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Pigs infected by pseudorabies virus (PRV) display necrotic pathology in multiple organs.
The mechanism by which PRV induces cell death is still unclear. Recently, necroptosis
was identified as a programmed process dependent on the receptor interacting protein
kinase 3 (RIPK3) and mixed lineage kinase-like protein (MLKL). In this study, we
demonstrated that PRV induced RIPK3-dependent necroptosis in PK-15 cells. The data
showed that PRV infection caused cell death with Propidium Iodide (PI)-positive staining.
Transmission electron microscopy analysis indicated plasma membrane disruption in
PRV-infected cells. A pan-caspase inhibitor did not prevent PRV-induced necrotic cell
death. Western blot analysis indicated that caspase-3 and caspase-8 were not cleaved
during PRV infection. Although the transcription of tumor necrosis factor-alpha (TNF-α)
was increased by PRV infection, RIPK1 was shown to be not involved in PRV-induced
necrotic cell death by use of its specific inhibitor. Further experiments indicated that
the phosphorylation of RIPK3 and MLKL was upregulated in PRV-infected cells. Stable
shRNA knockdown of RIPK3 or MLKL had a recovery effect on PRV-induced necrotic
cell death. Meanwhile, viral titers were enhanced in RIPK3 and MLKL knockdown cells.
Hence, we concluded that initiation of necroptosis in host cells plays a limiting role in
PRV infection. Considering that necroptosis is an inflammatory form of programmed
cell death, our data may be beneficial for understanding the necrotic pathology of pigs
infected by PRV.

Keywords: pseudorabies virus (PRV), necroptosis, receptor interacting protein kinase 3 (RIPK3), mixed lineage
kinase-like protein (MLKL), PK-15 cell

INTRODUCTION

Pseudorabies virus (PRV), also known as Aujeszky’s disease virus or Suid herpesvirus type 1 (SuHV-
1), is an enveloped virus with a 143 kb double-stranded linear DNA encoding more than 70 proteins
(Klupp et al., 2004). The virus belongs to the family Herpesviride that includes herpes simplex virus
1 (HSV-1) and human cytomegalovirus (HCMV) (Davison, 2010). PRV is an infectious agent of
disease in multiple mammals, including pigs, ruminants, carnivores, rodents, and so on (Sun et al.,
2016). Humans are also reported to be infected by PRV (Li et al., 2020; Liu et al., 2020). Depending
on the ability of latent infection and reactivation in trigeminal nerves in pigs, PRV mainly circulates
in porcine herds and induces severe economic losses (Rziha et al., 1986). Pathological features in
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pigs infected by PRV include necrosis in multiple organs,
including tonsil, lung, cerebellum, lymph nodes, kidney, and liver
(Verpoest et al., 2016; Yang et al., 2016). During the infection
in pigs, PRV primarily infects the epithelial cells and crosses the
basement membrane in order to infect all cell types in underlying
tissues in a necrotic fashion (Nauwynck et al., 2007). In vitro,
PRV caused cell death of primary porcine epithelial kidney,
superior cervical ganglion, and testicle cells (Geenen et al., 2005,
2007). However, the mechanism by which PRV induces cell death
is still unclear.

Traditionally, necrosis has been considered as a form of
accidental cell death. Recently, necroptosis was found to be a kind
of programmed process dependent on the receptor interacting
protein kinase 3 (RIPK3) and mixed lineage kinase-like protein
(MLKL) (Sun et al., 2012). MLKL targets the cell membrane
and destroys its integrity, leading to the release of cellular
contents and subsequent inflammatory reactions (Wang H et al.,
2014). Tumor necrosis factor-alpha (TNF-α) is a classical inducer
of necroptosis via death receptors and the cascade reaction
of the receptor interacting protein kinase 1 (RIPK1), RIPK3,
and MLKL (Holler et al., 2000; Wu et al., 2014). Interestingly,
necroptosis can also be activated through non-classical pathways
independent of RIPK1. It has been demonstrated that RIPK3 can
be initiated in an RIPK homotypic interaction motif (RHIM)-
dependent manner. For example, some pattern recognition
receptors (PRRs), including DNA-induced activator of interferon
(DAI, also known as DLM and ZBP1), Toll-like receptors (TLRs),
and retinoic acid-inducible gene 1 (RIG-I) like receptors, directly
bind with the RHIM of RIPK3 and initiate the necroptosis
pathway (Kaiser et al., 2013; Thapa et al., 2016; Schock et al.,
2017).

