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ABSTRACT Because of the increased availability of genome-wide sets of molecular markers along with
reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become
an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have
proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on
the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are
available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of
discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and
censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best
linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for
parameter estimation under these models. We demonstrate our method with simulated and real data. Our
example analyses suggest that the use of the extra information present in an ordered categorical or
censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the
accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian
genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct
threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data,
while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
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Genomic estimated breeding values based on genome-wide sets of
molecular markers have become an essential resource in plant and
animal breeding (Eggen 2012; Nakaya and Isobe 2012). The most
commonly used approach to predict the genomic breeding values is
the genomic best linear unbiased prediction (G-BLUP), a direct de-
scendant of the pedigree-based BLUP model. G-BLUP uses the
marker information in estimating realized relationships between the
individuals, and then uses the marker-estimated genomic relationship

matrix in a mixed model context (e.g., VanRaden 2008; Powell et al.
2010). A relatively recent contender for the BLUP-type of model in
the genomic selection field is to apply simultaneous estimation and
variable selection or variable regularization to multilocus association
models (e.g., Meuwissen et al. 2001; Xu 2003). Contrary to G-BLUP,
a multilocus association model uses the marker information directly
by assigning different, possibly zero, effects to the marker genotypes.
The genomic breeding value of an individual is then quantified as
a sum of the marker effects. Because the number of genetic markers is
usually orders of magnitude greater than the number of individuals
available for the study, the selection or regularization of the predictors
is the key factor of a multilocus association model. In Bayesian geno-
mic selection models the regularization of the excess predictors is
performed by shrinking the effects of the markers not linked to the
phenotype toward zero by assigning a suitable shrinkage inducing
prior density for the marker effects. The most widely used shrinkage
inducing priors comprise the Student’s t and the Laplace densities, the
former of which has been used by Meuwissen et al. (2001), by Xu
(2003), Yi and Banerjee (2009), Hayashi and Iwata (2010), and Habier
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et al. (2011), whereas the latter has been used, e.g., by de los Campos
et al. (2009), Meuwissen et al. (2009), and Sun et al. (2010). The
models relying on the Laplace density are commonly denoted as
Bayesian LASSO (Park and Casella 2008).

In the basic form of these linear models, the response is assumed
continuous with normally distributed residual variation. However, in
many instances the actual phenotypic records are given as binary case-
control, ordered categorical (e.g., from nonaffected via different sever-
ity levels to strongly affected) or censored Gaussian records (e.g.,
a logarithm of an event history or survival data, or spiked phenotypes
as in Broman 2003). With a binary response, either logit or probit
transformation is used to convert the binary response into the prob-
ability of the positive outcome. Both logit and probit models are de-
veloped by assuming an underlying continuous response, often called
the latent variable or liability, dichotomized by setting a threshold to
limit the two classes. The difference between the logit and probit
models is the assumed distribution of the underlying response; the
logit model assumes a logistic and the probit model a Gaussian density
for the underlying variable. In the frequentist framework, the discrete
response is usually modeled without considering the underlying con-
tinuous variable, leading to quite different estimation procedure for
the model parameters than in linear Gaussian regression. Although
under a linear Gaussian model the maximum-likelihood estimate has
a closed-form solution, under the logit and probit models the partial
derivatives of the likelihood function with respect to the regression
coefficients either do not exist or cannot be determined analytically,
and the maximum-likelihood estimate must be computed iteratively.
The logistic link function leads to somewhat simpler algebraic expres-
sions when handled as an integrated part of the linear model and is
therefore often preferred by the frequentists (McCullagh and Nelder
1989).

Contrary to majority of the frequentist models, in the Bayesian
context the underlying continuous response is included into the model
as a separate latent variable layer, usually assumed to follow a Gaussian
density. These two factors, that the augmentation of the latent variable
is now an additional layer in the hierarchical model and that the
augmented variable is assumed Gaussian, permit the usage of the
original linear Gaussian model as such without further modifications.
Moreover, in genetics, the normal assumption is especially reasonable
as the inheritance of complex traits is determined by multiple genes
and environmental factors resulting the liability likely to be normally
distributed.

The ordered categorical records can be dichotomized and analyzed
with a binary model, or alternatively incorporated as Gaussian
observations in a general linear model (e.g., Meijering and Gianola
1985; Wang et al. 2013). The problem with the former procedure is
that it loses the information contained by the extra categories, whereas
in the latter method the model is in effect not compatible with the
data. Similarly to a binary phenotype, the ordinal phenotypes can be
assumed to have an underlying continuous response discretized by
introducing thresholds delimiting the categories (Hackett and Weller
1995). Now there are several thresholds at unknown positions, but
otherwise the binary model can be seen as a special case of the ordinal
model. The threshold idea can be extended to censored data sets by
simply using the uncensored data as such while considering the cen-
sored phenotypes as latent variables. The advantage of this approach is
that it does not matter which part of the data are censored (right, left,
interval, two way censoring), the latent variable is always handled
similarly.

Threshold models for ordinal and binary traits have been
considered previously by several authors. A threshold model for

BLUP with fixed thresholds has been covered by Gianola (1982) and
with unknown, estimated threshold positions by Sorensen et al.
(1995). Multilocus association models of binary and ordinal traits have
been considered by Hoti and Sillanpää (2006), Iwata et al. (2009),
González-Recio et al. (2009), González-Recio and Forni (2011), and
Wang et al. (2013). Furthermore, the threshold approach for censored
observations has been considered by Broman (2003), within BLUP
context by Sorensen et al. (1998), and with multilocus association
models by Sillanpää and Hoti (2007) and Iwata et al. (2009).

In this article we aim to enlarge on the threshold model more
generally. We consider two Bayesian hierarchical models representing
the alternative modeling approaches, a Bayesian version of the G-
BLUP and a hierarchical Bayesian LASSO (e.g., Park and Casella 2008;
Kärkkäinen and Sillanpää 2012a) as a representative of a multilocus
association model with variable regularization, and show that in case
of a binary, ordinal, or censored Gaussian phenotype the same addi-
tional latent variable layer can be plugged into both types of the
genomic selection models. In fact, the additional latent variable layer
can be subsumed into legions of different linear Gaussian models;
Wang et al. (2013) have used it with BayesA, BayesB, and BayesCp,
whereas in our previous work (Kärkkäinen and Sillanpää 2012a) we
incorporated a binary threshold-based latent layer into 13 distinct
models, including a Bayesian G-BLUP, BayesA, BayesB and both
hierarchical and nonhierarchical Bayesian LASSO. In this work, we
exemplify the threshold method with a hierarchical Bayesian LASSO
as it proved the best working model in the aforementioned previous
work and, on the other hand, we did not want to pick anything lesser
known, such as the extended Bayesian LASSO (introduced by Mut-
shinda and Sillanpää 2010, used successfully, e.g., in Kärkkäinen and
Sillanpää 2012b) to serve as an example.

