HMMSplicer uses a training subset size of 10,000. c) Effect of size, in bases, for the second piece of the read. The percent of second pieces uniquely
mapping within 80 kbp of the first piece increases as the size of the second piece increases, while the percent of second pieces mapping to multiple
locations decreases.
doi:10.1371/journal.pone.0013875.g002

HMMSplicer
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and the false positive rate at different read lengths and coverage

levels. However, simulation results do not model all the

complexities found in experimental datasets, such as uneven

coverage with a bias towards higher coverage of GC-rich regions,

uneven distribution of sequence transversions, and inaccurate

quality scores [26]. Three experimental datasets were selected

from the NCBI Short Reads Archive (SRA), each representing a

real world challenge. The first experimental dataset, ,80 million

reads from Arabidopsis thaliana, allowed analysis of HMMSplicer’s

performance using a dataset with low quality reads. The next

experimental dataset, ,14 million reads in Plasmodium falciparum,

was used to assess performance in the context of uneven coverage

and high AT content. The final experimental dataset, ,10 million

paired-end reads from Homo sapiens, was used to test HMMSpli-

cer’s performance in a larger metazoan genome. This dataset also

provided a platform for analyzing transcripts with low abundance,

alternative splicing and non-canonical splice sites.

HMMSplicer combines high sensitivity with a low false
positive rate

HMMSplicer was first tested on simulated read sets to

determine its performance in an environment where true and

false positive rates could be definitively measured. For the

simulation, reads from 503 non-overlapping gene models on

human chromosome 20 were generated at varying read lengths

and coverage levels. For an accurate quality model, we used the

error model from a human dataset [27]. In this read set, the

second paired end read was extended to 75 bases, allowing us to

simulate longer reads. The program maq was used to generate

reads of length 40, 45, 50, 55, 60, 65, 70, and 75 bp at 16, 56,

106, 256, and 506 coverage [28]. TopHat was run on the same

simulated dataset for comparison.

HMMSplicer’s false positive rate was low overall, rising with

short reads and high coverage (Table 2). The highest false positive

rate, 8.3% was seen for 40 bp reads at 506 coverage, re-iterating

the conclusion from parameter testing (above) that HMMSplicer

performs ideally in the human genome with reads at least 45 bp

long. At a length of 45 bp, the false positive rate for 506coverage

was 4.2%, while for reads 50 bp or longer the false positive rate

never exceeded 2.5%, with most error rates remaining under 1%.

HMMSplicer was effective at identifying junctions, even at low

coverage levels (Figure 3a). With 50 bp reads at 16 coverage,

HMMSplicer was able to identify more than 40% of all the

junctions in the set (1701 of 4043). At 56 coverage, more than

90% of the junctions were found (3646 of 4043). Higher coverage

levels increase the number of junctions found, and at 506
coverage more than 98% of the junctions are found (3958 of

4043). While TopHat finds similar number of junctions at higher

coverage levels, HMMSplicer finds three times as many junctions

at 16 coverage with reads less than 70 bp long, and more than

50% more junctions with reads 70 or 75 bp long. Seventy-seven

junctions were never detected by either program, even at 506
coverage and 75 bp reads. These junctions either had a

homologous region within the genome or encompassed tiny initial

or final exons that, because the simulated transcripts did not

include UTR regions, had artificially low coverage.

One of HMMSplicer’s strengths is that the algorithm provides

scores for each junction, indicating the confidence of the

prediction. To judge the accuracy of the scoring algorithm,

Receiver Operator Characteristic (ROC) curves were generated

comparing the true positive and false positive rate (Figure 3b). To

measure true and false positive rate, simulation results for all scores

were considered. Predicted junctions that aligned to the correct

source of the simulated read were considered correct, while

predicted junctions that aligned to another location were

considered false. The ROC curves show that the HMMSplicer

scoring algorithm was highly accurate, with the inflection point for

106 coverage and 50 bp reads including 98.7% of the true

junctions and only 6.7% of the false junctions. At the default score

threshold, 99.3% of true junctions and only 13.3% of the incorrect

junctions were included.

HMMSplicer performs well on datasets with low quality
sequence reads

High-throughput sequencing datasets can have high error rates,

however there is still useful data to be gleaned from these datasets.

The first dataset, ,79 million reads, each 50 bp long, in Arabidopsis

thaliana, evaluated the performance of HMMSplicer with variable

quality sequence reads [29]. A. thaliana, a model plant species, has

a genome of 125 million base pairs with ,25,500 protein-coding

genes [30]. The mean exon and intron sizes are 78 bp and 268 bp,

respectively, with an average of 4.5 introns per gene [31].

We analyzed these low-quality reads, using a minimum intron

length of 5 bp, a maximum intron length of 6 kbp, and an anchor size

of 6 bp. The gene models in the most recent release of The

Arabidopsis Information Resource (TAIR9, http://www.arabidopsis.

org) contain introns from 3 bp to 11,603 bp long with 99.9% of

the introns falling between 5 and 6,000 bp. At the default score

Table 1. HMM Parameter Values.

1R2 2R1
1:
high

1: med-
high

1:
medium

1:
med-low

1:
low

2:
high

2: med-
high

2:
medium

2:
med-low

2:
low

Initial Value Set 1 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Initial Value Set 2 0.5 0 0.7 0.7 0.7 0.5 0.4 0.3 0.3 0.3 0.3 0.3

A. thaliana Trained
Values

0.916 0 0.983 0.976 0.971 0.949 0.832 0.271 0.261 0.259 0.259 0.276

P. falciparum Trained
Values

0.938 0 0.942 0.879 0.853 0.786 0.669 0.368 0.334 0.333 0.317 0.281

H. sapiens Trained
Values

0.934 0 0.948 0.925 0.886 0.791 0.605 0.283 0.264 0.258 0.261 0.256

The initial and trained values for the HMM. The first two columns (‘‘1R2’’ and ‘‘2R1’’) show the probability of transitioning from State 1 to State 2 and the reverse. The
probability of transitioning from State 2 to State 1 is fixed at 0 (indicating a 100% probability of remaining in State 2). For each state, the probability of a match at each
quality bin is reported. The initial values were used to validate the HMM. HMMSplicer uses Initial Value Set 2, though the initial values do not impact the final trained
values (see Figure 2b). The trained values are shown for each dataset analyzed. The Human values are the same as those shown in Figure 1, though in more detail.
doi:10.1371/journal.pone.0013875.t001
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threshold, HMMSplicer detected 14,982 junctions, with 95%

(14,217) of the predicted junctions matching TAIR9 annotations

(Figure 4a). The relatively low number of junctions found overall

despite the size of the dataset is likely a result of low read quality.