As an inflammatory form of programmed cell death,
necroptosis plays an important role in fighting against
viral infection. Vaccinia virus-induced tissue necrosis and
inflammation is connected with RIPK1-RIPK3 necrosomes.
Strikingly, the replication and mortality from Vaccinia virus are
increased in mice with RIPK3 deletion (Cho et al., 2009). In
order to sustain replication in host cells, murine cytomegalovirus
(MCMV) infection prevents RIPK3 activity by encoding the
RHIM-containing protein M45/vIRA (Upton et al., 2012).
Similar to MCMV, HSV-1 has the ability to inhibit necroptosis
via the interaction of ribonucleotide reductase large subunit
(ICP6) with RIPK3 in human cells (Guo et al., 2015b). However,
it has been reported that ICP6 is a direct activator of RIPK3 in
mouse cells, underlining the species differences in necroptosis
pathways (Wang X et al., 2014). Although PRV is closely related
to HSV-1, the role of necroptosis in cell death induced by PRV
infection is still unclear.

Herein, we explored PRV-induced RIPK3-dependent
necroptosis in PK-15 cells. Our data showed that PRV infection
caused cell death with necrotic characteristics. Activities of
caspase proteins were not involved in PRV-induced necrotic cell
death. In addition, classical RIPK1-dependent necroptosis was
not related to PRV infection, although the expression of TNF-α
was increased. Furthermore, we found that the phosphorylation
of RIPK3 and MLKL was upregulated in PRV-infected cells.
Stable shRNA knockdown of RIPK3 or MLKL could promote cell

viability and enhance viral titers during PRV infection, indicating
the limiting role of necroptosis in PRV infection.

MATERIALS AND METHODS

Cells and Viruses
The swine kidney cell line PK-15 (ATCC, CCL-33) was cultured
in Dulbecco’s modified Eagle medium (DMEM) (11965; Gibco)
supplemented with 10% fetal bovine serum (FBS) (Biological
Industries, United States) at 37◦C with 5% CO2. The classical
PRV Rong A (RA) strain was purchased from the China
Veterinary Culture Collection Center (CVCC Number: AV25).
The currently circulating variant of virulent PRV GD-WH
strain (GenBank No. KT948051) was isolated from the brain
of a pig suspected to be infected with PRV in 2015. Pure
virus was obtained via several rounds of plaque purification
(Gou et al., 2020).

Biochemical Reagents and Antibodies
The pan-caspase inhibitor Z-VAD-FMK (S7023) and RIPK1
inhibitor necrostatin-1 (S8037) were purchased from Selleck
Chemicals. TNF-α (RP0080S) was the product of Kingfisher
Biotech. Staurosporine (S1882) and SM-164 (SC0114) were
obtained from Beyotime. The primary antibodies used in this
study were as follows: rabbit polyclonal Caspase-3 (AC030;
Beyotime), rabbit polyclonal Caspase-8 (AC056; Beyotime),
rabbit polyclonal RIPK3 (AF7893; Beyotime), rabbit polyclonal
MLKL (A5579; ABclonal), rabbit polyclonal TNF-α (A0277;
ABclonal), rabbit polyclonal FasL (A0234; ABclonal), rabbit
polyclonal TraiL (A12312; ABclonal), mouse monoclonal
GAPDH (AG019; Beyotime), rabbit monoclonal (EPR9627)
RIP3 (phospho S227) (ab209384; Abcam), rabbit monoclonal
(EPR9514) to MLKL (phospho S358) (ab187091; Abcam), and
mouse monoclonal anti-PRV gE (kindly provided by Dr. Gaiping
Zhang, College of Veterinary Medicine, Henan Agricultural
University, China). The secondary antibodies used for Western
blot were HRP-conjugated goat anti-mouse IgG (BS12478;
Bioworld Technology) and HRP-conjugated goat anti-rabbit IgG
(BS13278; Bioworld Technology).

Virus Titers Assay
Virus titers were determined on PK-15 cells cultivated in 96-
well plates. Virus supernatant was 10-fold serial diluted with
DMEM containing 2% FBS. After being inoculated on a cell
monolayer and cultured at 37◦C for 3 days, cytopathic effects
were observed and calculated as the 50% tissue culture infectious
dose (TCID50) per milliliter according to the Spearman–Karber
method (Spearman, 1908; Kärber, 1931).

