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T cells are an important component of immune responses, and their function is influenced by their
expression of inhibitory receptors. Immunization with alternative serotype adenovirus (Ad) vectors
induces highly functional T cell responses with lower programmed cell death 1 (PD-1) expression and
increased boostability relative to Ad5 vectors. However, a detailed phenotypic characterization of other
inhibitory receptors is lacking, and it is unknown whether Ad5-induced CD8 T cells eventually recover
function with time. In this report, we measure the expression of various inhibitory receptors and memory

Key worc?s: markers during early and late time points following vaccination with Ad5 and alternative serotype Ad
Adenovirus . . . . . .

Vector vectors. CD8 T cells induced by Ad5 exhibited increased expression of the inhibitory receptor Tim-3
PD-1 and showed decreased central memory differentiation as compared with alternative serotype Ad vectors,
HIV-1 even a year following immunization. Moreover, relative to Ad5-primed mice, Ad26-primed mice exhib-

ited substantially improved recall of SIV Gag-specific CD8 T cell responses following heterologous boost-
ing with MVA or Ad35 vectors. We also demonstrate that low doses of Ad5 priming resulted in more
boostable immune responses with lower PD-1 expression as compared to high Ad5 doses, suggesting a
role for vector dose in influencing immune dysfunction following Ad5 vaccination. These data suggest
that Ad5 vectors induce a long-term pattern of immune exhaustion that can be partly overcome by low-

ering vector dose and modulating inhibitory signals.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Adenovirus (Ad) vectors are important vaccine platforms due to
their productive capacity and immunogenicity [1-4]. A disadvan-
tage of Ad5 vectors is their high seroprevalence [1,5], which led
the development of Ad vectors from alternative serotypes [6]. We
have shown that immunization with alternative serotype Ad vec-
tors provides immune protection against stringent SIV challenges
in rhesus monkeys [7,8]. Moreover, immunization with Ad5, but
not alternative serotype Ad vectors (such as Ad26, Ad35, and
Ad48), results in upregulation of programmed cell death 1 (PD-1)
on vaccine-elicited CD8 T cells and reduced recall responses [9].
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We therefore examined the expression of other co-inhibitory
receptors and homeostatic survival markers on CD8 T cell
responses following vaccination with Ad5 or alternative serotype
Ad vectors, including Ad26, which has shown promise in pre-
clinical HIV vaccine studies and is being evaluated in clinical trials
[10-12].

Expression of CD127 (the IL-7Ra chain) selectively marks effec-
tor CD8 T cells that survive the contraction phase and give rise to
memory CD8 T cells [13]. Moreover, memory CD8 T cells that
express CD62L (referred to as central memory CD8 T cells) exhibit
greater anamnestic capacity and provide enhanced immune pro-
tection following various pathogen challenges [14]. CD8 T cell
function is also dependent on the expression of inhibitory recep-
tors [15]. PD-1 is a important inhibitory receptor that negatively
regulates T cell activation and cytokine production [15-22].

We have shown that alternative serotype Ad vectors induce
memory T cells with enhanced functionality and reduced PD-1
expression relative to memory T cells induced by Ad5 vectors
[9,23]. This suggested that T cells elicited by Ad5 vectors are
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Fig. 1. Reduced Tim-3 expression on memory CD8 T cells after immunization with alternative serotype Ad vectors compared to Ad5 vectors. (A) Experiment layout. (B)
Representative histograms showing expression of multiple co-inhibitory receptors on Gags-specific (DPAL11+) CD8 T cells. (C) Representative FACS plots showing percentage
of Gag-specific CD8 T cells in spleen and liver that express Tim-3. (D) Summary of mean fluorescence intensity (MFI) of Tim-3 staining on Gag-specific CD8 T cells in spleen
and liver. Tissue data are from approximately day 60 post-immunization. Data in spleen are representative of three independent experiments, with n = 4 mice per group per
experiment. Data in liver are representative of two independent experiments, with n =4 mice per group per experiment. p < 0.05; ~'p < 0.01. Error bars indicate SEM.