The low quality also decreases the HMMSplicer scores, causing a

sharper decrease in the number of junctions at higher score

thresholds compared to other datasets (Figure 4a).

TopHat and SpliceMap were also run on the A. thaliana

dataset. TopHat, run with a minimum intron size of 5 bp and a

maximum intron size of 6 kbp, was able to locate only 6,346

junctions, less than half the number found by HMMSplicer, with

91.7% (5,820) of these predictions matching TAIR9 annotations

(Figure 4a). SpliceMap was run with the same 6 kbp maximum

intron size (the minimum intron size is not configurable).

Table 2. Simulation Results.

HMMSplicer TopHat

Read Length Coverage Level # True Positives % False Positives # True Positives % False Positives

40 bp 1 1484 0.7 451 1.1

5 3478 1.3 1858 1.1

10 3835 2.8 2825 1.2

25 3908 4.7 3490 2.0

50 3928 8.3 3630 3.3

45 bp 1 1630 0.2 503 0.2

5 3634 0.8 2422 0.9

10 3861 1.0 3458 1.3

25 3928 2.2 3849 2.0

50 3947 4.1 3901 3.8

50 bp 1 1701 0.2 457 0.7

5 3646 0.3 2619 0.8

10 3893 0.5 3579 1.1

25 3943 1.1 3858 2.2

50 3958 1.6 3908 3.1

55 bp 1 1711 0.3 390 0.8

5 3677 0.5 2697 0.7

10 3898 0.5 3581 1.1

25 3948 1.1 3870 1.8

50 3965 2.5 3915 3.1

60 bp 1 1684 0.1 433 0.9

5 3671 0.3 2629 0.7

10 3906 0.4 3581 0.8

25 3951 0.9 3869 1.5

50 3966 1.0 3930 2.9

65 bp 1 1698 0.1 405 0.7

5 3684 0.4 2609 0.6

10 3904 0.5 3525 0.8

25 3945 1.0 3838 1.8

50 3966 1.3 3928 2.4

70 bp 1 1629 0.1 1038 0.7

5 3626 0.2 3297 1.6

10 3893 0.5 3785 2.2

25 3951 0.7 3931 6.5

50 3960 1.2 3958 12.9

75 bp 1 1613 0.2 943 0.5

5 3613 0.4 3101 0.5

10 3899 0.5 3734 0.8

25 3955 0.6 3939 1.5

50 3966 1.2 3966 2.4

HMMSplicer and TopHat were run on read sets from 40 to 75 bp long at coverage levels from 16 to 506on 503 non-overlapping gene transcripts from Human Chr20.
doi:10.1371/journal.pone.0013875.t002

HMMSplicer
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SpliceMap found 9,438 junctions, 92.8% of which match TAIR9

annotations. Although SpliceMap found more junctions than

TopHat, HMMSplicer found 50% more junctions than Splice-

Map with a higher percentage matching TAIR9 annotations than

either competitor.

HMMSplicer performs well in datasets with uneven
coverage

The P. falciparum genome is fairly compact and AT-rich,

containing approximately 5,300 genes in 23 million base pairs

[32]. In the latest genome annotation (PlasmoDB 6.3, http://

www.plasmodb.org), the average exon size is 890 bp and the

average intron size is 168 bp with an average of 1.54 introns per

gene. Previous research on an earlier release of the genome

annotation indicated that approximately 24% of the gene models

predicted for P. falciparum are incorrect [33]. The malaria research

community has focused on improving the genome annotation, and

the most recent genome annotation release addresses many

incorrect annotations. However, there are still numerous uncon-

firmed gene models with limited or no EST evidence.

The P. falciparum read set was published in the NCBI SRA

following work on the Long March technique [34]. The dataset

downloaded from NCBI SRA contains 14,139,995 reads, each

46 bp long. This dataset has uneven coverage with coverage varying

significantly even within a single transcript. To detect splice junctions

in this dataset, HMMSplicer was run with a minimum intron size of

10 bp, a maximum intron size of 1 kbp and an anchor size of 6 bp.

This range includes 99.6% of the known introns in the current P.

falciparum genome annotation. At the default score threshold,

HMMSplicer identified 4,323 junctions in this dataset, 85.2% of

which overlapped either known gene models or ESTs (Figure 4c).

TopHat found 3,138 junctions in this dataset with 77.7% aligning to

known gene models or ESTs. By re-running TopHat with more

stringent alignment parameters, the percent of confirmed junctions

was boosted to 94.8%, but this resulted in a 71% decrease in the

number of found junctions (885). In contrast, the output of

HMMSplicer can be filtered for more stringent confirmed junction

percentages simply by raising the score threshold. SpliceMap could

not be tested on this dataset because the reads are less than the

minimum 50 nt length required by the algorithm.

Table 3. Datasets.

Accession Number Number of Reads Read Length HMMSplicer time (min) TopHat time (min)

H. sapiens SRX011552
(used for quality model)

N/A 75 N/A N/A

A. thaliana SRX002554 79,106,696 50 326 1162

H. sapiens SRX011550 9,669,944
paired end

45 880 645 ( or 271)

P. falciparum SRX001454 SRX001455
SRX001456 SRX001457

14,139,995 46* 108 188 (or 45)

*The 48-bp reads in the NCBI SRA set have a 2 bp initial barcode that was trimmed, resulting in 46 bp reads.
Datasets used for benchmark tests. For H. sapiens and P. falciparum, two times are given for TopHat. For H. sapiens, the longer time is with more sensitive settings, but
the shorter time resulted in less than 5% fewer junctions at a similar specificity. For P. falciparum, the longer time is with more sensitive but less stringent settings
whereas the shorter time is for the more stringent settings that resulted in significantly fewer junctions but with a much higher specificity.
doi:10.1371/journal.pone.0013875.t003

Figure 3. Simulation results. (a) Results for HMMSplicer and TopHat for 50 and 75 bp reads. Although values are similar at higher coverage levels,
HMMSplicer exhibits substantial increases in sensitivity at lower coverage levels. (b) ROC curve for the 50 bp simulation results at 16, 106, and 506
coverage demonstrates that HMMSplicer’s scoring algorithm accurately discriminates between true and false junctions. The number in parentheses is
the area under the curve for each coverage level.
doi:10.1371/journal.pone.0013875.g003
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HMMSplicer performs well in large metazoan genomes
The Homo sapiens genome is large (3.2 billion base pairs with

,25,000 genes), and contains both short exons (,59 bp on

average) and large introns (,6,553 bp) [31], creating a significant

challenge for identifying splice junctions. However, the human

genome is well annotated with abundant EST evidence, allowing

evaluation of HMMSplicer’s performance on transcripts with low

abundance, alternatively spliced junctions, and non-canonical

junctions. Although the human genome is well studied, the

complications of tissue-specific expression and widespread alter-

native splicing mean that many splicing events have not yet been

detected. For our benchmark tests, we selected a human dataset

containing 9,669,944 paired-end reads, each 45 bp long, from a

single individual’s resting CD4 cells [27]. The version of the

genome used for analysis was the February 2009 human reference

sequence (GRCh37) produced by the Genome Reference

Consortium. Two reference sets were used to identify known

introns. The first set represents known genes and well-studied

alternates (genes present in the manually curated RefSeq [35]),

while the second set represents a more extensive set of junctions,

including many alternative splicing events (RefSeq genes and an

additional 8,556,822 mRNAs and ESTs from GenBank [36]).

