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Abstract

Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition

to the influence that tidewater glaciers have on physical and chemical oceanography, floating

icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii).

The availability and spatial distribution of glacier ice in the fjords is likely a key environmental

variable that influences the abundance and distribution of selected marine mammals; however,

the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically

quantified. Given the predicted changes in glacier habitat, there is a need for the development

of methods that could be broadly applied to quantify changes in available ice habitat in tidewa-

ter glacier fjords. We present a case study to describe a novel method that uses object-based

image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-reso-

lution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to clas-

sify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and

fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the

object-based analysis of floating glacier ice for large number of images from a representative

survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier

Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice

(�x = 45.2%, SD = 41.5%), water (�x = 52.7%, SD = 42.3%), and icebergs (�x = 2.1%, SD =

1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area

(± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works

well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest clas-

sification errors occur in areas with densely-packed ice, low contrast between neighboring ice

cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice

about 20% of the time. OBIA is a powerful image classification tool, and the method we present

could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice

characteristics and availability.
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Introduction

Tidewater glaciers, or glaciers that terminate in the ocean, are a prominent landscape feature in
southeastern and south-central Alaska and play an important role in landscape and ecosystem
processes. Changes in tidewater glaciers are cyclical in nature, with advance rates typically an
order of magnitude slower and occurringover much longer time periods than retreats (e.g.,
[1,2]). Though these changes are generally in response to shifts in climate, the response of indi-
vidual glaciers can vary greatly within individual climate regimes (e.g., [2]). Similar to terrestri-
ally-terminating glaciers, most of the approximately 50 tidewater glaciers in Alaska have
thinned and retreated over the last century [3–8], though some are currently relatively stable or
even advancing [2]. Most models predict continual loss of glacier ice over the next century,
though they currently do not account for frontal ablation (calving + submarine melt at the ter-
minus), a major source of mass loss from tidewater glaciers [9]. As a result, the future availabil-
ity of tidewater glacier ice for organisms that use the ice as habitat is largely unknown [10,11].

Through the fjord dynamics driven by melting at the calving front, as well as through calv-
ing itself, tidewater glaciers have a large impact on the fjord and marine environment [11].
Upwelling at the terminus provides nutrients, and fjords are consequently important habitats
for fish, seabirds, and mammals, among other organisms [12,13]. Icebergs that emanate from
tidewater glaciers serve as resting places for seabirds and provide important substrate for har-
bor seals (Phoca vitulina richardii) to rest, whelp, nurse young, molt, and avoid predators [13–
15]. Becausemost tidewater glaciers in Alaska are thinning and retreating, there is concern
regarding how changes or reductions in glacier ice may impact the organisms that rely on gla-
cier ice as a habitat.

The availability of glacier ice is likely a key environmental variable that influences the abun-
dance and distribution of harbor seals in tidewater glacier fjords in Alaska [16–18]. Previous
studies of harbor seal ice habitat have estimated ice cover or indices of ice availability from obli-
que angles using shore- or vessel-based observers and photographs [17,19] or from videogra-
phy collected during aerial surveys [18,20]. However, the amount of ice in the fjord and the
fine-scale characteristics of ice including ice type, iceberg size, and iceberg angularity have not
been systematically investigated. Given the predicted changes to tidewater glaciers, as well as
other ice habitat, such as sea ice, there is a need to develop methods that could be broadly
applied to quantify changes in available ice habitat in subpolar and polar regions, that provides
important substrate for numerous species (e.g, [13, 21])

Object-based image analysis (OBIA) is a technique that incorporates spatial information
from an image and breaks the image into smaller “image objects” that can be classified based
on size, shape, or spectral characteristics (e.g., [22,23]). OBIA is a powerful image classification
tool; however, it has been used only sparingly in the field of habitat classification (e.g., [24–
27]). In contrast to traditional pixel-based classification approaches that use the individual
spectral characteristics of each pixel, OBIA offers an enhanced ability to quantify morphologi-
cal properties of habitat (e.g., size, shape, angularity). In addition, OBIA makes it feasible to
quantify fine-scale features of habitats that are used by wildlife which are important in the con-
text of elucidating relationships betweenwildlife and the habitats that they use. OBIA is also
particularly beneficial for very high-resolution imagery where object features appear coherent
and there are fewer mixed pixels [22,23].