partially exhausted. To better understand the immunological dif-
ferences between Ad5 and alternative serotype Ad vaccine vectors,
we assessed the expression of multiple co-inhibitory receptors. In
this report, we show that Gag-specific CD8 T cells induced by alter-
native serotype Ad vectors also induced reduced expression of the
T cell immunoglobulin and mucin domain (Tim-3) inhibitory
receptor relative to Ad5 vectors. Tim-3 is an inhibitory receptor
that has been shown to negatively regulate cytokine expression
onT cells [15,24,25], and is also known to be upregulated alongside
PD-1 on functionally exhausted T cells during chronic viral infec-
tions such as those with LCMV CI-13, HCV or HIV. Importantly,
CD8 T cells co-expressing both PD-1 and Tim-3 appear to be more
functionally exhausted than those expressing either PD-1 or Tim-3
alone [26-32]. Consistent with these prior reports, low Tim-3
levels in CD8 T cells primed by Ad26 vectors were associated with
robust recall CD8 T cell responses following heterologous boosting
with modified vaccinia Ankara (MVA) or Ad35. We also demon-
strated that lowering the dose of the Ad5 prime led to improved
CD8 T cell responses, suggesting a role for antigen burden in dictat-
ing the extent of the exhausted T cell response following immu-
nization with Ad5.

2. Materials and methods
2.1. Mice and infections

Six to 8-week-old female C57BL/6 mice (from Jackson Laborato-
ries) were used for all immunization experiments. Replication-
incompetent, E1/E3-deleted Ad5, Ad26, Ad35, and Ad48 vectors
expressing SIVmac239 Gag were prepared as previously described
[1]. Modified vaccinia Ankara (MVA) expressing SIV Gag-Pol-Env
was provided by the U.S. Military HIV Research Program (MHRP).
Mice were immunized intramuscularly in both hind leg muscles
with Ad vectors at 10'° viral particles (vp) per mouse or with esca-
lating doses of Ad5 (102, 10° or 10'° vp) per mouse for dose titra-
tion experiments. Vector concentration was determined by
spectrophotometry against known standards. For boosting experi-
ments, mice were boosted intramuscularly with MVA at <10’
plaque-forming units(PFU) per mouse or with Ad35 at 10° vp per
mouse. Intramuscular (i.m.) injections were administered in
100 pul phosphate-buffered saline (PBS) injections (50 pl per
quadricep). All experiments were performed with approval of the
Institutional Animal Care and Use Committee (IACUC).
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Fig. 2. PD-1 and Tim-3 levels on memory CD8 T cells are inversely associated with IFN-y levels. (A) Representative FACS plots showing Gag-specific specific CD8 T cells in
spleen with high or low IFN-y expression. (B) Representative FACS plots showing Gag-specific specific CD8 T cells in liver with high or low IFN-y expression. (C) MFI of PD-1 or
Tim-3 on Gag-specific CD8 T cells in spleen with high or low IFN-y expression. (D) MFI of PD-1 or Tim-3 on Gag-specific CD8 T cells in liver with high or low IFN-y expression.

Data are from two experiments, with n = 4 mice per group. Statistical analysis was conducted using two-tailed paired Student’s t test. ‘p <0.05; “p<0.01;

bars indicate SEM.

2.2. Intracellular cytokine staining (ICS) assays

Cytokine expression of Gag-specific cellular immune responses
in immunized mice were assessed by multiparameter intracellular
cytokine staining (ICS) assays. Lymphocytes isolated from the spleen
(10°) or the liver (10°) were incubated for 5 hat 37 °C with 0.2 ug/ml
of SIV Gag AL11 peptide (an immunodominant CD8 T cell epitope)
together with brefeldin A (GolgiPlug) and monensin (GolgiStop).
Cells were stained with anti-mouse CD8-PerCPCy5.5 (53-6.7) and
anti-mouse/human CD44 Pacific Blue (IM7) and then were fixed

“p <0.001. Error

and permeabilized (Cytofix/Cytoperm) prior to intracellular staining
with anti-mouse gamma interferon (IFN-y), anti-mouse tumor
necrosis factor alpha (TNF-a), and anti-mouse interleukin 2 (IL-2).
All of these reagents were purchased from BD Biosciences.