A more immediate practical offering of this paper is the fast
maximum a posteriori (MAP) estimation algorithm presented. Tra-
ditionally the parameter estimation for Bayesian models has been
performed by finding the posterior density by Markov chain Monte
Carlo (MCMC) sampling; however, because of the ever-increasing
number of markers available, the focus within the genomic breed-
ing value prediction field has been shifting to the fast MAP esti-
mation methods (e.g., Meuwissen et al. 2009; Yi and Banerjee 2009;
Hayashi and Iwata 2010; Shepherd et al. 2010; Xu 2010; Sun et al.
2012). The MAP estimation is based on finding the maximum of
the posterior density rather than the whole posterior distribution,
usually by an expectation-maximization (EM) algorithm (Dempster
et al. 1977; McLachlan and Krishnan 1997). The difference in speed
between an MCMC and a MAP estimation algorithm is far from
trivial: while the run time of an MCMC algorithm is typically hours
at the lowest, our generalized expectation maximization (GEM) algo-
rithms perform the example analyses in some 20 sec. With existing
genome-wide data sets a fast estimation algorithm is an invaluable
asset because it will significantly facilitate the frequent re-estimation
of the marker effects and breeding values, the use of cross-validation
and permutation-based techniques, and massive simulation studies
of breeding programs. Nonetheless, in all of the Bayesian methods
for threshold traits found in the literature the parameter estimation
has been performed with MCMC. In this respect the methods for
discrete data are a bit out of date compared to the methods for
Gaussian traits.

In our previous work (Kärkkäinen and Sillanpää 2012a) we already
have considered a kindred threshold approach for binary traits in
MAP-estimation context. However, an ordinal data set poses an ad-
ditional challenge because the model has to address the unknown
thresholds as well as the latent response. Hence, although a binary
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phenotype can be regarded as a special case of the ordinal model
considered here, a binary model is not readily expandable to several
categories. Since the MAP-estimation methods are able to handle large
data sets far more efficiently than MCMC methods, it is clear that an
applicable MAP-algorithm is needed for all conceivable types of phe-
notypic observations.

MATERIALS AND METHODS
Our hierarchical Bayesian model, depicted as a directed acyclic
graph in Figure 1, consists of two separate parts, the linear
Gaussian model and the threshold model. Under the linear
Gaussian model the phenotype measurements are assumed to
be continuous and follow a Gaussian density, while the addi-
tional threshold model handles binary, ordinal and censored
Gaussian observations.

Under the threshold model, we assume that the observed phenotype
w consists of either ordered categorical or censored Gaussian obser-
vations, and that the ordered categorical variable has arisen as an
underlying normally distributed continuous response y is rendered
discrete with a known number of thresholds at unknown positions.
The underlying Gaussian response y can be explained by genetic
factors with either a multilocus association model

y ¼ b0 þ Xbþ e; (1)

or with a G-BLUP model

y ¼ b0 þ Zuþ e (2)

(the linear Gaussian model module in Figure 1). Both (1) and (2) are
linear Gaussian models commonly used in genomic selection. In the
former model (1), the matrix X denotes the genotypic records of p
biallelic single-nucleotide polymorphisms (SNP) of n learning set
individuals, coded with respect to the number of the rare alleles
and standardized to have zero mean and unity variance, and b
denotes the marker effects. In the latter model (2) the N-vector u
denotes the additive genetic values of the N learning and prediction
set individuals, whereas Z is a n · N design matrix connecting the
genetic values of the n learning set individuals to the latent response.
Although the additive genetic values of both learning and prediction
set individuals are present in the model (2), the latter do not con-
tribute to the likelihood. b0 denotes the population intercept in both
equations. The residuals e are considered independent and identi-
cally distributed under both models, with e � MVNð0;s2

0InÞ. To
avoid overparametrization and ensure identifiability, the residual
variance component ðs2

0Þ is set to unity when the Gaussian response

Figure 1 Hierarchical structure of the model framework. The ellipses indicate random parameters and rectangles fixed values, whereas the round-
cornered rectangle representing the Gaussian phenotype may be either, depending on whether the threshold module is included in the model.
Solid arrows indicate statistical dependency and dashed arrows functional relationship. The background boxes indicate the main modules of the
model framework.
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is unobservable (see e.g., Cox and Snell 1989). When the actual
Gaussian response is fully observed, the threshold module is omitted
from the model (Figure 1) and the residual variance is estimated
simultaneously to other model parameters.

In this work the regularization of the excess predictors is
performed by a hierarchical Bayesian LASSO (Park and Casella
2008), by specifying a Laplace prior density for the regression coef-
ficients. The Laplace density works best and provides an easy deriva-
tion of the fully conditional posterior densities for the effect variances
(even though not actual conjugacy) when expressed hierarchically as
a scale mixture of normal densities (Park and Casella 2008; de los
Campos et al. 2009; Kärkkäinen and Sillanpää 2012a). The hierarchi-
cal formulation of the prior densities, also known as model or para-
meter expansion, is a well-known method to simplify MCMC
algorithms by transforming the prior into a conjugate and hence
enabling Gibbs sampling, and to accelerate convergence of the sam-
pler by adding more working parts and therefore more space for the
random walk to move (see e.g., Gilks et al. 1996; Gelman et al. 2004;
Gelman 2004). In our previous work (Kärkkäinen and Sillanpää
2012a), we showed that the hierarchical formulation of the Laplace
density is superior to its nonhierarchical counterpart also in EM con-
text. The hierarchy is acquired by setting a Gaussian prior for the
marker effects bjjs2

j � Nð0;s2
j Þ and an exponential prior to the effect

variances s2
j jl � Expðl2=2Þ. Unconditionally for the effects this leads

to a Laplace density. In Figure 1 the hierarchical formulation is ob-
servable as the fourth, latent parameters, layer. The scale parameter l2

of the Laplace prior determines the amount of shrinkage introduced
by the prior, and hence the sparseness of the model. Because the
optimal amount of shrinkage depends on the heritability and the
genetic architecture of the trait, the number of markers and amount
of linkage disequilibrium (LD) present in the data, the selection of the
hyperparameter l2 is of central importance. Although some authors
prefer to give a fixed value to l2 (e.g., Figueiredo 2003; Meuwissen
et al. 2009; Xu 2010), the most prevalent solution is to estimate it
simultaneously to the model parameters (e.g., Yi and Xu 2008; de los
Campos et al. 2009; Shepherd et al. 2010). To this end we give the
hyperparameter l2 a Gamma(k, j) hyperprior, and tune the rate
parameter j of the gamma density to a suitable data specific value
(sixth layer in Figure 1). The prior densities for the population in-
tercept b0 and the residual variance s2

0 (when applicable, i.e., under
the Gaussian phenotype model) are uniform p(b0) } 1 and Jeffreys’
pðs2

0Þ } 1=s2
0, respectively. As the model parameters are considered

a priori independent, the joint posterior density of the parameter
vector becomes

p

�
b;s2;b0;s

2
0; l

2
��y;X�

} p
�
yjb;b0;s

2
0;X
�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood for the latent variable

· p
�
bjs2�p�s2

��l2�p�l2��k; j�p�s2
0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

joint prior density

; (3)

where s2 ¼ ðs2
1; . . . ;s

2
pÞ is a vector of the marker variances.