Herein, we present a case study with glacier ice habitat in an Alaskan tidewater glacier fjord
to describe a novel method that uses OBIA to quantify the amount and fine-scale characteris-
tics of glacier ice from high resolution aerial imagery. Our primary objective was to develop a
semi-automated method to estimate ice habitat from high spatial resolution airborne imagery
collected of floating glacier ice in a tidewater glacier fjord. Specifically, we (i) developed
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workflows and rule sets to classify airborne imagery of glacier ice using object-based image
analysis; (ii) quantified the amount and fine-scale characteristics of floating glacier ice in the
fjord; (iii) developed processes for automating the object-basedanalysis of ice for a large num-
ber of digital images; and (iv) present results describing ice characteristics and accuracy assess-
ments of classification from a representative survey day during June 2007. The described
method could be applied to ice habitats, including sea ice, in subpolar and polar regions, that
are used by other pagophilic species.

Materials and Methods

Ethics Statement

Aerial surveys were conducted under NOAA Fisheries Marine Mammal Protection Act permit
#358-1787-01, and scientific permits issued by Glacier Bay National Park.

Study area

Glacier Bay is an estuarine fjord in southeastern Alaska that constitutes part of Glacier Bay
National Park (GLBA). GLBA is a marine protected area and is designated as an International
Biosphere Reserve and World Heritage Site that encompasses over 2,400 km2 of marine waters
[28].

Johns Hopkins Inlet (58.857856°N, 137.088841°W; Fig 1) is an expansive (~12 km long and
~2.5 km wide) tidewater glacier fjord in the upper West Arm of Glacier Bay. Johns Hopkins
Inlet hosts the largest seasonal aggregation of harbor seals in Glacier Bay and is one of the pri-
mary glacier ice pupping and molting sites for harbor seals in southeasternAlaska [19,29]. Har-
bor seals rest on icebergs that have calved from two advancing tidewater glaciers: Johns
Hopkins Glacier (250 km2; area estimates taken from the Randolph Glacier Inventory v3.3,
[30]) and Gilman Glacier (25 km2), which extend from the Fairweather Range in the St. Elias
Mountains to tidewater in Johns Hopkins Inlet.

After undergoing a retreat that began at the end of the 19th century, Johns Hopkins Glacier
has advanced nearly 2 km since the mid-20th century, and is one of a few advancing tidewater
glaciers in southeastern Alaska [2,4,31]. Since approximately 1988, Johns Hopkins and Gilman
Glaciers have formed a single terminus. Several other small (< 10 km2) glaciers contribute sea-
sonal freshwater input to the fjord, but no longer actively calve icebergs into the inlet [2]. Ice
availability is typically highest in spring and early summer (May/June), when calving/frontal
ablation tends to be the highest [32].

Aerial surveys and image acquisition

The large expanse and remote location make it difficult to use traditional field-based survey
methods to map the study site. High spatial resolution airborne images provide an alternate
solution for mapping. However, the dynamic nature of glacier ice makes it impractical to run a
traditional photogrammetric airborne mission and generate a complete mosaic of the study
site, as adjacent images acquired in a different flight line may not match due to ice movement
as a result of tides and currents. A practical way to overcome this problem is to use a sampling
mission, where non-overlapping images can be assumed to be representative of the study area
(e.g., [33]).

We used a low-cost airborne data acquisition technique developed for photographing seals
where non-overlapping simple color photos were acquired along with concurrent location
information provided by the onboard global positioning system [33]. This technique does not
have the fidelity of a traditional photogrammetricmission, but has the advantage of being
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simple, affordable, and practical. Furthermore, the objective was to quantify total ice habitat
availability and fine-scale characteristics of ice in the sampled area and the precise location of
each iceberg was not important.