HMMSplicer was run with a minimum intron length of 5 bp

and a maximum intron length of 80,000 bp, covering 99.1% of

known introns in the human genome. Because HMMSplicer must

match the second piece of the read downstream of the initial exon

edge identified, the HMMSplicer algorithm is sensitive to

maximum intron size. For efficient and accurate matching in

80 kbp introns, we used an anchor size of 8 nt, instead of the 6 nt

anchor used in A. thaliana. At the default score threshold,

HMMSplicer found 101,664 junctions, 87% of which (88,162)

matched known genes or ESTs/mRNAs (Figure 4b). TopHat was

run with the default intron size range of 70 to 500,000 bp, which

covers 99.9% of known introns in the human genome. TopHat

found 72,771 junctions, of which 93.0% (67,664 junctions)

matched known genes or ESTs/mRNAs. Increasing the score

threshold to 600 for junctions supported by multiple reads (800 for

junctions supported by a single read) yields a similar confirmed

junction rate of 91.8% and leads HMMSplicer to find 89,130

junctions, 22% more than TopHat.

Because this publicly available 45 nt dataset is too short for

analysis by SpliceMap (which requires 50 nt reads), we were

unable to directly compare HMMSplicer to SpliceMap on this

dataset. Instead, we ran HMMSplicer on the human dataset

analyzed in the SpliceMap publication [25], a set of 23,412,226

paired end reads of 50 nt each from a human brain sample (GEO

Accession number GSE19166). SpliceMap is published as finding

175,401 splice junctions in this dataset with 82.96% EST

validation. Filtering lowers the number of junctions found while

raising the validation rate, so that at a validation rate of 94.5%,

SpliceMap detected 121,718 junctions. HMMSplicer was run on

the same dataset with default parameters, yielding similar results of

177,890 junctions with 84.2% EST validation at the default score

threshold. Raising the score threshold to 800 (1000 for single

junctions) we found 131,007 junctions with 94.5% EST validation.

Our comparisons suggest that HMMSplicer finds slightly more

(7%) junctions than SpliceMap at an equivalent EST validation

level (94.5%) in this human dataset.

HMMSplicer identifies many junctions in low abundance
transcripts

A recent RNA-Seq study across 24 tissues in humans showed

that ,75% of mRNA in a cell is from ubiquitously expressed

genes [37]. Furthermore, although transcripts from ,11,000 to

,15,000 genes were detected (depending on the tissue), the 1000

genes with the highest expression levels contributed more than half

the mRNA in each tissue. The importance of RNA-Seq in the

detection of novel splice junctions is not in these ubiquitous highly

expressed genes, which generally have EST coverage, but in the

tissue-specific genes with lower transcript abundance.

Therefore, we measured HMMSplicer’s capacity for detection

of junctions in low-abundance transcripts in the human resting

CD4 cell dataset. In RNA-Seq experiments with non-normalized

cDNA samples, the coverage level of a gene varies depending on

Figure 4. Overview of HMMSplicer and TopHat results in (a) A. thaliana, and (b) P. falciparum and (c) H. sapiens. For each dataset,
HMMSplicer results are shown at five different score thresholds. The numbers on the bottom axis (200 to 600) are the thresholds for junctions with
multiple reads; the threshold was set 200 points higher for junctions with a single read. The * indicates HMMSplicer’s default score threshold.
SpliceMap results are shown for the A. thaliana dataset only, as SpliceMap cannot be run datasets with reads less than 50 nt long. For P. falciparum,
TopHat was run with two different parameter sets. TopHat A was run with a segment length of 23 resulting in more junctions but a lower specificity
whereas TopHat B used the default segment length of 25 resulting in fewer junctions with more specificity.
doi:10.1371/journal.pone.0013875.g004
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relative transcript abundance. A convenient measure of read

coverage relative to the transcript abundance is Read Per Kilobase

per Million reads mapped (RPKM) [18] which counts the number

of reads that map to a gene, normalized by the length of the gene

in kilobases, per million reads mapped to the genome. Figure 5

shows the number of predicted junctions matching RefSeq-defined

introns at different RPKM levels. HMMSplicer identified more

junctions than TopHat at all RPKM levels, but the difference is

greatest at low values of RPKM. This is relevant to many RNA-

Seq experiments. In this dataset, 75% of genes had an RPKM of

10 or less.

Sequence-level analysis reveals alternate 59 and 39 splice
sites

HMMSplicer’s approach allows discrimination of closely spaced

alternative splice sites, providing a method to study fundamental

questions about the biology of splicing which have not yet been

addressed with RNA-Seq experiments. Alternative splicing

analysis in RNA-Seq data frequently focuses on quantifying

isoform expression level, such as in a recent study measuring

isoform abundance based on relative coverage levels of exons [38].

This is an important application, but the sequence-level detail of

RNA-Seq data provides the power to examine alternative splicing

at a finer level of detail. Analysis within the human resting CD4

cell dataset showed instances where splice sites varied slightly from

known intron boundaries, suggesting an inexact splicing event. To

investigate these results further, all junctions overlapping RefSeq

introns with fewer than 15 bp differences in splice sites were

examined and the number of bases added or removed from the

exon boundary was counted. Overall, there were 997 instances

(1.4% of junctions which match RefSeq) where an intron possessed

an alternate 59SS and 2,577 (3.6% of junctions which match

RefSeq) instances of an alternate 39SS. Alternative splicing which

maintained the reading frame (i.e. added or removed a multiple of

3 bases from the transcript) was clearly preferred for the 39 splice

site (Figure 6). This result is not surprising given that the 39SS

motif, YAG, is shorter and shows more variation than the 59SS

motif, GTRAGT [6]. To investigate this result further, WebLogos

[39] were constructed from the sequences at the alternate 39SS

that were off by 3 bases. Analysis of these WebLogos found at the

alternate 39SS shows repetition of the splice motif (i.e. YAGYAG).