Under the Bayesian G-BLUP (2) the prior density for the genetic
values u is a conjugate multivariate normal MVNð0;Gs2

uÞ, where the
realized relationship matrix G has been estimated from the marker
data. In this work the estimation has been performed with the second
method described in VanRaden (2008). Contrary to the classical
framework, in a Bayesian approach the variance components are esti-
mated simultaneously with the genomic breeding values (Hallander
et al. 2010; Kärkkäinen and Sillanpää 2012a). The genetic variance
component s2

u has been given a flat Inverse-x2(n, t2) prior distribution

with a substantially large t2 to ensure the flatness of the density.
Similarly to the multilocus association model, the prior densities for
the population intercept and the residual variance (under the Gaussian
phenotype model) are p(b0) } 1 and pðs2

0Þ}1=s2
0. The joint posterior

density of the G-BLUP model parameters is given by

p
�
u;s2

u;b0;s
2
0

��y;G;Z�} p
�
yju;b0;s

2
0;G;Z

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood for the latent variable

· p
�
ujs2

u;G
�
p
�
s2
u

��n; t2�p�s2
0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

joint prior density

:

(4)

Given the value of the continuous, normally distributed latent
variable yi, the binary or ordinal variable wi has value k 2 {1, . . ., K}
with a probability

P
�
wi ¼ kjyi; tk2 1; tk

� ¼ � 1; when tk2 1 , yi , tk
0; otherwise;

(5)

where tk21 and tk are the thresholds delimiting the kth category. If
the ordinal variable has K categories, there will be K + 1 thresholds,
such that t = {(t0, t1, . . ., tK)|t0 , t1 , . . . , tK, t0 = 2N, t1 = 0, tK =
N}. One of the thresholds must be fixed in order to center the
underlying distribution; we adopt the common fashion to set t1 into
zero (e.g., Cox and Snell 1989; Sorensen et al. 1995). The K 2 2 of
the thresholds t⋆ = {(t2, . . ., tK21)|t2 , . . . , tK21} are considered
unknown, and are estimated simultaneously to the model parame-
ters. With a binary response (K = 2) there obviously are no unknown
threshold values.

Although the likelihood of the observed phenotype w follows a cat-
egorical density, conditionally on the underlying response and the
thresholds the observed ordinal phenotype is known with certainty
and hence the likelihood P(wi = k|yi, t) gets a constant value, zero or
one. Therefore, the fully conditional posterior density of the latent
Gaussian variable yi, given the value of the ordinal observation wi,
corresponds the prior density of yi when tk21 , yi , tk and is zero
otherwise. As the latent variable is an additional layer in the hierar-
chical model, the prior density for the underlying Gaussian response y
is the likelihood of the latent variable under the linear Gaussian mod-
els (1) or (2). The likelihood of the latent Gaussian variable, given by
the model equations (1) or (2) and the assumptions below them, is
a multivariate normal centered at b0 + Xb under the multilocus
association model and at b0 + Zu under the G-BLUP model, respec-
tively, the covariance being set to unity under both models. Hence, the
fully conditional posterior density of yi is a truncated normal distri-
bution (truncated at points tk21 and tk) with a density function (for
simplicity, the ⋆ denotes the data and all other parameters)

p
�
yi
��⋆� ¼ f

�
yi 2E

�
yi
��

F
�
tk 2E

�
yi
��
2F

�
tk2 1 2E

�
yi
��; (6)

where f(�) and F(�) denote the standard normal density and cumu-
lative distribution functions, respectively, while E(yi) is the linear
predictor of the model (1) or (2).

Following Sorensen et al. (1995) the prior for the K 2 2 unknown
thresholds t⋆ = (t2, . . ., tK21) has been given as order statistics from an
Uniform(0, tmax) distribution,

pðt⋆j⋆Þ ¼ ðK2 2Þ!
�

1
tmax

�K22

for 0 , t2, . . . tK21 , tmax;

  and 0 otherwise: (7)
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The fully conditional posterior density for a tk is proportional to the
product of the prior and the likelihood of the observed ordinal
phenotype w. Note, that the threshold values t⋆ appear in the prior
density (7) only at the definition of the support of the distribution.
As the terms not including the parameter are discarded as constants
from the fully conditional posterior, the support definition is all that
passes from the prior to the posterior. Therefore, the fully condi-
tional posterior density for a tk is given by the likelihood of the
observed ordinal phenotype w, within the set of values determined
by the prior density of t⋆,

pðtkj⋆Þ} pðwjy; tÞpðt⋆Þ} Qn
i¼1

Pðwi ¼ kÞIðwi¼kÞPðwi ¼ kþ 1ÞIðwi¼kþ1Þ

¼ Qn
i¼1

P
�
tk21,yi,tkjtk21; tk

�Iðwi¼kÞ
P
�
tk,yi,tkþ1jtk; tkþ1

�Iðwi¼kþ1Þ (8)

for 0 , t2 , . . . tK21 , tmax and 0 otherwise. If (8) is seen as
a function of tk, it can be seen that the value of tk must be larger
that all of the yi|wi = k and smaller than all of the yi|wi = k + 1.
Hence, as a function of tk, (8) leads to the uniform density

pðtkj⋆Þ ¼
1

min
�
yi
��wi ¼ kþ 1

�
2max

�
yi
��wi ¼ k

�: (9)

For a Gaussian phenotype with censored observations we define an
additional binary variable vi = 1 if the ith observation is censored
and vi = 0 if not. As the threshold model assumes an unity vari-
ance for the latent Gaussian response, the observed phenotype
must be standardized accordingly. This is done by regarding the
available observations as a sample from a truncated normal density
and using the connection between the quantiles and the standard
deviation of a Gaussian density (e.g., 25% of the observations are #
m 2 0.67s, or 15.73% are # m 2 s). Now, if vi = 0 the standard-
ized Gaussian phenotype is used directly, and if vi = 1 the un-
derlying uncensored response is computed as previously. The
latent variable parametrization of the binary phenotype is similar
to a generalized linear model with the probit link function (Albert
and Chib 1993), whereas the parametrization of the censored phe-
notype corresponds to a generalized linear model with the tobit
link function (see e.g., Tobin 1958; Sorensen et al. 1998; Iwata et al.
2009).

The model parameters are estimated by the GEM (Neal and Hin-
ton 1999) algorithm, which is presented in the Appendix A2. The
algorithm finds a maximum a posteriori point estimate for each of
the parameters and latent variables by repeatedly updating the param-
eters one at the time to their conditional expectations (see Kärkkäinen
and Sillanpää 2012a). Due to the conjugate or otherwise suitable prior
densities chosen, the fully conditional posterior densities for the
parameters and the latent Gaussian response are known probability
density functions. This guarantees an easy derivation of the GEM-
algorithm; as the expected values of the known densities are automat-
ically available, we do not need to find the fully conditional posterior
expectations by integration. In addition, if preferred it would be trivial
to implement an MCMC Gibbs sampler to sample from these densi-
ties. The fully conditional posterior densities for the latent Gaussian
response and for the unknown thresholds are given in the aforemen-
tioned models (6) and (9), whereas the fully conditional posterior
densities for the parameters of the linear Gaussian models can be
easily extracted from the joint posterior densities of the models (3)
and (4). The derivations of the fully conditional posterior densities of
the multilocus association model are presented in the Appendix A1.