An aerial survey of harbor seals and floating glacier ice in Johns Hopkins Inlet was con-
ducted on 18 June 2007, during the pupping season of harbor seals. The surveywas conducted
from 15:19 to 16:18 hours (Alaska Daylight time), as the highest proportion of harbor seals typ-
ically haul out of the water from midday through the afternoon [29]. The surveywas conducted
using a de Havilland Canada DHC-2 Beaver single-engine high-winged aircraft (Ward Air
Inc., Juneau, Alaska), following methods developed for counting harbor seals on icebergs in
tidewater glacier fjords in Alaska [33,34]. The aircraft was flown at ~308 m (± 9.5) and ~166–
176 km/h along established transects (Fig 1). The transects were programmed into the aircraft’s
navigation system (Chelton Flight System) which created a 3-D image of each transect that the
pilot used for navigation and to assist in maintaining the position of the aircraft along each
transect line. Transects were oriented perpendicular to the face of Johns Hopkins Glacier and
were spaced 200 m apart. The transects encompassed an area of approximately 8.4 km2 or
approximately 38% of the water area of Johns Hopkins Inlet (22.0 km2).

Non-overlapping digital photos were taken directly under the plane using a vertically aimed
digital camera (Nikon D2X) with a 60 mm focal length lens (Nikon AF MICRO). The digital
camera was attached to a tripod head and mounted to a plywood platform that was secured in
the belly porthole of the aircraft. The digital camera captured an image every 2 seconds, using a
digital timer (Nikon MC36) that was attached to the camera and operated by the observer. The
firing rate and the spacing of the transects allowed for a gap between images of ~20 m end-to-
end and ~80 m side-to side thus ensuring that images were separated from one another and
that areas of ice (and seals) were only sampled once during a survey. Each digital photo (3216
X 2136 pixel JPG) covered approximately 80.7 m (±2.5 SD) X 121.8 m (±3.8 SD) at the surface
of the water. The images (n = 879 for 18 June 2007) were standardized to a pixel size of 0.04 m
X 0.04 m using bilinear interpolation. An onboard global positioning system (GPS) (Garmin
76 CSX), with an external antenna, was used to record the track line and position of the plane
along the transects (latitude, longitude, altitude) at 2-second intervals.

Image post-processing

The latitude, longitude, and altitude from the track line were written to the EXIF headers of
each digital image to permanently embed the location data in the image using RoboGeov6.3.
The EXIF header data were extracted from each image using R (R Development Core Team)
and imported into ArcGIS (ESRI, version 9.3). Point shape files that contained the center-point
coordinates (latitude, longitude) for each digital image were created in ArcGIS. The center
points were converted to meters using Easy Calculate 10 (http://www.ian-ko.com/free/EC10/
EC10_main.htm) in ArcGIS. A worldfile with the center-point coordinates was used to geore-
ference the digital images and create a raster layer in ArcGIS. The total spatial extent of each
day’s survey effort was delineated by creating a polygon that was bounded by (i) the coastline
of Johns Hopkins Inlet and (ii) the approximate location of the terminus of the glacier.

Using Adobe Lightroom 6 (Adobe Systems), images were initially enhanced using a +20
contrast stretch (that pronounces the changes in brightness values within the whole image),

Fig 1. Map of Johns Hopkins Inlet study area. Johns Hopkins Inlet in Glacier Bay (top right inset), southeastern Alaska (top left

inset). The standard false color composite image was created from a July 2013 Landsat 8 scene. Vegetated areas appear read and

snow and ice appear in shades of white to grey. Individual image frames from the airborne survey along transect lines are plotted as

small yellow squares.

doi:10.1371/journal.pone.0164444.g001
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+20 vibrance (that increases the saturation of the mid-tones in the image), followed by an
image sharpening (amount 40; radius 1.0, and detail 30) to further highlight the high frequency
variations (sharp edges) in the image. All images were batch-processed with these settings.
Images of the glacier and of land were excluded to ensure that only floating ice (icebergs and
brash ice) and water were included in the classification. Corrected images were used to develop
and apply the OBIA method to quantify and characterize available ice habitat.