HMMSplicer identifies non-canonical junctions
We next analyzed the ability of HMMSplicer to identify

junctions with splice sites other than GT-AG using the human

resting CD4 dataset for analysis. The most common splice sites,

GT-AG, GC-AG, and AT-AC, are found in 98.3%, 1.5% and

0.2% of human introns, respectively [7]. By default, HMMSplicer

attempts to adjust intron edges to GT-AG, GC-AG or AT-AC but

includes only GT-AG and GC-AG introns in the set of canonical

junction predictions. The user can alter the splice sites for

adjustment and filtering or can eliminate these steps entirely. We

examined the splice sites in junctions found by HMMSplicer.

Counting only junctions that matched known mRNA/ESTs,

HMMSplicer detected 87,245 GT-AG junctions, 791 GC-AG

junctions, and 97 AT-AC junctions. This is 99% GT-AG, 0.9%

GC-AG, and 0.1% AT-AC, which corresponds well with the

published rates. The ratio of junctions that match known junctions

is much lower for non-GT-AG junctions (20.3% for GC-AG and

6.5% for AT-AC). To resolve whether HMMSplicer non-

canonical junctions are false positives or novel instances, further

experimental validation will be required. Regardless, HMMSpli-

cer provides all junctions and allows the user to filter based on the

experiment’s objectives.

Although rare, there are also splice junctions that do not have

GT-AG, GC-AG or AT-AC splice sites. For example, the HAC1

mRNA and its metazoan homologue XBP1 are spliced by Ire1p

with the non-canonical splice sites CA-AG, initiating the unfolded

protein response [8]. HMMSplicer’s non-canonical junction

results on the human dataset contained three reads spanning the

XBP1 non-canonical intron with scores ranging from 927 to 971

(Figure 7). The sequence at the beginning of the intron is identical

to the initial exon sequence, so the HMM was unable to resolve

the exact junction edges correctly. This resulted in two possible

predictions, one 2 bp upstream from the actual site and one 4 bp

downstream from the actual site. Collapsing identical junctions

resulted therefore in two junctions, one with a score of 1024 and

one with a score of 1030, which put them in the top 0.5% of the

collapsed non-canonical junctions.

HMMSplicer finds true novel junctions in genomes with
incomplete annotation

To determine if unconfirmed junctions predicted by

HMMSplicer represent true novel junctions or false positive

predictions, we experimentally validated four previously un-

known junctions predicted from the organism with the least

thorough annotation, P. falciparum (Figure 8). All four junctions

were relatively high scoring but no EST or experimental data

exists for comparison, and each case conflicts with the current

PlasmoDB gene model. The first junction (score = 1300), in

PFC0285c (predicted to encode the beta subunit of the class II

chaperonin tailless complex polypeptide 1 ring complex), suggests

an additional exon at the 59 end of the gene model, possibly

belonging to the 59 untranslated region (UTR). The second

junction (score = 1198) belongs to PF07_0101, a conserved

Plasmodium protein of unknown function. This previously

unknown junction excises 291bp out of the middle of the first

Figure 5. Human results compared by transcript abundance.
Transcript abundance was measured as Reads Per Kilobase per Million
reads mapped (RPKM) and the genes were binned by RPKM to show the
number of RefSeq junctions found at different levels of transcript
abundance. For genes with an RPKM less than 10, HMMSplicer found
76.2% more junctions, whereas for genes with an RPKM above 50,
HMMSplicer found only 6.7% more junctions. While a smaller number of
highly expressed genes dominate the mRNA population, 74.8% of
genes have RPKM values less than 10.
doi:10.1371/journal.pone.0013875.g005
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annotated exon, which would result in a protein 97 amino acids

(aa) shorter. The third and fourth junctions, with scores of 1261

and 1175, respectively, are in PFD0185c, another gene of

unknown function conserved across Plasmodium species. One

junction lies within the predicted gene, splicing out 85bp and

leading to a frameshift near the 39 end, while the other appears to

splice together two exons in the 39UTR. RT-PCR followed by

sequence analysis verified all four splice junctions predicted by

HMMSplicer (Figure 8), confirming HMMSplicer’s ability to

predict true novel junctions from RNA-Seq data.

Discussion

HMMSplicer is an efficient and accurate algorithm for finding

canonical and non-canonical splice junctions in short read data.

Our benchmark tests on simulated data and three publicly

available datasets show that HMMSplicer is able to detect

junctions in compact and mammalian genomes with high

specificity and sensitivity. The real world challenges in these

datasets include low quality reads and uneven coverage. Built on

Bowtie, HMMSplicer is fast, comparable in CPU time to TopHat.

Figure 6. Alternative 59 and 39 splice sites. HMMSplicer results within 15 bp of RefSeq introns were analyzed to measure the number of bases
added or removed from the spliced transcript. There were 997 instances where the intron had an alternate 59 splice site (59SS, shown in grey) and
2,577 instances of an alternate 39 splice site (39SS site, shown in black). The most common alternative splice was 3 bases removed or added to the
exon at the 39SS. TopHat results showed a similar pattern, though only 875 alternates (262 59SS alternates and 613 39SS alternates) are found, less
than a quarter of the HMMSplicer results. WebLogos were constructed from the sequences at the 1,099 alternate 39SS with three bases removed from
the transcript and the 460 alternate 39SS with three bases added to the transcript. For these, the green dashed line shows the alternate splice site
while the red dashed line shows the canonical splice site. In both cases, a repetition of the YAG splice motif is evident.
doi:10.1371/journal.pone.0013875.g006

Figure 7. XBP1 non-canonical intron. HMMSplicer discovers the non-canonical XBP1 intron. HMMSplicer identifies three reads containing the
non-canonical CA-AG splice site in XBP1. Because the reads are fairly evenly split, both read-halves aligned to the genome. The edges identified by
HMMSplicer are 2 and 4 bp off from the actual splice site because the sequence at the beginning of the intron repeats the sequence at the beginning
of the subsequent exon. When identical junctions are collapsed, there are two junctions, one with a score of 1024 and one with a score of 1030,
which puts them in the top 0.5% of the collapsed non-canonical junctions.
doi:10.1371/journal.pone.0013875.g007
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Analysis also demonstrates HMMSplicer’s ability to find splice

junctions on transcripts with low abundance, alternative splicing,

and non-canonical junctions.

Comparisons with TopHat show that HMMSplicer is able to

find more junctions with a similar level of specificity in each of

these datasets. Comparisons with SpliceMap show that HMMSpli-

cer has similar performance, yielding slightly more (7%) EST

matching junctions in paired-end human datasets. However, in the

low sequence quality A. thaliana dataset, HMMSplicer significantly

outperforms SpliceMap. HMMSplicer was not compared to

SplitSeek [23] as this algorithm only processes colorspace reads.