The fully conditional posterior densities for the multilocus as-
sociation model (1) parameters are as follows. The fully conditional
posterior density for a marker effect bj is normal

bj

��⋆ � N
	
mj; s

2
j



; with

mj ¼
Xn
i¼1

xij

 
yi 2b0 2

X
l 6¼j

blxil

!, Xn
i¼1

�
xij
�2 þ s2

0

s2
j

!
;

s2j ¼ s2
0

, Xn
i¼1

�
xij
�2 þ s2

0

s2
j

!
;

(10)

where the residual variance s2
0 ¼ 1 unless the actual Gaussian phe-

notype is observed. The fully conditional posterior density for the
inverse of a marker variance is an inverse-Gaussian (Chhikara and
Folks 1989)

1
s2
j

��⋆ � Inverse-Gaussian
l���bj

���; l2
0
B@

1
CA: (11)

The fully conditional posterior density for the LASSO parameter l2

is a gamma density

l2
��⋆ � Gamma

0
@kþ p; j þ

Xp
j¼1

s2
j

2

1
A: (12)

The fully conditional posterior density for the population intercept
equals a normal density

b0j⋆ � N

0
@1
n

Xn
i¼1

0
@yi 2

Xp
j¼1

xijbj

1
A;

s2
0

n

1
A; (13)

where again the residual variance s2
0 ¼ 1 unless the actual Gaussian

phenotype is observed. Finally, when estimated, the fully conditional
posterior density of the residual variance is an inverse-x2

s2
0

��⋆ � Inv-x2

0
@n;

1
n

Xn
i¼1

0
@yi 2 b0 2

Xp
j¼1

xijbj

1
A2
1
A: (14)

The fully conditional posterior densities for the Bayesian G-BLUP
(2) parameters are the following. The fully conditional posterior
density for the additive genetic values is a multivariate normal

uj⋆ � MVNðmu;SuÞ;where

mu ¼
�
Z9Zþ s2

0

s2
u
G2 1

�21

Z9ðy2b0Þ

Su ¼
�

1

s2
0
Z9Zþ 1

s2
u
G2 1

�21

;

(15)

where the residual variance s2
0 is again one if the actual Gaussian

phenotype is not observed. The fully conditional posterior density
for the additive genetic variance is an inverse-x2 density

s2
u

��⋆ � Inv-x2
 
n þ N;

u9G21uþ nt2

n þ N

!
; (16)
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where the capital N denotes the total number of individuals in the
learning and test sets. The fully conditional posterior density for the
population intercept is normal

b0j⋆ � N

 
1
n

Xn
i¼1

�
yi 2 ui

�
;
s2
0

n

!
; (17)

where the residual variance s2
0 ¼ 1 unless the actual Gaussian phe-

notype is observed. When estimated, the fully conditional posterior
density of the residual variance is an inverse-x2

s2
0

��⋆ � Inv-x2
�
n;
1
n
ðy2b02ZuÞ9ðy2b0 2ZuÞ

�
: (18)

The generalized expectation maximization algorithms presented in
the Appendix A2 work by updating the parameters to the expected
values of the aforementioned fully conditional posterior densities. In
our method, as in nearly all Bayesian approaches, the user has to
provide some, usually data specific, parameter values for the
hyperprior densities at the very bottom of the model hierarchy. In
the multilocus association model the hyperprior parameters for the
LASSO parameter l2 � Gamma(k, j) have to be given by the user,
whereas in the Bayesian G-BLUP this role falls to the hyperprior
parameters of the additive genetic variance component
s2
u � Inv-x2ðn; t2Þ. The selection of the data specific hyperprior

parameters is called tuning of the algorithm. The tuning is the easier
to perform the fewer parameters there are to be tuned. Because the
number of markers (p) is very large, the impact of k into the fully
conditional posterior expectation of the LASSO parameter
Eðl2j⋆Þ ¼ ðkþ pÞ=ðj þPs2

j =2Þ, derived from the fully conditional
posterior density in (12), is obviously negligible. As the only informa-
tion the GEM algorithm uses in the update process is the fully con-
ditional expectation, we shall simplify the tuning by setting the value
of k to a constant value k = 1. Thereby, the rate parameter j is the
only entity in the model to which the user has to provide a data
specific value. Accordingly, under the Bayesian G-BLUP the degrees
of freedom n of the inverse-x2 density do not have a substantial
contribution to the fully conditional posterior expectation of the ad-
ditional genetic variance Eðs2

uj⋆Þ ¼ ðu9G21uþ nt2Þ=ðn þ N2 2Þ,
and we therefore set permanently n = 2, while the scale parameter
t2 may need data specific tuning.

EXAMPLE ANALYSES
In our example analyses, we have considered the predictive perfor-
mance of the Bayesian multilocus association model and the Bayesian
G-BLUP per se and with the three different latent variable layers, with
two different data sets.

The first of the data sets consists of a simulated data introduced in
the XII QTL-MAS Workshop 2008 (Lund et al. 2009). The data set
can be downloaded from the workshop homepage at http://www.
computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html. There
are 5865 individuals from seven generations of half sib families with
information on 6000 biallelic SNP loci, the loci are evenly distributed
over six chromosomes of length 100 cM each (see Lund et al. 2009 for
details). Since SNPs with minor allele frequency ,0.05 within the
learning set were discarded, the actual number of markers in the
analysis is 5726. The first four generations of the data, 4665 individ-
uals, have both marker information and a phenotypic record, and
function as a learning set, whereas the generations five to seven,
comprising 1200 individuals, are treated as a prediction set. There

are 48 simulated quantitative trait loci (QTL) in the data set, with
allele substitution effects drawn from a Gamma(0.42, 1.85) distribu-
tion (with shape and rate parametrization). The cumulative effect of
the simulated QTL equals the genetic value of the individuals, while
the phenotypes of the individuals have been obtained as the sum of
the individuals’ genetic value and a random residual drawn from
a normal distribution with mean zero and a variance set to produce
heritability value 0.3 (Lund et al. 2009). As in our previous works, we
have generated 100 replicates of the data set by resampling the resid-
uals from a normal density N(0, var(TBV)(1/h2 2 1)), where var
(TBV) denotes the observed variance of the genetic values and the
heritability h2 equals 0.3 (Kärkkäinen and Sillanpää 2012a,b). After
this each of the generated phenotype sets was scaled to have zero
mean and unity variance. The advantage of using a simulated data
set in the example analysis is the availability of the true genetic values
of the individuals, enabling us to determine the accuracy of the esti-
mates by a direct comparison of the simulated and estimated genetic
values.

The second data set, described in detail by Cleveland et al. (2012),
is a real pig (Sus scrofa) data, provided by the Genetics Society of
America to be used for benchmarking of genomic selection methods.
The pig dataset consists of phenotypic records of 3184 individuals for
a quantitative trait (standardized to zero mean and unity variance)
with predetermined heritability 0.62, and genotypic records for 60k
biallelic SNP markers (45,317 with minimum allele frequency over
0.05 actually included in the analysis). Contrary to the simulated data
set, there are neither true genetic values of the individuals nor true
effects of the QTL available, and hence we estimate the accuracy of the
predicted genomic breeding values by dividing the correlation be-
tween the estimates and the original Gaussian phenotypic values by
the square root of the predetermined heritability of the trait (Legarra
et al. 2008). Since the data does not consist a separate validation
population we compute the result statistics using cross-validation,
where the 3184 individuals are randomly partitioned into 10 subsets
(10-fold cross-validation) of 318 or 319 individuals. At each round 9
of the sets are treated as a learning set and the remaining one as the
prediction set.

The binary, ordinal, and censored phenotypes of the data sets were
constructed as follows. We tested two binary phenotypes with success
probabilities 50% and 80%, two ordinal phenotypes with four classes,
and three right censored phenotypes consisting of 20%, 50%, or 80%
of censored observations. The proportions of observations belonging
into each class of the four-class phenotype were either even
20:30:30:20% of observations in each class, or highly unbalanced with
70% belonging to the first class and 10% in the subsequent three
classes. The value of the censored observations was set to equal the
largest of the noncensored values, leading to a spiked Gaussian
phenotype (see Broman 2003). The binary and the evenly distributed
ordinal data sets are generated in preparation for an easy ascertain-
ment of the extra power acquired by using the category information
compared to the dichotomized phenotype. The binary phenotype with
80% success probability simply sets the first category of the ordinal
phenotype as a failure and the subsequent three classes as a success,
while the binary response with 50% success probability sets the first
and second category as a failure and the third and fourth as a success.
The same holds true for the censored data, as the threshold values are
set to correspond the thresholds of the binary phenotype: the 20% and
80% censored data can be compared with the binary data with 80%
success rate, as the proportions of the observations belonging to the
classes is 20:80, and similarly the 50% censored data are equivalent to
the 50% or 50:50 binary data. All threshold values were determined as
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standard normal distribution function parameters leading to the de-
sired threshold value, e.g., a threshold at 0.84, leading to 20% success
probability, since F(0.84) = 0.8.