Biochemical Intervention
To stimulate apoptosis, PK-15 cells at 80% confluence were
treated with 50 nM staurosporine, a protein kinase inhibitor.
To prevent apoptosis, 10 µM Z-VAD-FMK was added to the
cell medium. To activate TNF-α-induced necroptosis, PK-15 cells
were treated with 10 ng/ml TNF-α combined with 2 µM SM-164
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and 10 µM Z-VAD-FMK. For inhibiting RIPK1 activities, PK-15
cells were treated with 100 µM necrostatin-1.

Cell Viability Assay
Cell viability was analyzed by using a Cell Counting Kit-8 (CCK8)
assay kit (C0037; Beyotime) according to the manufacturer’s
instructions. A seeding density of 1 × 104 cells was cultured in 96-
well culture plates for 24 h. Then, the cell monolayer was infected
with PRV or stimulated with biochemical reagents. After 24 h of
cultivation, cells were washed twice with DMEM and cultured in
100 µl of DMEM containing 10 µl of CCK8 for 1 h. The optical
density was measured at 570 nm by using a model 680 microplate
reader (Bio-Tek).

Fluorescent Dye Staining of Apoptotic
and Necrotic Cells
PK-15 cells in 96-well culture plates were treated with PRV or
biochemical reagents. The cell medium was discarded after 12
or 24 h. The cell monolayer was stained with Hoechst-33342
or Propidium Iodide (PI) solutions (C1056-3; Beyotime) for
10 min at 4◦C. According to the manufacturer’s instructions,
apoptotic cells stained with Hoechst-33342 will show a bright
blue color. Meanwhile, necrotic cells stained with both Hoechst-
33342 and PI will show bright blue and red colors. Live images
were recorded by using EVOS FL Auto (Life Technologies).

Flow Cytometry Analysis of Apoptotic
Cells
Apoptosis of the cells was analyzed by using the Alexa FluorTM

488 Annexin V/Dead Cell Apoptosis Detection Kit I (2208491;
Invitrogen) according to the manufacturer’s instructions. Briefly,
PK-15 cells in 6-well culture plates were dispersed by trypsin.
Then, cells were collected by centrifugation at 800g for 2 min.
After washing twice with PBS, cells were stained with Alexa
Fluor 488TM Annexin V and PI solutions for 15 min at room
temperature. Flow cytometry analysis was performed on a
CytoFLEX (BECKMAN COULTER).

Transmission Electron Microscopy
The cell monolayers in 10-cm dishes were washed twice with
PBS and fixed with 2.5% glutaraldehyde diluted in PBS at 4◦C
for 30 min. PK-15 cells were scraped and placed into 1.5-ml
Eppendorf tubes. Cell pellets were dehydrated with an acetone
series and embedded in epoxy resin. Then, ultrathin sections were
prepared and observed by using a JEM-2010HR TEM (JEOL).

Western Blot
Cells were washed with ice-cold PBS and dissolved in
radioimmunoprecipitation assay (RIPA) lysis buffer (P0013B;
Beyotime) containing 1 mM phenylmethanesulfonyl fluoride
(PMSF, ST506; Beyotime) for 10 min. After centrifugation at
14,000g at 4◦C for 10 min, the protein supernatant was obtained,
and its concentration was quantified by using a bicinchoninic
acid (BCA) protein assay kit (23227; Thermo Fisher). Twenty
micrograms of protein was separated in 12% SDS-PAGE gels
and then electro-transferred to polyvinylidene fluoride (PVDF)

membranes (IPVH00010; Millipore). PVDF membranes were
blocked in PBS containing 5% nonfat milk and 0.1% Tween
20 for 1 h at 25◦C. The corresponding primary antibodies
were incubated at 4◦C for 12 h, and the secondary antibodies
conjugated to HRP were incubated at 37◦C for 1 h. Then, protein
blot signals were amplified by using an ECL Plus kit (P0018FS;
Beyotime) and imaged by a chemiluminescence imaging system
(Fine-do X6; Tanon). The intensity of protein blots was measured
with ImageJ software (Gassmann et al., 2009).