Though the algorithm is similar, we anticipate that HMMSplicer

would be more sensitive than SplitSeek, since this algorithm

requires at least one read to be split evenly across the splice

junction. HMMSplicer, TopHat, and SpliceMap are all free from

this constraint. Finally, the SuperSplat [24] algorithm is the only

other currently available algorithm that detects non-canonical

junctions to our knowledge. Unfortunately, the current version of

SuperSplat does not align reads with any mismatches, and also has

large memory requirements (5–32 GB to index the A. thaliana

genome).

A major strength of HMMSplicer is that it is the only software

package that provides a score for each junction, reflecting the

strength of the junction prediction, which allows tuning of

HMMSplicer’s results to an experiment. While many splice

junction algorithms filter on specific attributes to improve

validation rates, for example, SpliceMap has filtering to remove

junctions with only a single supporting read, HMMSplicer’s score

provides a more flexible way to tune true and false positive rates

for the experiment. The score is based solely on the number of

bases on each side of the junction, the quality of those bases, and

the junction’s similarity to potential full-length matches. Re-

annotation experiments would necessitate a higher threshold to

avoid false positives, but experiments looking for novel junctions

could use a lower threshold to include as many true positives as

possible. The threshold can also be tuned for non-ideal datasets,

such as the low quality A. thaliana dataset. The score is highly

predictive despite the fact that it does not include biological factors

such as splice site or intron length in its calculation, making it ideal

for detection of novel splice junctions.

Alternative splicing is an area of intense research where

HMMSplicer’s approach provides a significant advantage over

algorithms that rely on exon islands, such as TopHat. In the case

of alternate 59 or 39 splice sites, the major isoform may mask the

signal from a minor isoform, especially in genes without high

sequence coverage. HMMSplicer accurately identifies small

Figure 8. Experimental confirmation of predicted Plasmodium falciparum splice junctions. Schematics of the predicted splice junctions and
sequenced RT-PCR products for a) PFC0285c, b) PF07_0101, and c) PFD0185c. For PFC0285c, the verified junction likely splices an additional exon in
the 59UTR to the coding region of the gene. The confirmed junction in PF07_0101 splices out 291 nt (97 aa) from the first exon, which could
represent an alternative protein-coding isoform, or an error in the gene model. The demonstrated junctions in PFD0185c excise 85bp near the 39 end
of the gene, causing a frameshift, and appear to splice two exons within the 39UTR of the gene together. Again, the junction within the gene model
may represent an alternative splicing event or an error in the gene model. ESTs near all three areas are included to provide the direction of the genes.
doi:10.1371/journal.pone.0013875.g008

HMMSplicer

PLoS ONE | www.plosone.org 11 November 2010 | Volume 5 | Issue 11 | e13875



variations in 59 and 39 splice sites. These small variations in splice

sites, most frequently 3 nucleotides added or removed from the

transcript at the 39 splice site (1 amino acid added/removed from

the translated protein), demonstrate how the repetition of the

splice motif can cause inexact splicing. HMMSplicer’s unbiased

approach to alignment, combined with the sequence level power

of RNA-Seq, has enormous potential for biological inquiry into

alternative splicing.

The depth of RNA-Seq and the unbiased approach of

HMMSplicer also allow investigation into non-canonical splicing.

HMMSplicer allows the researcher to define canonical splice sites,

and returns both canonical and non-canonical results. Scores in

HMMSplicer’s predicted junctions aid the discovery process, as

evidenced by the XBP1 example in the human dataset. In

HMMSplicer’s results, it was ranked in the top 0.5% of the non-

canonical splice results.

In conclusion, HMMSplicer is a valuable addition to the

algorithms available for finding splice junctions in RNA-Seq data.

The software, documentation and details about the datasets and

analysis can be found at http://derisilab.ucsf.edu/software/

hmmsplicer.

Materials and Methods

Algorithm Description
The HMMSplicer algorithm has four main steps: seeding reads

within the reference genome, finding the splice position, matching

the second piece of the read, and scoring/filtering splice junctions.

Figure 1 shows an overview diagram of the HMMSplicer pipeline.

As a pre-analysis step, dataset reads are aligned to the reference

genome using Bowtie [5]. Reads with full-length alignments to the

genome contain no junctions and are therefore removed from

consideration. These genome-matching reads may be used to

build a coverage track that can be viewed in the UCSC Genome

Browser [40] or other applications.

Step 1. Read-half alignment. To determine the read’s seed

location within the genome, we assume that each read spans at

most a single exon-exon junction. Reads are divided in half,

rounding down for reads of odd length, and both read-halves are

aligned to the genome using Bowtie (current version 0.12.2),

although other full-length alignment algorithms may also be used.

This approach will locate an alignment for both read halves if the

read is somewhat evenly split across a junction, and these

alignments are carried through the algorithm independently

until they are resolved during scoring. However, if the read

matches unevenly across the junction (e.g. if one side of a 45 nt

read is 35 nt long and the other side is 10 nt long, referred to as a

‘‘35/10 split’’), only the longer side will be seeded in this step. A

read-half may not align if the larger half falls on another exon-

exon junction or if sequencing errors prevent an alignment.

Alternatively, a read half may have multiple alignments. As long as

the duplicates are below a repeat threshold (50 alignments by

default), all seeds are continued through until the filtering part of

the algorithm; duplicate junction locations for a read are resolved

at that point. For clarity in the text below, the half of the read that

seeded will be referred to as the ‘first half’ and will be described as

if the initial half of the read matched to the 59 edge of the intron,

with all sequences in the sense direction. In reality, either half of

the read could match to either edge of the intron.

Step 2. Determine Splice Site Position. The alignment of a

read-half determines an outside edge of the spliced read alignment,

but does not determine where the exon-intron boundary occurs.

To return to our previous example read with a 35/10 split, the first

half of the read, corresponding to 22 bases, will be aligned but it

will be unclear that the first side extends to 35 bases. A simplistic

approach to this problem would be to extend the seed until a

mismatch occurs but this approach ignores both the additional

information available in quality scores and the high error rate

inherent in many high-throughput sequencing technologies.

Continuing from the 35/10 split example, imagine, after the first

22 bases of read-half, there is one mismatch to the genome at a low

quality base and then 12 bases in a row which match the genome.

The simplistic approach would be to assume the read stopped

aligned after the first mismatch, suggesting the split is 22/23

instead of 35/10, resulting in an incorrect junction alignment. To

avoid this type of error, HMMSplicer utilizes a two-state Hidden

Markov Model (HMM) to determine the optimal splice position

within each read. State 1 describes a read aligning to the genome.