The multilocus models are not able to handle an unlimited
number of loci with respect to the sample size. Hoti and Sillanpää
(2006) have proposed an upper limit of 10 times more loci than
individuals, but it seems that in practice a smaller number of loci
might be optimal (e.g., real data analysis in Kärkkäinen and Sillanpää
2012a). Furthermore, to our experience, the best results are necessarily
not acquired by using as many markers as the model can possible
handle, but with a significantly smaller marker set (results not shown).
In the QTL-MAS data, the proportion of markers to individuals is
almost one-to-one, and no extra measures are needed, but with the pig
data the multilocus association model becomes too oversaturated to
function properly. Therefore, with the real data, in the beginning of
each cross-validation round the number of SNPs is first reduced from
45,317 to 10,000 by the sure independence screening method (Fan and
Lv 2008). The method works by ranking the markers with respect to
their marginal correlation with the phenotype within the current
learning set, and selecting the 10,000 best ranking markers to the
multilocus association model. The marginal correlation is computed
as the Pearson’s product-moment coefficient, by using the same phe-
notypic records (binary, ordinal, censored or Gaussian) as is used in
the actual multilocus association model, except in the case of the 80%
censored Gaussian phenotype, where it proved better to dichotomize
the phenotype by setting the uncensored data into zero. In Kärkkäinen
and Sillanpää (2012a) we performed the preselection in advance and
used the same set of markers in all cross-validation rounds, whereas
here the preselection is integrated into the cross-validation procedure.
The correlation produced by the former approach appeared to be
slightly overestimated. An advantage of the G-BLUP over the multi-
locus association model is that no preselection of the markers is
needed. Some authors have found out that preselection of the markers
might have a positive impact also to G-BLUP (see Resende et al.
2012), but we did not observe such a behavior (results not shown).

The hyperprior parameters for the example analyses are selected to
produce best accuracy. The tuning is performed by testing different
parameter values and choosing the one resulting the best correlation
between the estimated and the true genetic values. In practice, we
simply select two arbitrary values for the parameter, observe the
correlation acquired under these values, and proceed to search for an
optimal value to the direction pointed by the better performing one.
This step could be automatized, but so far we have performed it
manually. As we have used both learning and prediction sets in the
parameter tuning, the obtained accuracies must be considered as best-
case scenarios. Under the multilocus association model (1), we give
the LASSO parameter l2 a Gamma(1, j) hyperprior and tune the rate
(j) of the gamma density into a data specific value, while under the G-
BLUP model (2) the scale hyperparameter t2 for the genetic variance
is tuned. The values selected for j and t2 and some of the proposed
values, along with the corresponding accuracy estimates under the
multilocus association model and the Bayesian G-BLUP, are given
in Tables 1 and 2, respectively.

Comparing the relative performance of the multilocus association
model and the Bayesian G-BLUP with the two data sets (Table 3)
clearly shows that the multilocus association model is superior when
the trait is controlled by a moderate number of genes (QTL-MAS
data), whereas the G-BLUP is a reasonable choice when the trait is
either truly polygenic or there is strong linkage disequilibrium present
(the pig data). With the 100 Gaussian QTL-MAS data replicates, the
multilocus association model produces an average correlation 0.89

whereas the G-BLUP produces an average correlation 0.80. Consis-
tently, with all of the binary, ordinal, and censored Gaussian QTL-
MAS data sets, there is an approximately 10-point difference in favor
of the multilocus association model in the average correlation. Re-
garding the pig data, the G-BLUP has the advantage over the multi-
locus association model: the average correlation in the 10 cross-
validation sets is three points higher with the fully observed Gaussian
phenotype and two to four points higher with most of the other
phenotypes. The advantage of the G-BLUP is even more significant
with the 80% success rate binary phenotype and the 80% censored
phenotype, the G-BLUP being on average six points more accurate. In
this case, however, the culprit is not only the multilocus association
model itself but also the sure independence screening used beforehand
to reduce the number of markers: if the marginal correlation was
computed by using the Gaussian phenotype instead of the binary,
the final average correlation would be more consistent 0.51 instead
of the now observed 0.49 (data not shown).

As the binary and the evenly distributed ordinal data sets are
related to each other it is easy to ascertain the extra power acquired by
using the category information compared with the dichotomized
phenotype. Table 3 shows a significantly improved accuracy if the
additional categories are taken into account: with the ordinal data
the mean correlation is 6–10 points or 7–20% higher than with the
80% success rate binary data, and 3–4 points or 5–7% higher than
with the 50% success rate binary data. The percentage advantage is
greater in situations in which the power of the analysis is lower. As
expected, the accuracy is lower with the 70:10:10:10% ordinal pheno-
type than with the evenly distributed ordinal phenotype, the difference
being 2–4 points with both data sets under both models. The addi-
tional accuracy gained by using the correct model (i.e., the threshold
model) for the binary and ordinal phenotypes, instead of using the
linear Gaussian model directly, was minor. The threshold model was
a trifle of more accurate in some cases (Table 3). The correlation
obtained with the threshold model was one point greater in 7 cases
of 16, more often with the unevenly distributed responses (binary 80%
and ordinal 70:10:10:10) than with the evenly distributed (binary 50%
and ordinal 20:30:30:20); with the unevenly distributed phenotypes
there was five cases in which a modicum of extra accuracy was gained
with the threshold model, whereas with the evenly distributed there
was only two. The extra accuracy was also observed more often with
the pig data than with the QTL-MAS data (five and two cases, re-
spectively), and with the Bayesian G-BLUP than with the Bayesian
LASSO (also five and two cases, respectively).

The censored data sets consist of a continuous normally distrib-
uted phenotype with 20%, 50%, or 80% right censored observations,
set to equal the maximum of the non-censored observations. The non-
censored observations clearly contain extra information compared to
the corresponding binary data (Table 3). The correlations acquired
with the data sets with 20% censored observations were in all cases
considerably, 6–11 points or 6–22%, higher than with the correspond-
ing 20:80 binary data sets. With the 50% censored data sets the dif-
ference is 1–3 points, or 1–5%, compared to the 50:50 binary data.
Even the data sets with 80% censored observations may be slightly
more informative than the 20:80 binary data, the correlation being one
point in favor of the censored phenotype with the QTL-MAS data
under the threshold LASSO and threshold G-BLUP. The 20% censor-
ship weakens the accuracy only slightly compared to the fully ob-
served Gaussian phenotype: no more than one point if the
threshold model is used, and 1–2 points if the Gaussian model is used
directly for the censored phenotype. Contrary to the ordinal-pheno-
type-case, with a censored phenotype the threshold model is clearly
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more accurate than the Gaussian model (Table 3). The difference
between the models with the data sets with 20% censored phenotypes
is tiny (one point in three cases out of four), but increases when the

censoring grows stronger. With 50% censored observations the differ-
ence is 1–3 points or 1–5%, and with 80% censored observations 3–7
points, or 4–17%.