2.3. Surface markers and tetramer binding assays
Single-cell suspensions from blood or homogenized spleen or

liver were stained for 30 min at 4 °C with anti-mouse CD8a (53—
6.7), anti-mouse/human CD44 (IM7), anti-mouse CD127 (A7R34),
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Fig. 3. Differences in central memory CD8 T cell differentiation are also observed at late time points following immunization with Ad5 or alternative serotype Ad vectors. (A)

MFI of memory marker CD127 expresion on Gag-specific CD8 T cells in the liver and spleen. (B) MFI of lymphoid trafficking marker CD62L expression on Gag-specific CD8 T
cells in the spleen. (C) Representative FACS plots showing expression of CD127 and CD62L on Gag-specific CD8 T cells in the spleen. (D) Pie charts represent the proportion of
Gag-specific CD8 T cells in spleen that are of effector (Tgg), effector memory (Tgy), or central memory (Tcvm) phenotypes (n = 4). Day 60 Ad5 versus Ad26; Tgpe P = 0.0028; Tem
P =0.0036; Tcyv P = 0.0002. Tissue data are from approximately day 60 or day 380 post-immunization as indicated. Data are representative of two independent experiments,

with n =4 mice per group per experiment. p < 0.05;

anti-mouse CD62L (MEL-14), anti-mouse PD-1 (RMP1-30), anti-
mouse Tim-3 (RMT3-23), and Live/Dead Near-IR reagent. All anti-
bodies were purchased from BD Pharmingen, except for CD44
(Biolegend), PD-1 (Biolegend), Tim-3 (Biolegend), and Live/Dead
Fixable Near-IR antibody (Invitrogen). H-2DP-AL11 biotinylated
monomers were obtained from the NIH tetramer facility at Emory
University. Fixed cells were acquired using an LSR II flow cytome-
ter (BD Biosciences) and analyzed using Flow]o software (Treestar).

2.4. Statistical analysis

Statistical analysis was performed on GraphPad Prism using a
two-tailed unpaired Student’s t test except for two-tailed paired
Student’s t test where stated. Data are presented as standard errors
of the means (SEM).

3. Results

3.1. Reduced PD-1 and Tim-3 co-expression on memory CD8 T cells
after immunization with alternative serotype adenovirus (Ad) vectors
compared to Ad5 vectors

To assess the expression of inhibitory receptors on vaccine-
elicited CD8 T cells, we immunized C57BL/6 mice intramuscularly
with 100 viral particles (VP) of Ad vectors expressing simian
immunodeficiency virus (SIV) Gag and evaluated co-inhibitory
receptor expression at day 60 (Fig. 1A). Consistent with previous
observations [9,23], PD-1 expression was higher on virus-specific
CD8 T cells from Ad5 immunized mice compared to Ad26 immu-
nized mice (Fig. 1B) [9]. Interestingly, we also noticed upregulation
of inhibitory Tim-3 following vaccination with Ad5 relative to vac-
cination with alternative serotype Ad vectors (Fig. 1B and C). Of
note, vaccination with the Ad5 vector elicited greater percentages
of Gag-specific CD8 T cells expressing Tim-3 compared to vaccina-
tion with alternative serotype Ad vectors, and the per-cell expres-

“p <0.01. Error bars indicate SEM.

sion of Tim-3 was more strikingly different in the liver, with Ad5
inducing two-fold greater levels of Tim-3 expression compared to
alternative serotype Ad vectors (p <0.01) (Fig. 1D). There were
no significant differences in the expression of other inhibitory
receptors, such as LAG-3, CD160, CTLA-4 and 2B4 (Fig. 1B), suggest-
ing that Ad5 induced a phenotype of partial exhaustion, but not full
exhaustion, as is typically observed during chronic viral infection.