In this state, we expect that most bases in the read match their

partner in the genome, and that the probability of matching will

vary based on the read base quality (high quality bases are less

likely to be sequencing errors and thus more likely to match). State

2 is cessation of alignment to the genome. In this state, matches

between the read and the genome are essentially random and do

not depend on quality. For example, a genome with a GC content

of 50% would yield an expected probability of 25% for each base

to match the target genome location, regardless of sequence

quality score. The most probable transition point from State 1 to

State 2 defines the optimal splice position. In the 35/10 split

example, the HMM would evaluate the probability of a 22/23

split, with 10 matches in a row in State 2 (where the probability of

a match is only 25%) compared to the probability of a 35/10 split

where a low quality base causes a single mismatch while remaining

in State 1. Assuming the probability of a mismatch in State 1 in a

low quality base was about 30% (a typical value), the 35/10 split

would be more probable than the 22/23 split. (All other possible

splits would also be considered, but these would be low probability

compared to the 22/23 and 35/10 split options.)

Within each state of the HMM, the quality is binned into five

levels, representing low, medium-low, medium, medium-high, and

high quality scores. Using five bins provides the best balance

between having sufficient bins to distinguish quality levels, while

maintaining enough bases within each quality bin that the HMM

can be adequately trained using a random subset of reads. Using a

separate bin for each quality score created situations where one or

more quality score were under-trained because quality scores are

not evenly distributed from zero to forty. Increasing the training

subset size can ameliorate this problem, however results with more

quality bins were not significantly better than results with five

quality bins (data not shown).

The HMM is trained on a randomly selected subset of the input

read set. The training is accomplished using the Baum-Welch

algorithm [41], an expectation maximization technique that finds

the most likely parameters for an HMM given a training set of

emissions. For HMMSplicer, emissions are strings of match/

mismatch values derived from the alignment of the whole read to

the genome at the position of each seed match. By using an

unsupervised training method, the HMM values can be trained

without additional input from the user, such as known genome

annotations. This allows for a more sophisticated approach than

the simplistic model described above while maintaining model

unbiased by additional information such as known genome

annotation. This training allows the values to be optimal for any

particular genome and sequencing run. For example, genome

specific training can adjust for biases in genomic nucleotide

composition. One of the datasets used in our testing is P. falciparum,

which has a genome that is 80% AT. This reduced complexity

makes the probability of a match in random sequence higher than
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the 25% that it would be in a genome with balanced nucleotide

distributions. In addition, training provides a way to validate the

model. The premise behind the model is that in State 1 the

probability of a match should increase with the quality of a base,

but in State 2 the probability of a match should be independent of

the quality score. If this model is accurate then regardless of initial

values, the trained HMM should reflect this expectation. The

outcome of the training, detailed in the Results section above,

confirm the robustness of the model to different initial values. The

HMM values for each parameter, before training and after

training with each dataset studied, are given in Table 1. For each

organism, the model trains as expected. Parameters in State 1

show a higher rate of matches than mismatches, varying by quality

score, while parameters in State 2 remain at approximately 25%

probability of a match regardless of quality. The only exception is

for P. falciparum, where the probability of a mismatch in State 2

varies from 37% to 28% depending on quality because of the 80%

AT bias in the genome.

After the HMM is trained, it is run for every read-half

alignment, yielding the coordinates of the first piece of the read

alignment, including the first exon-intron boundary of the splice

junction. In the event of multiple equally probable splice positions,

the splice position with the shortest second piece is selected. A

falsely short second piece may still match within the maximum

intron distance and has the potential to be adjusted to the correct

splice site in the canonical splice-site adjustment (see below for

details). On the other hand, a second piece with false bases added

to the beginning will likely not match within the maximum intron

distance causing the read to be discarded. If the remaining part of

the read is too short (eight nucleotides or fewer by default), the

alignment is set aside. Uncertainty in the precise location of the

splice junction and short alignment can be further resolved in a

subsequent evaluation process described below.

Step 3. Determine Spliced Exon position. Once the splice

position has been determined, the first exon-intron boundary

has been identified. To determine the second exon-intron

boundary, the remaining part of the read, (the ‘second piece’),

must be aligned. To reduce search space to a manageable and

biologically relevant size, a default of 80 kbp downstream of the

initial alignment is considered, although the user may adjust this

to the most appropriate value for the organism and experiment.

HMMSplicer first determines potential location positions by

using the initial eight nucleotides of the second piece as an

anchor (this anchor size may also be tuned to the organism and

experiment), searching for all locations within the maximum

intron size where this anchor matches exactly. To accommodate

possible sequencing errors in these initial eight nucleotides,

exact matches for the next eight nucleotides (i.e. positions 9–16

of the second piece) are found and are added to the set of

anchors. For each position where an anchor has an exact match,

the entire second piece of the read is compared to the genome

and the number of mismatches is counted. The alignment with

the fewest mismatches is selected as the best match. In the event

of multiple best matches, the read is set aside to be resolved

later.

At this point, a preliminary splice junction has been defined.

However, the exact splice positions may be offset from the actual

intron-exon boundaries by a few nucleotides, especially in cases

where the sequence at the beginning of the intron matches that at

the beginning of the second exon. In these cases, sequence alone

cannot define the correct edges. To aid in correct splice edge

definition, HMMSplicer uses an assumption about the biology of

splice sites. The most common splice sites, GT-AG, GC-AG, and

AT-AC, are found in 98.3%, 1.5% and 0.2% of human introns,

respectively [7]. By default, HMMSplicer uses these three splice

sites (in order of their frequency of usage) to adjust intron-exon

boundaries, though the sequences can be changed or the feature

can be turned off entirely. Given the frequency of these three splice

sites compared to other splice sites, the use of splice sites for intron-

exon boundary adjustment introduces a conservative assumption

and can help resolve small ambiguities in the position of the splice

site prediction. To perform the adjustment, both splice edges are

moved an equivalent number of nucleotides to reach a canonical

splice site, where possible. Junctions already at canonical edges

and junctions that cannot be adjusted to canonical edges remain

unchanged.

HMMSplicer provides a score for each predicted junction that

does not rely on any biological information or assumptions about

splicing machinery beyond the user-configurable adjustment to

canonical splice sites, leaving the user free to apply the

appropriate data processing filters for the experiment. The goal

of the scoring approach is to use available information maximally

while minimizing assumptions. For example, a score that

incorporated the intron size distribution of the organism could

have been more accurate, but would have introduced a strong

bias toward typical intron sizes. Similarly, a scoring algorithm

that penalizes non-canonical junction edges would have intro-

duced a bias towards canonical splice sites. Instead, HMMSpli-

cer’s score uses information only about the genome sequence,

read sequence, read quality, and splice position to derive a score.

The researcher can introduce further filtering to the result set,

based on the needs of the experiment, but the score is free from

these biases.