n Table 1 Hyperprior selection for the Bayesian LASSO

Data Type

Binary Ordinal Censored

Data/Model 50% 80% Even Odd 20% 50% 80% Gaussian

QTL-MAS
TH 0.20/0.81 0.20/0.75 0.20/0.86 0.20/0.82 0.20/0.86 0.20/0.85 0.20/0.81 2

0.50/0.85 0.50/0.81 0.50/0.88 0.50/0.85 0.50/0.88 0.50/0.87 0.50/0.83 2
1.00/0.84 1.00/0.82 1.00/0.87 1.00/0.84 1.00/0.88 1.00/0.87 1.00/0.81 2
2.00/0.82 2.00/0.80 2.00/0.85 2.00/0.81 2.00/0.87 2.00/0.86 2.00/0.78 2

G 0.05/0.84 0.02/0.79 0.10/0.85 0.10/0.80 0.05/0.84 0.05/0.85 0.01/0.76 0.10/0.87
0.07/0.85 0.05/0.82 0.20/0.87 0.20/0.84 0.10/0.87 0.10/0.86 0.02/0.79 0.20/0.88
0.10/0.84 0.10/0.80 0.30/0.88 0.30/0.84 0.25/0.88 0.25/0.83 0.03/0.80 0.30/0.89
0.20/0.81 0.20/0.75 0.60/0.87 0.60/0.82 0.50/0.86 0.50/0.79 0.06/0.77 0.60/0.88

Pig
TH 1.00/0.51 3.00/0.48 1.00/0.56 1.00/0.55 1.00/0.56 1.00/0.54 1.00/0.47 2

3.00/0.55 5.00/0.49 3.00/0.59 3.00/0.56 3.00/0.59 3.00/0.57 3.00/0.49 2
5.00/0.55 7.00/0.49 5.00/0.59 5.00/0.55 5.00/0.60 5.00/0.57 5.00/0.48 2
7.00/0.54 9.00/0.48 7.00/0.58 7.00/0.54 7.00/0.59 7.00/0.56 7.00/0.48 2

G 0.10/0.51 0.10/0.46 0.50/0.56 1.00/0.55 0.20/0.55 0.20/0.53 0.04/0.41 0.50/0.59
0.20/0.55 0.15/0.48 1.00/0.59 1.50/0.56 0.40/0.58 0.30/0.54 0.05/0.42 1.00/0.61
0.30/0.55 0.20/0.47 1.50/0.59 2.00/0.56 0.60/0.59 0.40/0.54 0.06/0.41 1.50/0.59
0.40/0.53 0.25/0.46 2.00/0.57 2.50/0.56 0.80/0.59 0.50/0.51 0.07/0.41 2.00/0.57

Different values given for the scale parameter j of the gamma hyperprior for the LASSO parameter, and the corresponding average accuracy of the genomic breeding
value estimates (j/accuracy) within the 100 QTL-MAS data replicates and the 10 cross-validation partitions of the pig data set. The boldface values are the ones
selected for the analyses. “Model” refers to the model type used, TH being the correct threshold model and G the linear Gaussian model used directly. The
correlation in the pig data is computed as correlation between the estimated genomic breeding values and the Gaussian phenotypes divided by the square root of
the predetermined heritability 0.62. The ”Binary” phenotype has either 50% or 80% success probability. The class sizes of the “Ordinal” phenotype are “Even,”
20:30:30:20%, and “Odd,” 70:10:10:10%. The percentage of censored observations in the “Censored” phenotype is 20%, 50%, or 80%. ”Gaussian” refers to the
original fully observed Gaussian phenotype

n Table 2 Prior selection for the Bayesian G-BLUP

Data Type

Binary Ordinal Censored

Data/Model 50% 80% Even Odd 20% 50% 80% Gaussian

QTL-MAS
TH 400/0.74 400/0.71 400/0.78 400/0.74 400/0.78 400/0.77 400/0.72 2

800/0.75 800/0.72 800/0.79 800/0.75 800/0.80 800/0.78 800/0.74 2
1000/0.75 1000/0.72 1000/0.79 1000/0.75 1000/0.80 1000/0.78 1000/0.73 2
1200/0.75 1200/0.72 1200/0.79 1200/0.75 1200/0.79 1200/0.78 1200/0.73 2

G 25/0.70 10/0.64 200/0.77 200/0.73 100/0.76 50/0.74 10/0.67 200/0.78
50/0.74 25/0.71 400/0.79 400/0.74 200/0.79 100/0.77 25/0.71 400/0.80

100/0.75 50/0.72 600/0.79 600/0.74 400/0.79 200/0.77 50/0.70 500/0.80
200/0.74 100/0.71 800/0.79 800/0.73 600/0.79 400/0.75 100/0.66 600/0.80

Pig
TH 400/0.56 400/0.54 400/0.60 400/0.59 400/0.61 400/0.60 400/0.55 2

800/0.58 800/0.55 800/0.62 800/0.60 800/0.62 800/0.61 800/0.55 2
1200/0.58 1000/0.55 1000/0.62 1000/0.60 1000/0.62 1000/0.61 1000/0.55 2
1600/0.56 1200/0.55 1200/0.62 1200/0.59 1200/0.62 1200/0.61 1200/0.55 2

G 25/0.55 10/0.49 200/0.60 200/0.56 100/0.59 50/0.57 5/0.47 200/0.62
50/0.57 25/0.54 400/0.61 400/0.59 200/0.61 100/0.58 10/0.50 400/0.63

100/0.57 50/0.54 600/0.60 600/0.59 300/0.61 150/0.57 25/0.49 500/0.62
200/0.34 100/0.51 800/0.41 800/0.59 400/0.49 200/0.49 50/0.44 600/0.44

Different values given for the scale parameter t2 of the inverse-x2 prior for the polygene variance, and the corresponding average accuracy of the genomic breeding
value estimates (t2/accuracy) within the 100 QTL-MAS data replicates and the 10 cross-validation partitions of the pig data set. The boldface values are the ones
selected for the analyses. The column “Model” refers to the model type used, TH being the correct threshold model and G the linear Gaussian model used directly.
The correlation in the pig data is computed as correlation between the estimated genomic breeding values and the Gaussian phenotypes, divided by the square root
of the predetermined heritability 0.62. The “Binary” phenotype has either 50% or 80% success probability. The class sizes of the “Ordinal” phenotype are “Even,”
20:30:30:20%, and “Odd,” 70:10:10:10%. The percentage of censored observations in the “Censored” phenotype is 20%, 50%, or 80%. ”Gaussian” refers to the
original fully observed Gaussian phenotype
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The steps of the GEM algorithm are repeated until convergence.
The algorithm is considered to be converged when the correlation
between the estimated breeding values of two consecutive iterations is
greater than 121026. The convergence is confirmed visually by ex-
amining the behavior of parameter values during the iterations and
verifying that all of the parameters have reached a constant level; this
is also how the suitable value for the convergence rule has been
originally ascertained. The required number of iterations is usually
between 40 and 80 under the multilocus association model, and
around 10 under the G-BLUP. So far we have not encountered prob-
lems in the convergence, given that appropriate hyper(prior) para-
meter values have been selected, and that the number of markers
with respect to the sample size in the multilocus association model
has not been too large. Depending on the data and the model variate,
the computation time is around 15–50 sec with a 64-bit Windows 7
desktop computer with 3.50 GHz Intel(i7) CPU and 16.0 GB RAM.