Object-based image analysis and classification

We used Trimble eCognitionDeveloper version 8.9.0 (Trimble Geospatial Imaging) to develop
and apply the OBIA workflow (Fig 2) used to classify ice, including the size and shape of indi-
vidual icebergs, and water in Johns Hopkins Inlet. The variables extracted from each scene are
defined in Table 1.

The distance between the center of each image frame and the terminus position of the gla-
cier was calculated using existing terminus outlines from [2], when available. If necessary, addi-
tional terminus outlines were manually digitized following methods in [2] from cloud-free
Landsat scenes acquired as close as possible to each survey date.

For each image, the correlation between the red, green and blue (RGB) channels was high.
To reduce the redundancy of information we used a standard RGB to Intensity, Hue, Satura-
tion (IHS) transformation. Intensity relates to scene brightness and it was more efficient to use
this single channel to delineate and classify light and dark features in the scene.

Iceberg objects were initially identified by conducting a contrast split segmentation on the
image intensity, which splits the image into bright and dark objects. The threshold between
bright and dark objects was determined automatically by maximizing the contrast between the
two classes for each image. Bright objects were then classified as icebergs, while dark objects
were left unclassified at this step. To restrict our analysis to icebergs that could potentially sup-
port a seal, we filtered the iceberg objects by first merging all iceberg objects, then removing the
iceberg classification from objects with fewer than 1000 pixels (corresponding to 1.6 m2) in
size. This threshold for the minimum iceberg size was based upon the average curvilinearbody
length of non-pup seals (1.36 m ± 0.15 (mean ± std. dev.); range: 1.00–1.76 m; n = 81 harbor
seals) that were live-captured and measured in Johns Hopkins Inlet from 2004 to 2008 [14,15],
and also corresponds to estimates of minimum ice size (1 meter in diameter) used by harbor
seals in Aialik Bay, a tidewater glacier fjord in southcentral Alaska [35].

To segment the unclassified parts of the scene, we performed a multi-resolution segmenta-
tion (scale parameter: 50, shape: 0.2, compactness: 0.5). We then calculated the Grey Level Co-
occurrenceMatrix (GLCM) homogeneity [36] for each unclassified object, in order to distin-
guish between brash ice and water. Objects that were relatively smooth (GLCM
homogeneity< 0.45) were classified as water. All remaining unclassified objects were classified
as brash ice, here defined as any piece of ice that is less than 1.6 m2 in area; i.e., ice that is gener-
ally too small to support a seal. Fig 3 shows that objects classified as brash ice may contain a
mixture of both ice and water pixels, depending on how densely-packed the ice is in each
image.

Occasionally, the initial image segmentation resulted in the classification of “false” icebergs,
or small ice pieces that were sufficiently close together to appear bright and therefore be poten-
tially misclassified as icebergs. To address this, we performed a second contrast split segmenta-
tion on all objects classified as ice. By excluding water objects, which are typically darker, from
this segmentation, we ensured that these “false” or misclassified icebergs were generally seg-
mented into their smaller constituent pieces. To batch process the images in each survey, we
used the “Analysis” function in eCognitionDeveloper, which processes each image in the
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Fig 2. Workflow from aerial image acquisition to generation of distribution maps and statistics for seals and icebergs.

doi:10.1371/journal.pone.0164444.g002
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survey using eCognition Server. On average, most scenes took approximately 3–4 minutes to
process. A single survey day may include up to 1,200 images, which typically takes 1–2 days to
fully process; however, the time to process each survey day could be reduced by utilizing multi-
ple licenses for eCognition Server.

The classified iceberg, brash ice, and water products generated from non-overlapping
images were gridded to generate a continuous interpolated surface for visualization using a
Radial Basis Function (RBF). RBF is an exact operator where the interpolation surface passes
through the measured points and can predict values above the maximum and below the mini-
mum measured values. The large number of data points with slightly varying values produces
the smooth surface seen in Figs 4 and 5.