Construction of PK-15 Cells Stably
Expressing shRNA
The shRNAs, respectively, targeting RIPK3 (GenBank No.
MG543992.1) and MLKL (GenBank No. MG543991.1)
were designed by Cyagen. The shRNA sequences used
in this study were as follows. shRIPK3 sequence:
ACAGCAACTACATGGTTATAA and shMLKL sequence:
ACGAGCTTCCTGGTCACTAAA. To generate stable gene
knockdown in PK-15 cells, shRNAs targeted to RIPK3, MLKL,
and Scramble shRNAs were transfected into cells by using
Lipofectamine 3000 (L3000001; Thermo Fisher). The medium
was changed to fresh complete medium containing 1 µg/ml
puromycin (ST551; Beyotime) after 24 h post-transfection. After
7 days, live cells were dispersed and diluted to single cells in
96-well culture plates. Then, single cell clones were harvested,
and mRNA of each clone was evaluated by reverse transcription-
quantitative polymerase chain reaction (RT-qPCR). Finally, the
single clone with the lowest mRNA level was used as a gene
knockdown cell line.

RT-qPCR
Total RNA was purified by using a Total RNA Kit I (R6834-
01; Omega) according to the manufacturer’s instructions.
Complementary DNAs (cDNAs) were synthesized by using
PrimeScriptTM RT Master Mix (RR036A; TAKARA). Primers of
RT-qPCR are listed in Table 1. Using SYBR Premix (RR820A;
TAKARA), RT-qPCR was performed on a LightCycler 480
detection system (Roche).

Statistical Analysis
Statistical analysis was conducted using unpaired Student’s t tests
or by two-way ANOVA in GraphPad Prism 5 software.

TABLE 1 | Primer sequences used for RT-qPCR assay.

Gene
name

Forward primer (5′-3′) Reverse primer (5′-3′)

GAPDH TGGAGTCCACTGGTGTCTTCAC TTCACGCCCATCACAAACA

TNF-a TGGCCCAAGGACTCAGATCAT TCGGCTTTGACATTGGCTACA

FasL AAGAAGAAGAGGGACCACAATG CTTTGGCTGGCAGACTCTCT

TraiL GGAACGGTTTCTACAGAAGGG
AAC

TCAGCAGTATAGGGTCAGGA
TAGC

RIPK3 GTCCGGCGTTAAGTTATGGC CGCCTGCGAGTTAACGATC

MLKL GCTCAGGAAGAATGAATGC GCCTTACTAGTCCAATGTCGC
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FIGURE 1 | PRV induced cell death with necrotic characteristics. (A) PI-positive PK-15 cells were increased by PRV infection. PK-15 cells were mock-infected or
infected with PRV GD-WH or RA strains (MOI = 10) for 12 and 24 h. After cells were stained with PI (red), live images were snapped. (B) Statistical analysis of the
ratio of PI-positive cells in live images (mean ± SD; n = 3; **P < 0.01, ***P < 0.001). P values were calculated by using two-way ANOVA. (C) Cell viability was
decreased by PRV infection. PK-15 cells were mock-infected or infected with PRV GD-WH or RA strains (MOI = 10) for 24 h. Cell viability was analyzed by using the
CCK8 assay as described in the Materials and Methods section (mean ± SD; n = 3; **P < 0.01, ***P < 0.001). P values were calculated by using two-way ANOVA.
(D) Disrupted membrane of PRV-infected cells was observed by using TEM. PK-15 cells in 10-cm dishes were mock-infected or PRV-infected at an MOI of 10 for
24 h. Then, cell monolayer was collected and analyzed by using TEM. In TEM images, N indicated the cell nucleus. Arrowheads point to cell plasma membrane
leakage. (E) Quantification ratio of PK-15 with the disrupted cell plasma membrane (mean ± SD; n ≥ 30 cells; ***P < 0.001). P values were calculated by using an
unpaired Student’s t-test.

RESULTS

PRV Induces a Necrotic Form of Cell
Death
PK-15 cells were susceptible to PRV infection in vitro. To
analyze the cell death induced by PRV infection, PK-15 cells
were stained with PI at 12 and 24 h post-infection (hpi). As
shown in Figures 1A,B, PK-15 cells infected with PRV GD-
WH or RA strains showed morphological changes, and the
proportion of PI-positive live cells increased at 12 and 24 hpi,
but the mock-infected cells were not affected. In addition,
cell viability was sharply reduced by PRV GD-WH or RA
infection at 12 and 24 hpi (Figure 1C). Considering that PI
is a membrane-impermeable nuclear stain, this result showed
that PRV infection caused the cell death by a membrane
permeability change. To display cell membrane leakages of PK-
15 cells infected by PRV, we observed the cell micromorphology
by using transmission electron microscopy (TEM). Remarkably,
disrupted cell membranes were observed in the PRV GD-WH
or RA infection groups compared with normal cell morphology
in the mock groups at 24 hpi, demonstrating the characteristics

of necrotic cells. Meanwhile, swollen nuclei and dissolved
chromatin were observed in PRV-infected cells (Figures 1D,E).
These results indicated that both PRV GD-WH and RA strains
induced necrotic cell death in PK-15 cells, independent of viral
strain differences.