Both PD-1 and Tim-3 expression was inversely associated with
T cell functionality. Alternative serotype Ad vectors induced
greater percentages of IFN-y™ Gag-specific CD8 T cells as compared
to Ad5 (Fig. 2A and B), consistent with our previous results in the
LCMV GP system [9]. Moreover, IFN-y" CD8 T cells showed lower
PD-1 and Tim-3 expression as compared to IFN-y!°" CD8 T cells
(Fig. 2C and D). Thus, inhibitory PD-1 and Tim-3 expression follow-
ing Ad vector immunization can be used to assess T cell function-
ality following vaccination. Although this inverse association
between multiple co-inhibitory receptor expression and low cyto-
kine expression has already been established for exhausted CD8 T
cells in the context of chronic infection and cancers [15,25,33], it
has not been evaluated thoroughly on memory CD8 T cells in the
context of vaccination. Our data suggest that alternative serotype
Ad vectors induce highly functional CD8 T cell responses with
low expression of co-inhibitory PD-1 and Tim-3 receptors and high
cytokine production in response to antigen.

3.2. Long-term enhancement in memory CD8 T cell conversion and
improved functionality after vaccination with Ad26 vector compared
to Ad5 vector

We previously showed that following vaccination with Ad5,
there is a slower effector memory to central memory CD8 T cell dif-
ferentiation relative to vaccination with alternative serotype Ad
vectors (CD8 T cells elicited by Ad5 exhibit a CD127" CD62L"° phe-
notype at day 60 post-vaccination) [9]. However, memory T cell dif-
ferentiation is a continuous process following vaccination or
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'p<0.05; "p<0.01; "'p <0.001. Error bars indicate SEM.

acutely controlled infection [34-38], and we reasoned that it is pos-
sible that central memory conversion with cytokine upregulation
may occur at a later time point following Ad5 vaccination. We thus
interrogated the long-term immune phenotypes following Ad5 or
Ad26 vaccination to specifically assess whether CD8 T cells elicited
by Ad5 can eventually differentiate into highly functional central
memory subsets. Mice were sacrificed at early memory time points
(day 60) or late memory time points (day 380) after vaccination,
and the phenotype and functionality of CD8 T cell responses was
examined. At all time points, Ad26 showed improved expression
of the memory markers CD127 and CD62L relative to Ad5, and there
was a greater fraction of CD8 T cells that had differentiated into cen-
tral memory (CD127+ CD62L+) subsets (mean percentage for day
380 for Ad5 was 3.3% and for Ad26 was 9.6%) (Fig. 3A-D).

Although Ad5 induced higher magnitudes of Gag-specific CD8 T
cells especially in the liver (relative to Ad26), these cells appeared
to be partially exhausted, evidenced by a low tetramer to cytokine
ratio (Fig. 4A and B) and decreased per cell expression of IFN-v,
TNF-o, and IL-2 even after day 380 post-immunization (Fig. 4C
and D). In addition, the frequencies of triple producing (IFN-v,
TNF-a, and IL-2) CD8 T cells were greater in Ad26 vaccinated mice
relative to Ad5 vaccinated mice at both early and late time points
(Fig. 4E and F). Taken together, the enhanced central memory CD8
T cell conversion and improved CD8 T cell functionality after
immunization with Ad26 compared to Ad5 were still observed at
later stages of the immune response. Moreover, these data demon-
strated permanent induction of a partially exhausted, effector-like
CD8 T cell response by Ad5.
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3.3. Robust anamnestic CD8 T cell responses after vaccination with
Ad26 vector