Accuracy assessment

To assess the accuracy of the OBIA classification workflow, we visually inspected and modified
the classified object outlines for a random selection of 5% of the images (n = 44 images). We
manually classified icebergs, brash ice, and water for each of these sample scenes by correcting
the automated results. We then extracted 100 random points for each class (icebergs, brash ice,
and water) from each image where that class was present, and compared the manual and auto-
matic classifications for each point. For each class, we calculated the errors of commission (pix-
els incorrectly classified as a given class) and omission (pixels incorrectly not classified as a
given class), as well as the producer’s and user’s accuracy [37].

Results

We present a semi-automated method that uses OBIA to classify and quantify glacier ice
floating in tidewater glacier fjords. OBIA classification of digital imagery from 18 June 2007
revealed that the sampled areas were primarily dominated by brash ice (�x = 45.2%, SD =
41.5%) and water (�x = 52.7%, SD = 42.3%; Table 2; Fig 4 and Fig 5). The percent brash ice was
greatest near the glacier terminus and was inversely related to the distance to the glacier face
(near the terminus, �x = 91%, SD 16%; far from the terminus, �x = 2%, SD = 3%); correspond-
ingly, percent water increased with increasing distance from the glacier with areas near the
mouth of Johns Hopkins Inlet having the highest percentage of water. On average, icebergs
composed only 2.1% (SD = 1.4%) of each scene. The average iceberg size per scene was 5.7 m2

(SD = 2.6 m2); individual iceberg sizes ranged up to ~1000 m2. The total area of icebergs avail-
able as habitat in the sampled area was 178,700 m2 and for all ice (icebergs plus brash ice) was
4,078,600 m2. Average iceberg angularity was 1.8 (SD = 0.3) and ranged up to 4.7. An example
of the classification results for a typical scene, including estimates of iceberg angularity for a
sample iceberg, is provided in Fig 3. Full accuracy assessment results are summarized as a

Table 1. Variables extracted from each scene using object-based image analysis.

Variable Definition

Iceberg (%) Percent of each scene that is icebergs greater than 1.6 m2

Brash Ice (%) Percent of each scene that is ice smaller than 1.6 m2

Water (%) Percent of each scene that is water (not ice)

Iceberg Size (m2) Average size (m2) of icebergs (greater than 1.6 m2) in each scene

Iceberg Angularity Angularity is the ratio of the perimeter of an object to the perimeter of the smallest

rectangle that can enclose the object. Iceberg angularity is the average angularity for

all iceberg ‘objects’ present in the scene.

Dist. to Terminus

(km)

Distance from glacier calving face to center point of each scene

doi:10.1371/journal.pone.0164444.t001

Object-Based Image Analysis of Glacier Ice Habitat

PLOS ONE | DOI:10.1371/journal.pone.0164444 November 9, 2016 8 / 16



Fig 3. Sample classification result for the OBIA workflow. Classification, showing an iceberg, brash ice, water, and seals, is overlaid on original image.

The iceberg on which the two seals are resting has an area of 27.4 m2 and an angularity of 1.51.

doi:10.1371/journal.pone.0164444.g003
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confusion matrix in Table 3. Following [37], we calculate Cohen’s Kappa statistic for these
results as 0.63.

The accuracy assessment demonstrated that the overall accuracy of this method in classify-
ing icebergs, brash ice, and water is 75.6% (Table 3). The overall accuracy of classifying brash
ice is only 59.8%, with brash ice misclassified as water or icebergs almost evenly, at 18.3% and

Fig 4. Spatial and numerical distribution of icebergs and characteristics within Johns Hopkins Inlet. (a) Distribution of icebergs (>1.6 m2) within

Johns Hopkins Inlet on 18 June 2007, as a percentage of each aerial image. Iceberg data are interpolated from non-overlapping images. Histograms (blue)

and probability density functions (red) for (b) percent iceberg cover, (c) mean iceberg size (in m2), and (d) mean iceberg angularity, respectively.

doi:10.1371/journal.pone.0164444.g004
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21.9%, respectively. This is to be expected, as brash ice objects tend to be significantly more
complex than water or iceberg objects (cf. Fig 3), with some pixels representing water and oth-
ers representing ice.