Cell Death During PRV Infection Is
Caspase Independent
To exclude the possibility that necrotic cells in the PRV-infected
groups were linked to caspase-dependent cell death, the pan-
caspase inhibitor Z-VAD-FMK was utilized to globally inhibit all
known caspases before viral infection. Live images showed that
staurosporine, an activator of apoptosis, increased the number
of apoptotic cells stained with Hoechst-33342, a membrane-
permeable nuclear stain. Although Z-VAD-FMK treatment
obviously reduced the effect of staurosporine stimulation, it had
no effect on PRV GD-WH or RA strains inducing necrotic
cells stained with both Hoechst-33342 and PI (Figure 2A).
Meanwhile, flow cytometry analysis also indicated that increased
ratios of necrotic cells (PI-positive) in the PRV GD-WH or RA
infection groups were not affected by Z-VAD-FMK treatment,
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FIGURE 2 | Cell death induced by PRV infection was caspase independent. (A) Z-VAD-FMK treatment has no inhibitory effect on increased PI-positive cells during
PRV infection. PK-15 cells pretreated with 10 µM Z-VAD-FMK were mock-infected or infected with PRV GD-WH or RA strains (MOI = 10) for 24 h. After cells were
stained with Hoechst-33342 (blue) and PI (red), live images were snapped. BF indicated the bright field images. H + P indicated the merged images of cells stained
with Hoechst-33342 (blue) and PI (red). (B) Flow cytometry analysis of the effect of Z-VAD-FMK treatment on PRV-infected PK-15 cells. PK-15 cells pretreated with
10 µM Z-VAD-FMK were mock-infected or infected with PRV GD-WH or RA strains (MOI = 10) for 24 h. Rates of apoptotic cells were analyzed by using the Alexa
FluorTM 488 Annexin V/Dead Cell Apoptosis Detection Kit as described in the Materials and Methods section (Q1-UL, Annexin V-negative and PI-positive; Q1-UR,
Annexin V-positive and PI-positive; Q1-LL, Annexin V-negative and PI-negative; Q1-LR, Annexin-V-positive and PI-negative). (C) Statistical analysis of the ratio of
apoptotic cells (Annexin-V-positive and PI-negative) or dead cells (PI-positive) in flow cytometry analysis data (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P
values were calculated by using two-way ANOVA. (D) The decline of cell viability induced by PRV infection cannot be recovered by Z-VAD-FMK treatment. PK-15
cells pretreated with 10 µM Z-VAD-FMK were mock-infected or infected with PRV GD-WH or RA strains (MOI = 10) for 24 h. Cell viability was analyzed by using the
CCK8 assay as described in the Materials and Methods section (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P values were calculated by using an unpaired
Student’s t-test. (E) Western blot analysis showed that caspase proteins were not activated during PRV infection. PK-15 cells were mock-infected, infected with
PRV GD-WH or RA strains (MOI = 10), or 50 nM staurosporine treated for 24 h. Caspase-3 and caspase-8 in whole cell lysates were analyzed by using Western blot
as described in the Materials and Methods section.
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but Z-VAD-FMK had obvious inhibitory effect on ratios of
apoptotic cells (Annexin V-positive and PI-negative) stimulated
by staurosporine (Figures 2B,C). Further experiments showed
that the decline of cell viability induced by staurosporine
stimulation could be reversed by Z-VAD-FMK treatment, but
not by PRV GD-WH or RA infection (Figure 2D). In addition,
Western blot analysis indicated that cleaved caspase-3 and
caspase-8 were not detected in the PRV-infected groups at 24 hpi
(Figure 2E). These results offered evidence that caspase activities
were not involved in PRV GD-WH or RA strain induction of
necrotic cell death.