DISCUSSION
Our example analyses show that using the extra classes and the
uncensored observations present in an ordered categorical and
a censored Gaussian data set, instead of dichotomizing the data into
case-control observations, increases the accuracy of genomic breeding
values predicted by Bayesian multilocus association models or by
Bayesian G-BLUP. The amount of extra information of an ordinal
data depends on the number of the classes and the distribution of the
observations into the classes, higher number and more even
distribution corresponding to higher information content. With
a mildly to moderately (20–50% of observations) censored Gaussian
data, the increase of the accuracy is substantial compared to binary
data, but even if 80% of the observations are censored the remaining
observations seem to possess some extra information.

Our results indicate that only a minor benefit is gained by using
the correct threshold model compared with using the linear Gaussian
model directly with a binary or ordinal data. These results are in
concordance with the observations by Wang et al. (2013) under
BayesB (Meuwissen et al. 2001) and BayesCp (Habier et al. 2011),
and with the early observations of Meijering and Gianola (1985) for

BLUP. However, for the same data set, under BayesA Wang et al.
(2013) noted a substantial increase in the accuracy when the threshold
model was used. Also, Meijering and Gianola (1985) observed that the
threshold model was more reliable than BLUP if the number of fixed
effects required in the mixed model was high. Even though our results
do not confirm the practical superiority of the correct threshold model
over the linear Gaussian model, we urge caution when applying
a Gaussian model directly for an ordinal data. Some data sets may
be less well-behaving than the ones we have studied and, as proven by
Wang et al. (2013), different linear models may be less robust to the
incompatible data.

The example analyses support the observation of Sorensen et al.
(1998) that in the case of a censored Gaussian data the threshold
model behaves better than the linear Gaussian model used directly.
The benefit of the correct threshold model increases as the proportion
of the censored observations increase. With 20% censored observa-
tions, the threshold model is slightly more accurate, whereas with 50%
censored observations the accuracy gain is substantial. On the basis of
our results, a heavily censored (80%) Gaussian data should not be
analyzed with a linear Gaussian model, or, if analyzed, it should be
dichotomized into a binary case-control data.

The sure independence screening (Fan and Lv 2008) works very
well for such a strikingly simple method. It works so well probably
because all it needs to do is to let all of the important markers pass to
the next step whereas, because the final variable regularization is
performed by the multilocus association model, it does not matter if
unimportant ones are also selected. The optimal number of SNPs
selected into the multilocus association model is data specific as it
depends on the number of individuals in the learning set, and prob-
ably also on the genetic architecture of the trait and the LD structure.
Additionally, multilocus association models with different shrinkage
or variable selection mechanisms may be able to cope with different
amount of oversaturation. The number of markers selected to the
multilocus association model can be tuned into an optimal value
similarly to the prior parameters. The model performance seems to
be reasonably robust to the number of markers: in the pig data
10,000–20,000 markers produced almost identical accuracies with all

n Table 3 Model accuracy

Binary Ordinal Censored

Data/Model 50% 80% Even Odd 20% 50% 80% Gaussian

Bayesian LASSO
QTL-MAS

TH 0.85 6 0.02 0.82 6 0.02 0.88 6 0.01 0.85 6 0.02 0.88 6 0.01 0.87 6 0.01 0.83 6 0.02 2
G 0.85 6 0.02 0.82 6 0.02 0.88 6 0.01 0.84 6 0.02 0.88 6 0.01 0.86 6 0.02 0.80 6 0.03 0.89 6 0.01

Pig
TH 0.55 6 0.03 0.49 6 0.05 0.59 6 0.03 0.56 6 0.04 0.60 6 0.03 0.57 6 0.05 0.49 6 0.04 2
G 0.55 6 0.03 0.48 6 0.05 0.59 6 0.03 0.56 6 0.04 0.59 6 0.03 0.54 6 0.05 0.42 6 0.05 0.61 6 0.03

Bayesian G-BLUP
QTL-MAS

TH 0.75 6 0.02 0.72 6 0.03 0.79 6 0.02 0.75 6 0.02 0.80 6 0.02 0.78 6 0.02 0.74 6 0.02 2
G 0.75 6 0.02 0.72 6 0.03 0.79 6 0.02 0.74 6 0.02 0.79 6 0.02 0.77 6 0.02 0.71 6 0.03 0.80 6 0.02

Pig
TH 0.58 6 0.04 0.55 6 0.05 0.62 6 0.04 0.60 6 0.04 0.62 6 0.04 0.61 6 0.04 0.55 6 0.05 2
G 0.57 6 0.04 0.54 6 0.05 0.61 6 0.04 0.59 6 0.04 0.61 6 0.04 0.58 6 0.04 0.50 6 0.05 0.63 6 0.04

Correlation coefficients (6 1 SD) between the true and estimated genomic breeding values in the 100 replicates of the QTL-MAS data set and the 10 cross-validation
partitions of the pig data set. “Model” refers to the model type used, TH being the correct threshold model and G the linear Gaussian model used directly. The
correlation in the pig data is computed as correlation between the estimated genomic breeding values and the Gaussian phenotypes, divided by the square root of
the predetermined heritability 0.62. The “Binary” phenotype has either 50% or 80% success probability. The class sizes of the “Ordinal” phenotype are “Even,”
20:30:30:20% and “Odd,” 70:10:10:10%. The percentage of censored observations in the “Censored” phenotype is 20%, 50%, or 80%. “Gaussian” refers to the
original fully observed Gaussian phenotype
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of the response types. However, even though the sure independence
screening seems to be a decent method indeed, and we have contented
ourselves with using it for the marker preselection for the time being,
there probably is room for improvement in this respect.

The difference in computation time between MCMC and (G)EM-
algorithms is massive. Some authors have compared the speed
difference between an MCMC and a MAP-estimation algorithm, for
example, the fast BayesB implementation of Meuwissen et al. (2009)
took 2–5 min to converge, whereas the MCMC-based BayesB required
47 hr. Using the same QTL-MAS data we have used, Shepherd
et al. (2010) reported a computer time of few minutes for a MAP-
estimation algorithm and 2 d for an MCMC algorithm (with a 2-GHz
computer). Accordingly, with the same QTL-MAS data, the frequent-
ist LASSO-LARS implementation of Usai et al. (2009) took more than
7 hr to converge. The enormity of the time difference can be illus-
trated by extrapolating the computer times reported by Shepherd et al.
(2010) into the analysis of our 100 replicated QTL-MAS data sets:
although the 100 analyses take 20 min with our GEM algorithm, with
an MCMC algorithm the computation time would be stunning 600 hr,
or 25 d. To get the best possible results, it seldom is sufficient to run
an algorithm once, for instance, due to the tuning of the prior param-
eters and sensitivity analysis. The extremely short time requirement
facilitates the adjusting for optimal performance, not to mention the
usage of computer intensive techniques such as cross-validation and
empirical threshold determination by phenotype permutation. Fast
estimation is also extremely useful in simulation studies of entire
breeding programs (see, e.g., Pedersen et al. 2009; Axelsson et al.
2013).