Fig 5. Spatial and numerical distribution of brash ice within Johns Hopkins Inlet. (a)Distribution of brash ice in Johns Hopkins Inlet on 18 June 2007,

as a percentage of each aerial image. Histogram (blue) and probability density functions (PDF) (red) for percent coverage of brash ice (b) and water (c).

doi:10.1371/journal.pone.0164444.g005

Table 2. Summary of results of object-based image analysis per image.

Variables Mean Std. Dev. Maximum # of Images

Iceberg (%) 2.1 1.4 13.2 879

Brash Ice (%) 45.2 41.5 99.3 879

Water (%) 52.7 42.3 99.8 879

Iceberg Size (m2) 5.7 2.6 38.7 879

Iceberg Angularity 1.8 0.3 4.7 879

Dist. to Terminus (km) 5.5 3.2 11.1 879

doi:10.1371/journal.pone.0164444.t002
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To estimate the accuracy of the fine-scale statistics such as iceberg size and angularity, we
used a sample of the individual icebergs, from the manual classification, and compared them to
iceberg objects from the automated results in the same location. The automated results under-
estimated total iceberg area by approximately 26% (2161 m2 to 2715 m2). Comparing values
from individual icebergs from before and after manual correction, we find little to no change in
the mean iceberg size (manual: �x = 4.9 m2, SD = 7.4 m2; automated: �x = 4.1 m2, SD = 8.7 m2)
or angularity (manual: �x = 1.54, SD = 0.29; automated: �x = 1.57, SD = 0.35), however; suggest-
ing that most of the area changes are due to whole icebergs being mis-classified as brash ice.

As previously stated, the total available iceberg habitat in the sampled images was 178,700
m2, and the total area of all ice (icebergs plus brash ice) was 4,078,600 m2. The uncertainty in
this estimate comes primarily from misclassification of icebergs, as detailed above (26%). In
addition to the classification uncertainty, there is the potential for a small bias in iceberg area
due to scale distortion at the edge of each frame (< 7%, based on the flying height of the aircraft
and the position of icebergs within the frame). The total uncertainty in our estimate of iceberg
area that arises from these two sources is 27%, and so our final estimate of total iceberg area (±
uncertainty) in the sampled images is 178,700 ± 48,200 m2.

There is also uncertainty associated with the assumption that our sampled images are repre-
sentative of the fjord as a whole. To this end, we select 100 trials of 40 images, and calculate the
mean iceberg percentage area in each sample. The resulting distribution of the mean percent-
age iceberg area has a mean of 2.08%, while the mean percentage iceberg area of all of the
images is 2.07%, suggesting that images are well-representative of the fjord as a whole. To cal-
culate the total area of icebergs in the fjord, then, we multiply the mean iceberg percentage
(2.07%) by the area of the fjord (22 km2), to get a final estimate (± uncertainty) of
455,400 ± 123,000 m2. The standard error of the mean iceberg area is 4.66 x 10−4, or 10,250 m2

of ice.

Conclusions

We present a semi-automated method that uses OBIA to quantify the amount and fine-scale
characteristics of floating glacier ice in a tidewater glacier fjord. We have applied this method
to aerial photos of Johns Hopkins Inlet in Glacier Bay National Park and Preserve, Alaska,
resulting in an estimate of the total amount of icebergs in the fjord, as well as the fine-scale
characteristics of individual icebergs. Understanding how the amount and characteristics of
available ice may change is particularly important given that predicted changes to tidewater
glacier habitats may result in changes and/or reduced availability of glacier ice habitat for wild-
life, such as harbor seals [29], that depend on them as habitat.

Table 3. Summary of classification error analysis results.