Classical RIPK1-Dependent Necroptosis
Is Not Related to PRV Infection
Based on the fact that both PRV GD-WH and RA strains
induced caspase-independent necrotic cell death in PK-15

cells, we further explored how PRV induced necrotic cell
death by using the GD-WH strain. Classical necroptosis is
activated by the interaction of TNF-α with death receptors and
RIPK1 (Holler et al., 2000). To explore the role of classical
necroptosis in PRV infection, the transcription of TNF-α was
analyzed by RT-qPCR. Meanwhile, the transcription levels of
FasL and TraiL were measured in parallel, as these are ligands
corresponding to death receptors of the extrinsic apoptosis
pathway. As shown in Figure 3A, PRV GD-WH infection raised
the TNF-α transcription level in a time-dependent manner
but decreased the transcription of FasL and TraiL. Further
analysis showed that the protein expression of TNF-α, FasL,
and TraiL was consistent with transcriptional changes in PK-
15 cells infected by PRV GD-WH (Figure 3B). These results
suggested that RIPK1 might be activated by TNF-α during
PRV infection. Then, we asked whether the specific RIPK1
inhibitor necrostatin-1 could prevent the cell death induced

FIGURE 3 | Necrotic cell death during PRV infection was not related to RIPK1. (A) PRV infection raised the TNF-α transcription. PK-15 cells were mock-infected or
infected with PRV GD-WH strain (MOI = 10) for 24 h. mRNA levels of TNF-α, FasL, and TraiL were analyzed by RT-qPCR as described in the Materials and Methods
section (mean ± SD; n = 3; *P < 0.05, **P < 0.01). P values were calculated by using two-way ANOVA. (B) Western blot analysis protein expressions of TNF-α,
FasL, and TraiL. PK-15 cells were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 24 h. Protein expressions of TNF-α, FasL, and TraiL in whole cell
lysates were analyzed by using Western blot as described in the Materials and Methods section. (C) Necrostatin-1 could not prevent the decline of cell viability
during PRV infection. PK-15 cells pretreated with 100 µM necrostatin-1 were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 24 h. Cell viability
was analyzed by using the CCK8 assay as described in the Materials and Methods section (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P values were calculated
by using an unpaired Student’s t-test. (D) Necrostatin-1 had no effect on necrotic cells with PI staining induced by PRV infection. PK-15 cells pretreated with
100 µM necrostatin-1 were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 24 h. PK-15 cells treated with TSZ (10 ng/ml TNF-α combined with
2 µM SM-164 and 10 µM Z-VAD-FMK) were used as a positive control of classical necroptosis. After cells were stained with PI (red), live images were snapped. (E)
Statistical analysis of the ratio of PI-positive cells in live images (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P values were calculated by using an unpaired
Student’s t-test.
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by PRV GD-WH infection. Surprisingly, necrostatin-1 failed to
reverse the cell viability decline in the PRV GD-WH infection
group, but successfully restored the cell viability in the group
treated with TNF-α/Smac mimetic/Z-VAD-FMK, a classical
necroptosis activator (Figure 3C). The live images showed that
necrostatin-1 could reduce the ratio of PI-positive cells induced
by TNF-α/Smac mimetic/Z-VAD-FMK treatment while having
no effect on necrotic cells induced by PRV GD-WH infection
(Figures 3D,E). Taken together, these results suggested that
TNF-α- and RIPK1-dependent necroptosis was not involved
in PRV infection.

PRV Infection Upregulates the
Phosphorylation of RIPK3 and MLKL
In addition to RIPK1, it has been reported that the necroptosis
pathway can be activated by the direct reaction of some
PRRs with RIPK3 (Kaiser et al., 2013). Although RIPK1-
dependent necroptosis was not related to PRV infection, we
asked whether RIPK3 and downstream MLKL were activated
in a RIPK1-independent manner. Western blot analysis showed
that the phosphorylation of RIPK3 and MLKL was increased
by PRV GD-WH infection in PK-15 cells at 12 and 24 hpi.
Meanwhile, the protein expression levels of RIPK3 and
MLKL were downregulated by GD-WH at 12 and 24 hpi
(Figures 4A,B). In addition, the transcription of RIPK3 and
MLKL was analyzed. As shown in Figure 4C, RT-qPCR analysis
indicated that the transcription levels of RIPK3 and MLKL
were sharply downregulated in PK-15 cells infected by PRV
GD-WH, consistent with changes of the respective protein
expression levels. Above all, these results demonstrated that
RIPK3- and MLKL-dependent necroptosis was activated in
PRV-infected PK-15 cells.