The Bayesian threshold approach for binary, ordinal, and censored
data enables the usage of a variety of different linear Gaussian model
types—here we have demonstrated the method with Bayesian LASSO
multilocus association model and Bayesian G-BLUP; however,
depending on the genetic architecture and LD structure of the data,
other variable selection or regularization methods than LASSO may be
preferred. Whether the additional threshold layer actually increases
the accuracy of the genomic breeding value estimates is questionable
with a binary or an ordinal data but less so with a censored Gaussian
data. To our experience it seems that especially with a heavily cen-
sored Gaussian data the threshold model should be used, but there is
no harm in using it also with the binary and the ordinal phenotypes.
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APPENDIX A1

Derivations of the fully conditional posterior densities
The joint posterior distribution of the unknown parameters, given the
data, is proportional to the product of the joint prior and the
likelihood. As the model parameters are considered a priori condi-
tionally independent, the joint posterior density of the parameter
vector under the multilocus association model (1) becomes
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The fully conditional posteriors of the parameters can be easily
determined by selecting the terms including the parameter in
question from the joint posterior. (For simplicity: � = ”the data,
and the parameters except the one in question”)

As the prior density for the population intercept b0 is proportional
to one, the fully conditional posterior distribution is proportional to
the likelihood,
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Note that we select from the joint posterior (A1) only the terms
including b0. The right hand side of (A2) is a product of n kernels of
normal probability density functions, with a common variance s2

0,
and means ðyi 2

Pp
j¼1bjxijÞ, i = 1, . . ., n. The set of Gaussian func-

tions is closed under multiplication, i.e. the product of normal den-
sities is also a normal density, with the mean and the variance of the
product density given by

m ¼
P mi

s2
iP 1

s2
i

and s2 ¼ 1P 1

s2
i

respectively. Hence, since in this case variance is same for all of the
factors, the product density reduces to the sum of the means of
the individual distributions, divided by n, while the variance of the
product density is given simply by the variance of the individual
distributions divided by n, leading to the fully conditional posterior
density function given in (13).

For the fully conditional posterior distribution of the regression
a coefficient bj we select from (A1) the terms including bj, located at
the likelihood and at the prior pðbjjs2

j Þ, and get
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Here we have a product of two types of kernels of normal densities.
The latter part of (A3) comes from the prior, it has mean 0 and
variance s2

j . The former part represents the likelihood—regarding bj
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which corresponds to the function in (10) when expanded by s2
0.

The residual variance s2
0 appears in the joint posterior density

(A1) in the likelihood and in the prior density pðs2
0Þ} 1=s2

0, leading
to
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Regarding s2
0, this is an unnormalized probability density function

of an inverse x2-distribution (14), with n degrees of freedom and
scale parameter equal to
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The fully conditional posterior density for the variance of the
marker effects s2

j (11) is proportional to the product of the condi-
tional prior for the marker effect pðbjjs2

j Þ and the exponential prior of
the effect variance pðs2

j jl2Þ,
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for all j = 1, . . ., p. Since exponential density is not conjugate to
normal density, we need to consider the inverse of the marker
variance
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where the last term is the Jacobian of the transformation s2
j/s2 2

j .
By rearranging the terms, we get
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As s2
j is canceled out from the last term inside the exponent, the

term becomes constant and is left out. After that the exponent is
expanded by l2=b2

j and we get

p

 
1

s2
j

�����⋆
!
}
	
s2
j


23=2
exp

0
BBBB@2

l2

 	
s2
j


2
2 2s2

j

ffiffiffiffiffi
l2

b2
j

s
þ l2

b2
j

!

2s2
j
l2

b2
j

1
CCCCA

¼
	
s2
j


23=2
exp

0
BBBB@2

l2

 
s2
j 2

ffiffiffiffiffi
l2

b2
j

s !2

2s2
j
l2

b2
j

1
CCCCA; j ¼ 1; . . . ; p:

(A5)

This is an inverse-Gaussian probability density function (Chhikara
and Folks 1989) with mean m9 and shape l9

m9 ¼
ffiffiffiffiffi
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 and l9 ¼ l2;

the parametrization of the inverse-Gaussian density being
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The LASSO parameter l2 occurs in the joint posterior (A1) in the
exponential priors for the effect variances s2

j and in the gamma prior
for the LASSO parameter.
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that is an unnormalized gamma probability density function with
shape k + p and rate
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corresponding to (12).

APPENDIX A2

The GEM algorithms
Below we present the GEM algorithms for maximum a posteriori
parameter estimation under the threshold model combined with the
Bayesian LASSO and the Bayesian G-BLUP. In both algorithms, the
steps are repeated until convergence. Matlab codes of the algorithms
are included as Supporting Information, File S1.

GEM algorithm for the multilocus association model
1. Set initial values for parameter vectors. We use zeros for b0, b,

and the latent variable y, and small positive values, namely 0.1,
for the variances s2 and s2

0 (when estimated), and for the LASSO
parameter l2. The initial value for the threshold vector

t⋆ ¼
�

1
K2 2

;
2

K2 2
; . . . ;

K2 2
K2 2

�
.

2. Update the values of the latent variable y by replacing the current
values yi with the expected values of the truncated normal distri-
bution (6),

yi :¼ mi þ
fðtk21 2miÞ2fðtk 2miÞ
Fðtk 2miÞ2Fðtk21 2miÞ

;

where mi ¼ b0 þ
Xp

j¼1

bjxij, and f(�) and F(�) denote the standard

normal density function and distribution function, respectively. If the
actual Gaussian phenotype y is fully available, this step naturally
becomes obsolete.
3. Update the K 2 2 unknown thresholds to their conditional

expectations,

tk :¼
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�þmin
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��

for all k = 2, . . ., K-1. This step is bypassed if i) the phenotype is
Gaussian and fully observed, ii) the phenotype is binary, i.e. K = 2, or
iii) the phenotype is left or right censored (no unknown thresholds).

4. Maximize the posterior distributions of b0 and bj (for all j) by
substituting the fully conditional expectations for the current
values of the parameters, one at the time.
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Note that the residual variance s2
0 ¼ 1 unless the Gaussian phenotype

is fully observed.

5. In case of a fully observed Gaussian phenotype, update the error
variance s2

0 into its conditional expectation
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6. Update the effect variances s2
j (for all j) to their conditional expect-

ations. The precision, or inverse of the variance parameter s2
j , has

an inverse-Gaussian fully conditional posterior distribution leading
to following fully conditional expectation for the effect variances
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7. Update the hyperparameter l2 into its conditional expectation
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 for prior shape k ¼ 1:

GEM algorithm for the Bayesian G-BLUP
1. Set initial values for parameter vectors; zeros for b0, u and y, and 0.1 for

s2
u and s2

0 (when estimated), t⋆ ¼
�
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;
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.

2. Update the latent variable y as previously, except that here mi =
b0 + ui.

3. Update the thresholds as previously.
4. Update the population intercept b0 into its fully conditional

expectation

b0 :¼
1
n

Xn
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�
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�
:

5. Update the polygenic effects u by replacing the current values
with the conditional expectations

u :¼
�
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u
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�21

Z9ðy2b0Þ;

where G21 denotes a generalized inverse of the realized relationship
matrix. Note that the residual variance s2

0 ¼ 1 except in the fully
observed Gaussian phenotype case.

6. In case of a fully observed Gaussian phenotype, update the error
variance s2

0 into its fully conditional expectation

s2
0 :¼

1
n2 2

ðy 2 b0 2ZuÞ9ðy2b0 2ZuÞ:

7. Replace the additive genetic variance component s2
u with its con-

ditional expectation

s2
u :¼ 1

N
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 for prior shape n ¼ 2;

where and N is the total number of individuals in the learning and
validation sets (i.e. the dimension of G is N · N), and G21 is a gen-
eralized inverse of the realized relationship matrix.
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