To accomplish this goal, we chose an information-based

approach to the score algorithm, akin to a BLAST bit score

rather than the probability-based E-value [39]. The initial step of

the scoring algorithm is to measure the amount of information in

the alignment of one side of the junction read. Assuming each

possible nucleotide is equally likely and the reported read

nucleotide was certain (no sequencing errors) there would be

four equally possible nucleotides at each position of the read,

resulting in 2 bits per position (log2(4)). However, the reported

nucleotide is not certain, and this uncertainty is encoded by the

quality of the nucleotide. To scale for this, we multiply the 2 bits

by the probability that the nucleotide call is correct, given the

quality score. The sum of the information in each matching

position of the read piece alignment is then used as the score for

that read piece.

Given:

gi~genome nucleotide at position i

ri~reported nucleotide at position i

r0i~reference nucleotide at position i

qi~quality score at position i

Score for one side is calculated as:

h~
Xj

i~0

gi~ri : P(ri~r0i Dqi) � 2 bits

gi=ri : 0
ð1Þ

Both sides of the junction are scored using equation (1). To

combine the scores for the individual read pieces, they are

multiplied, giving a strong bias to evenly split reads. The score
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increase is greater for evenly split reads than for reads with

uneven piece sizes. For example, comparing 50 nt reads and

70 nt reads, a 10/40 split compared to a 10/60 split will, under

ideal conditions, raise the score from 400 to 600. By contrast, a

25/25 split compared to a 35/35 split will raise the score from

625 to 1225, a much more dramatic increase. This increase

reflects the fact that a 10/40 to 10/60 split does not increase

the information available as much as a 25/25 split to a 35/35

split.

Next, the score is corrected for the similarity to a full-length

alignment. For each junction, if we hypothesize that the junction

may actually be a full-length alignment, there are two possible

positions for this alignment, either the left side is correct and the

right side should be moved left adjacent to it, or the reverse. Both

these possible full-length alignments are scored and the better

alignment is kept. Half of this score is subtracted from the initial

junction information as follows:

s~hahb{F �max
ha’hb

hahb’

�
ð2Þ

Where ha is the score for the left side, hb is the score for the right

side, ha9 is the score for the left side when moved adjacent to the

right side and hb9 is the score for the right side when moved

adjacent to the left side. F is set to 0.5, an empirically derived value

that gives the best score results when tested on the human dataset

(data not shown).

As a final step, the scores are normalized to the range 0–1200,

with most scores less than 1000 in practice. This is simply for easy

visualization in the UCSC Genome Browser. The BED file output

from HMMSplicer can be uploaded directly to the UCSC

Genome Browser, which uses grey-scale to represent scores from

0–1000. To perform this scaling, the multiplier is 1200 divided by

the theoretical maximum score for a read of the given length.

When calculating the theoretical maximum, equation (1) reduces

to the length of the read piece times 2 bits. Thus, if the read length

is even, the multiplier is:

meven~
1200

l
2
� 2 bits

� �2
ð3aÞ

If the read length is odd, the multiplier is:

modd~
1200

l{1

2
� 2 bits

� �
lz1

2
� 2 bits

� � ð3bÞ

All together, the full equation for the score value is:

final score~s �m ð4Þ

Once splice junctions have been detected and scored,

HMMSplicer resolves instances where both halves of a read were

aligned independently, as well as instances where one or both read

halves created multiple alignments. For reads where independent

read half alignments converged on the same junction position, a

single copy of the junction is saved. For reads where the read

halves had multiple seed positions, if one position has a score much

higher than the other(s), that position is retained. If a read matches

in multiple positions and all positions have close scores (by default,

scores with differences less than 20, but this is user configurable),

reads are saved in a separate set of output results reserved for

duplicates.

Step 4: Rescue. Reads that cannot be matched uniquely can

be used to lend support to a junction previously identified in the

dataset. HMMSplicer attempts to rescue matches where the

location of the first piece of the read is uniquely identified, but the

location of the second piece is not. There are two sources of such

reads: 1) reads with a second piece fewer than eight bases long and

2) reads where the second piece matched equally well to multiple

locations within the maximum intron size. In both cases,

HMMSplicer can apply the information from mapping the

initial part of the read to rescue the read using other junctions

found in the dataset. If another read ends at the same point as this

read (i.e. has the same junction edge on the known side), the

algorithm examines the other side of the junction to determine if

the initial bases of the exon sequence match the second piece of

this read. If so, this junction is assumed to be the source of the

read.

Step 5: Filter and Collapse. Finally, initial junction-

spanning reads are filtered and collapsed to yield a final set of

predicted junctions. Splice junctions are divided into populations

that do and do not match the most frequent splice sites (‘GT-AG’

and ‘GC-AG’ by default). Regardless of whether the user chooses

to impose these splice site position sequences into the search,

nonconforming junctions are saved and ranked separately. All

reads creating the same intron are collapsed into a single junction

with the score for these reads increased in relation to number of

additionally covered bases. Distinct reads covering the same

junction add significantly to a its potential to be real, but two

identical reads may be from the same source, such as PCR

amplification artifacts. To follow the previous example, a 35/10

split (35 bp on the first exon, 10 bp on the second exon)

combined with another 35/10 split would not increase the score,

but the 35/10 split plus a 10/35 split would yield a substantial

boost to the score because the covered bases would now be now

35/35. To be exact, imagine the 10/35 junction read has a score

of 800 and the 35/10 junction read has a score of 600. The

higher score read is considered first, then the second read is

collapsed onto it. In this case, the new junction adds 25 bases out

of a total of, now, 70 bases covered, so a value of (25 / 70) * 600

is added to the original score of 800, yielding a collapsed score of

1214.2.

Collapsed junction predictions are then filtered by score.

Multiple error-free reads spanning the same splice junction align

to the correct splice site, facilitating determination of splice

boundaries. In contrast, because sequencing errors are distributed

throughout the read with three possible wrong base substitutions,

reads with errors that create false positive junctions tend to be

scattered as single, incorrect alignments. Previous studies concur

that true junctions are more likely than false junctions to be

covered by more than one read [42]. Therefore, junctions covered

by a single read are evaluated more stringently than junctions

covered by multiple reads, with a higher score threshold set for

junctions covered by a single read. The default score thresholds for

HMMSplicer are 600 for junctions covered by a single read and

400 for junctions covered by multiple reads. These score

thresholds were optimal for the benchmark datasets, but ultimately

the score threshold will depend on the number of reads used in the

experiment (datasets with more reads may require higher score

thresholds) and the purpose of the experiment (re-annotation

studies will require higher score thresholds than studies looking for

novel junctions).
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Benchmark Methods
For the benchmark tests, all analysis was performed on an 8-