Knockdown of RIPK3 and MLKL
Reduces Necroptosis but Enhances Viral
Replication in PRV-Infected PK-15 Cells
An RNA interference experiment was performed to verify the
functions of RIPK3 and MLKL in PRV-induced necroptosis. The
RT-qPCR analysis indicated that PK-15 cells stably expressing
shRNA targeted to RIPK3 or MLKL displayed an obvious decline
of their transcription products (Figure 5A). After RIPK3 or
MLKL knockdown, PK-15 cells were infected by PRV GD-WH
at 24 hpi, only a few PI-positive cells were observed compared
with the mock and scrambled groups (Figures 5B,C). In addition,
our experiments showed that knockdown of RIPK3 or MLKL
could reverse the reduction of cell viability in the PRV-infected
groups (Figure 5D). Considering this, the viral replication in
RIPK3 or MLKL knockdown PK-15 cells was further investigated.
Interestingly, we found that viral titers at 12 and 24 hpi were both
increased in PK-15 cells with RIPK3 or MLKL gene knockdown,
independent of the multiplicity of infection (MOI) of PRV
infection (Figure 5E). These results indicated that RIPK3 or
MLKL was essential for PRV-induced necroptosis and was a
limiting factor for viral replication in host cells.

DISCUSSION

Pseudorabies virus is an alpha-herpesvirus with the ability to
cause necrosis in the central nervous system, lung, kidney,
and other organs (Sehl and Teifke, 2020). During its invasion
metastasis in vivo, virus replication and lytic infection in
epithelial cells are crucial events (Nauwynck et al., 2007). In
this study, we provided the first evidence that necroptosis
was involved in PRV-induced cell death in PK-15 cells, a
porcine kidney epithelial cell line. Necroptosis has been reported

FIGURE 4 | PRV enhanced the phosphorylation of RIPK3 and MLKL. (A) Western blot analysis showed that the phosphorylation of RIPK3 and MLKL was increased
by PRV infection. PK-15 cells were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 24 h. The phosphorylation or protein expression of RIPK3 and
MLKL in whole cell lysates was analyzed by using Western blot as described in the Materials and Methods section. (B) Statistical analysis of the intensity of
phosphorylation bands. Relative intensity of RIPKK3 or MLKL phosphorylation was obtained by comparing the densitometry of phosphorylation bands to its protein
expression bands. GAPDH was used as an internal loading control (mean ± SD; n = 3; *P < 0.05, ***P < 0.001). P values were calculated by using two-way
ANOVA. (C) PRV inhibited the transcription of RIPK3 and MLKL. PK-15 cells were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 12 or 24 h.
mRNA levels of RIPK3 and MLKL were analyzed by RT-qPCR as described in the Materials and Methods section (mean ± SD; n = 3; ***P < 0.001). P values were
calculated by using two-way ANOVA.
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FIGURE 5 | Knockdown of RIPK3 and MLKL dampened PRV-induced necroptosis but increased viral titers. (A) qPCR analysis indicated that RIPK3 or MLKL
transcription was down-regulated in PK-15 cells stably expressing shRNA. mRNA levels of RIPK3 and MLKL were analyzed by RT-qPCR as described in the
Materials and Methods section (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P values were calculated by using two-way ANOVA. (D) Knockdown of RIPK3 or
MLKL prevented the reduction of cell viability during PRV infection. PK-15 cells stably expressing shRNA were mock-infected or infected with PRV GD-WH strain
(MOI = 10) for 24 h. Cell viability was analyzed by using the CCK8 assay as described in the Materials and Methods section (mean ± SD; n = 3; NSP > 0.05,
***P < 0.001). P values were calculated by using an unpaired Student’s t-test. (B) RIPK3 or MLKL knockdown decreased PI-positive cells during PRV infection.
PK-15 cells stably expressing shRNA were mock-infected or infected with PRV GD-WH strain (MOI = 10) for 24 h. After cells were stained with PI (red), live images
were snapped. (C) Statistical analysis of the ratio of PI-positive cells in live images (mean ± SD; n = 3; NSP > 0.05, ***P < 0.001). P values were calculated by using
an unpaired Student’s t-test. (E) Virus titers were increased in RIPK3 or MLKL knockdown PK-15 cells. PK-15 cells stably expressing shRNA were mock-infected or
infected with PRV GD-WH strain (MOI = 1 or 10) for 12 or 24 h. Virus titers were analyzed as described in the Materials and Methods section (mean ± SD; n = 3;
NSP > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). P values were calculated by using two-way ANOVA.

to severely impair tissue necrosis, cause inflammation, and
limit Vaccinia virus replication (Cho et al., 2009). Necroptosis
is related to monocyte cell death during influenza A virus
infection, subsequently initiating adaptive immunity response
and inflammation (Lee et al., 2019). Herein, we speculated that
PRV-induced necroptosis might be a key link between virus lytic
infection in epithelial cells and necrotic inflammatory response
in vivo. Conversely, the RHIM-containing protein of HSV-1,
ICP6, reduced necroptosis in human cells (Guo et al., 2015b).
Although PRV is closely related to HSV-1, the role of necroptosis
in viral pathology might be different in its natural host.