Ground Truth

Water Brash Ice Icebergs Total User’s Accuracy

Water 2297 1298 0 3595 63.8%

Brash Ice 150 4243 4 4397 96.5%

Icebergs 18 1550 2831 4399 64.4%

Total 2465 7091 2835 12391

Prod. Accuracy 93.2% 59.8% 99.9% Total: 75.6%

Confusion matrix showing results of error analysis using a sample of pixels from manually-corrected classification images (“Ground Truth”) and

automatically classified results.

doi:10.1371/journal.pone.0164444.t003
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Our accuracy analysis indicates that this method works well for classifying icebergs across
scenes, with an overall classification accuracy of 75.6%. If we consider only the method perfor-
mance in differentiating between ice (the two ice classes) and water, the classification method
has an overall accuracy of over 88%, with producer’s and user’s accuracy for ice of 87% and
98%, respectively, suggesting that the main challenge lies in distinguishing between brash ice
and icebergs. Indeed, in areas with densely-packed ice, low contrast between neighboring ice
cover, or dark or sediment-covered ice, icebergs are misclassified as brash ice about 20% of the
time, leading to an underestimation of total ice area by at least 20%. However, mean iceberg
angularity and mean iceberg size are quite similar across our samples, further suggesting that
the underestimation of total iceberg area is due to whole icebergs being classified as brash ice.
In other areas where thick brash ice cover (or mélange; see, e.g., [38]) may be persistent, such
as near the tidewater outlet glaciers of the Greenland Ice Sheet, further efforts may be needed
to distinguish between individual pieces of ice. In areas with higher concentrations of water,
the accuracy of the presented method is generally much higher. It may be possible to improve
the performance by using a segmentation algorithm that focuses on shape rather than contrast
to differentiate between brash ice and icebergs, as the main difference between these classes
appears to be related to size, shape, and texture, rather than brightness, and this possibility will
be investigated in future studies.

We provide an estimate of total iceberg area for both the sampled areas of the fjord, as well
as the unsurveyed areas. Uncertainty in this estimation comes primarily from two sources:
uncertainty in classification, and bias as a result of scale distortion in the aerial images. For the
flying heights used to acquire the images for this study (~308 m), the uncertainty due to scale
distortion is low relative to the uncertainty due to mis-classification. If this method is extended
to areas where icebergs are potentially much larger (e.g., fjords in Greenland or Antarctica), or
where flying heights must necessarily be much higher (due to, for example, weather condi-
tions), these effectsmay be much larger; in these cases, they should be considered, and, if neces-
sary, corrected for.

While satellite imagery has been proven to be an effective tool to count pinnipeds and assess
habitat features of other pagophilic species (e.g., [39–41]), extensive cloud cover is common in
our study area in southeastern Alaska and prevents the acquisition of high-quality satellite
imagery on a regular basis. Very high spatial resolution aerial imagery, such as the kind used in
this study, allows for the characterization of fine-scale habitat features such as estimates of size
and angularity of individual icebergs. These characteristics cannot generally be determined
from satellite imagery due to the limits of spatial resolution of even the best commercially avail-
able satellite images.

The OBIA technique that we have described could also be applied to imagery collected by
unmanned Aerial System (UASs), which are relatively new low-cost platforms that can be used
to quantify wildlife and the habitats that they use. For example, UASs have been successfully
used to photograph several species and their habitats in remote regions including Steller sea
lions (Eumetopias jubatus) in Alaska, dugongs (Dugong dugon) in nearshore marine habitats in
Australia, and penguins and pinnipeds in Antarctic [42–44].

This study demonstrates that OBIA is a method that can be used to assess the availability of
glacier ice for seals and for quantifying the fine-scale characteristics of ice in tidewater glacier
fjords. An understanding of the amount and fine-scale features of icebergs will be essential for
assessing how future changes in glacier calving rates may influence ice habitat that is used by
harbor seals in tidewater glacier fjords. The method describedhere can be applied in future
studies to assess seasonal and inter-annual changes in the availability of icebergs, and also used
to provide quantitative estimates of iceberg characteristics that can be used in habitat and pop-
ulation trend models for harbor seals or other pagophilic species. The approach we have
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presented could be broadly applied to quantify iceberg characteristics in other tidewater glacier
fjords, as well as other ice habitats such as sea ice, in order to investigate the effects of changing
ice cover on other pagophilic species such as penguins and polar bears (Ursus maritimus).
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