core Mac Pro with 16 GB of RAM. HMMSplicer was run with

default parameters unless otherwise noted. TopHat version 1.0.12

was used. TopHat was run with the best parameters for the

dataset/organism, though the only parameter found to have a

large effect on results was segment length. For reads shorter than

50 nt, segment lengths of half the read length were used for

TopHat, as it was found to dramatically increase the number of

splice junctions found (i.e. 30,381 junctions identified for the

default segment length of 25 versus 68,946 junctions identified

with a reduced segment length of 22 in the human dataset). For

the simulation dataset, TopHat was run with the default

parameters, except with a segment length of 20 and 22 for reads

40 and 44 nt long. The A. thaliana dataset was run with default

parameters except for a minimum intron size of 5 and a maximum

intron size of 6000. The H. sapiens dataset was run with a segment

length of 22 using the butterfly search and microexon search

parameters. The H. sapiens dataset is paired end and, based on

information in the publication [27], an inner mate distance of 210

was used. SpliceMap was run on the A. thaliana dataset by the

SpliceMap first author using a 6 kbp maximum intron size

(personal communication).

For most of the analysis, canonical splice junction results from

HMMSplicer were used (i.e. GT-AG and GC-AG splice sites), as

they are most comparable to results from other algorithms. Table 3

contains general characteristics of the datasets downloaded from

NCBI SRA, including accession numbers.

Experimental Validation in Plasmodium falciparum
Cell culture, RNA preparation, and poly-A selection.

Plasmodium falciparum 3D7 Oxford parasites were sorbitol

synchronized in early ring stage, then synchronized again 24

and 32 hours later for a total of 3 synchronizations during 2

consecutive cell cycles. Culture conditions were as in Bozdech et

al, 2003. Post-synchronization, maximum invasion (number of

schizonts = number of rings) was observed by smear and 50mL of

2% hematocrit, 10% parasitemia culture was harvested 44 hours

post-invasion (late schizogeny). Harvested cells were centrifuged at

1,500 g for 5 min, washed in phosphate-buffered saline (PBS), and

pelleted at 1,500 g for 5 min. The cell pellet was rapidly frozen in

liquid nitrogen and stored at 280uC. Total RNA was harvested

from the frozen pellet using 10mL Trizol (Invitrogen Corp.,

Carlsbad, CA). 238ug of total RNA was poly-A selected using the

Micro Fasttrack 2.0 kit (Invitrogen Corp., Carlsbad, CA).
DNase treatment, reverse transcription, PCR, and

sequencing. 3.6ug of poly-A selected RNA was treated twice

with 2uL of TURBO DNase according to the manufacturer’s

instructions for the TURBO DNase-free kit (Applied Biosystems/

Ambion, Austin, TX). Treated RNA tested negative for residual

genomic DNA by PCR amplification in the following mix: 16
Herculase II Fusion buffer, 0.25mM dATP, 0.25mM dTTP,

0.0625mM dCTP, 0.0625mM dGTP, 0.25uM PF11_0062-F

primer (59-ACTGGTCCAGATGGAAAGA AAAA-39), 0.25uM

PF11_0062-R (59-GGAGGTAAATTTTGTTACAGCTTTGG-

TTCC-39), and 0.4uL of Herculase II Fusion polymerase

(Stratagene, La Jolla, CA). PCR conditions were 95uC for

2 min, then 40 cycles of 95uC for 30 sec, 52uC for 45 sec, 65uC
for 3 min, and finally 65uC for 7 min. 2ug of DNased RNA was

melted at 65uC for 5 minutes in the presence of 817.5ng random

hexamer, and then cooled at room temperature for 5 minutes. To

reverse transcribe cDNA, 0.25mM dATP, 0.25mM dTTP,

0.0625mM dCTP, 0.0625mM dGTP, 16 First Strand buffer,

10M DDT, and 1090U Superscript III reverse transcriptase

(Invitrogen, Carlsbad, CA) were added and the reaction was

incubated at 42uC for 1.5 hours. 1uL of this reverse transcription

mix was used for each junction confirming PCR using the

previous described mix and cycling conditions, with the following

changes: 0.5uM of the appropriate forward and reverse primers

were used and 30 cycles of PCR were performed. Primer

sequences are listed in Table 4. PCR reactions were cleaned up

with Zymo-5 DNA columns (Zymo Research Corp., Orange,

CA). 100ng of each PCR product was a-extended by incubation

at 37uC for 30 minutes in the presence of 16.7mM dATP, 16
NEB buffer 2, and 5U Klenow exo2 (New England Biolabs,

Ipswich, MA). Extended products were then TOPO TA cloned

and transformed into chemically competent TOP10 cells

(Invitrogen, Carlsbad, CA). Transformations were plated on

LB+ampicillin plates spread with 100uL 40mg/mL Xgal. After

16 hours of growth, colony PCR was performed on white

colonies with the following PCR mix: 16 Taq buffer, 2mM

MgCl2, 0.5uM M13F, 0.5uM M13R, 0.25mM dATP, 0.25mM

dTTP, 0.0625mM dCTP, 0.0625mM dGTP, and 0.5U Taq

polymerase (Invitrogen, Carlsbad, CA). PCR conditions were

95uC for 2 min, then 30 cycles of 95uC for 30 sec, 52uC for

45 sec, 65uC for 3 min, and finally 65uC for 7 min. Following

precipitation with 3 volumes of isopropanol, 1/4 of each PCR

product was primer extended in Sanger sequencing reactions in

the presence of 1uM M13F, 16 sequencing buffer, and 0.5uL

BigDye Terminator (Applied Biosystems Inc., Foster City, CA).

Cycling conditions were 94uC for 2 min, then 60 cycles of 94uC
for 30 sec, 50uC for 1 min, 60uC for 1 min, and finally 60uC for

7 min. Sequencing reactions were precipitated with 1/4 volume

125mM EDTA and 1 volume 100% ethanol, and then

resuspended in HiDi formamide and run on a 3130xl Genetic

Analyzer (Applied Biosystems Inc., Foster City, CA).
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Table 4. Primer Sequences.

Name Sequence

PF07_0101 F TGGGTTATCTGATCATCAAGGA

PF07_0101 R TTTTATGAGTGTCGTCCCTTTTT

PFD0185c F1 CGCACTACCATATTTATGCCTCT

PFD0185c R1 AGTAGAAGGAGGGAGGAGCA

PFD0185c F2 TTCGCGTGATGAAGAAGATG

PFD0185c R2 CAAGCCCACATATAAATCAAGGA

PFC0285c F TATCTTCTTGGGCCCCTTCT

PFC0285c R TGTGAATGCGTGAAGGATTT

Primers used for experimental validation.
doi:10.1371/journal.pone.0013875.t004
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