Unlike apoptosis, necroptosis will lead to cell membrane
rapture and cellular content leakage (Wang H et al., 2014).
The leakage of dying cells is the initiator of adaptive immunity
response and inflammation (Nailwal and Chan, 2019). Indeed,
cellular content leakage in PK-15 cells infected by PRV was

observed in the TEM analysis. Our results also showed that
inhibition of necroptosis could prevent cell death and enhance
PRV replication in PK-15 cells. Therefore, we suggest that
initiation of necroptosis in PRV-infected cells is possibly a
protective mechanism against viral replication in host cells.
However, the leakage of virus-infected cells causes inflammation
at the viral invasion site, a factor that is related to the necrotic
pathology in multiple organs in PRV-infected pigs. Remarkably,
apoptosis is a programmed cell death without cellular content
leakage and inflammation in vivo (Yatim and Albert, 2011). It has
been demonstrated that herpes virus employs specific strategies to
escape clearance by apoptosis of infected cells (Guo et al., 2015a).
Additionally, we showed that the pan-caspase inhibitor had no
effect on the cell death caused by PRV infection. Caspase proteins
were not activated in PRV-infected PK-15 cells. This excluded the
role of caspase-dependent cell death pathways in PRV infection.
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As for PRV, it has been shown that the US3 protein mainly exerts
the anti-apoptotic function (Geenen et al., 2005; Chang et al.,
2013).

Concerning mechanism, we found that the transcription of
TNF-α was increased in PRV-infected PK-15 cells, whereas
classical RIPK1 was not related to necroptosis during viral
infection. However, the phosphorylation of RIPK3 and MLKL
offers direct evidence that necroptosis was occurring in the
infectious process. Furthermore, the effect of RIPK3 and MLKL
knockdown on cell death demonstrated their essential roles in
virus-induced necroptosis, although the transcription levels of
RIPK3 and MLKL were downregulated by virus infection. As
a defensive mechanism limiting viral replication in host cells,
necroptosis is well known to be activated by RIPK1 or ZBP1
(Wu et al., 2014; Thapa et al., 2016). Vaccinia virus-infected cells
were sensitive to TNF-α- and RIPK1-mediated necroptosis but
not responsive to ZBP1 (Li and Beg, 2000; Koehler et al., 2017).
In contrast, influenza virus activates necroptosis by ZBP1 sensing
viral RNA (Thapa et al., 2016). Remarkably, MCMV or HSV-1
can inhibit necroptosis in natural host cells via encoding viral
proteins with an inhibitory RHIM targeted to RIPK1 and ZBP1
(Upton et al., 2012; Guo et al., 2015b). As an animal herpes
virus linked to HSV-1, PRV showed a special necroptosis process
different from HSV-1 in its natural host cells. Notably, it has
been reported that HSV-1 can directly initiate necroptosis by
ICP6 binding to RIPK3 in mouse cells (Wang X et al., 2014).
Deletion of the RHIM of ICP6 will result in necroptosis of human
cells infected by HSV-1 (Guo et al., 2018). We speculated that
ICP6 might be responsible for the different effects on necroptosis
between HSV-1 and PRV infection in their natural host cells.
However, this needs to be further explored in future studies.

In conclusion, our data are the first demonstration of
RIPK3-dependent necroptosis in PRV-infected porcine cells.
Meanwhile, we found that necroptosis of host cells played a
limiting role in PRV infection. Considering that necroptosis
is a type of programmed cell death related to cellular leakage
and inflammation, we believe that our data will be beneficial

for understanding the necrotic pathology during PRV infection
in vivo. Further study focused on verifying the role of necroptosis
in vivo by using RIPK3-knockout mice will be necessary.
Inhibitors targeting RIPK3 and MLKL in the necroptosis pathway
may someday be helpful for controlling PRV infection and
exerting a curative effect.
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