We next used an MVA boost regimen to compare anamnestic
CD8 T cell responses in mice primed with Ad5 or Ad26 expressing
SIV Gag (see Materials and Methods). Mice were sacrificed at day 7
post MVA boost to compare the peak anamnestic expansion of
Gag-specific CD8 T cells in both blood and tissues (Fig. 5A). Note
that an Ad5 prime induced greater levels of Gag-specific CD8 T
cells relative to Ad26 as previously shown [9,39]. However, follow-
ing an MVA boost, Ad26-primed CD8 T cells showed a robust recall
expansion (difference between pre and post-boost for Ad5 was
1.47-fold, p=0.0318; for Ad26 was 4.93-fold, p=0.0031; Ad26
recall expansion was 3.4-fold greater compared to Ad5, p < 0.05)
(Fig. 5B-D). Following Ad26/MVA prime-boost vaccination, there
was also a greater per cell IFN-y expression in Gag-specific CD8 T
cells in the liver (Fig. 5E) (P = 0.05) with increased tetramer to cyto-
kine ratio (Fig. 5F) as compared to Ad5/MVA prime-boost vaccina-
tion. A similar trend was observed with an Ad35 boost suggesting
the generalizability of these observations (Fig. 5G). The improved
recall expansion of Ad26 primed CD8 T cells over those primed
by Ad5 appeared irrespective of the boosting vector.

3.4. Improved anamnestic CD8 T cell responses after vaccination with
low dose Ad5 vector

A previous study showed that lowering the dose of an Ad5
prime can improve vaccine-elicited CD8 T cells responses [40].
We therefore reasoned that the impaired recall immune response
seen with Ad5 primed mice (which included higher inhibitory
receptor expression and lower cytokine expression relative to
Ad26) may be overcome by reducing the priming dose in a heterol-
ogous prime-boost vaccine regimen. We compared the CD8 T cell
recall response in mice primed with escalating doses of Ad5 (108,
10° or 10'° vp), and boosted at day 60 post prime with Ad35 or
MVA. Mice were bled longitudinally to assess the magnitude and
phenotype of antigen specific CD8 T cells in blood (Fig. 6A). All
doses of Ad5 elicited similar peak CD8 T cell responses at day 15
post-prime, but the low dose Ad5 prime (10% and 10° vp) were
associated with more pronounced CD8 T cell contraction compared
to high dose Ad5 prime (10'° vp) (Fig. 6B and C) (p < 0.001). How-
ever, the fold recall expansion of memory CD8 T cell was signifi-
cantly greater with low dose compared to high dose Ad5 prime
by day 7 post-boost (fold-increase for low dose was 2.39-fold,
p <0.0001; fold-increase for high dose was 0.99-fold, p=1)
(Fig. 6B-D).

Finally, we assessed the expression of PD-1 on antigen-specific
CD8 T cells and observed that antigen-specific CD8 T cells in mice
primed with low dose Ad5 expressed significantly lower PD-1 rel-
ative to high dose Ad5-primed mice at all time points, including at
the peak of the primary response (p < 0.0001), during the memory
response (p = 0.0059), and after Ad35 boost (p < 0.0005) (Fig. 6E-
G). A similar trend was observed following MVA boost (data not
shown). Therefore, our findings confirm and extend previous
reports [40] and further suggest that lowering the priming dose
of Ad5 100-fold can mitigate the exhausted phenotype and
improve memory recall following Ad5 vaccination, resulting in T
cell responses that are similar to those of Ad26.

4. Discussion

Substantial biological differences between Ad5 and alternative
serotype Ad vectors, including differences in tropism [22-24], pri-
mary receptor usage [19,22,24-27], and triggering of innate
immune responses [28-33], may help to explain their observed
immunologic differences. Our laboratory and others have previ-

ously reported that although Ad5 is highly immunogenic, it
induced CD8 T cells with a more terminally differentiated pheno-
type, partial exhausted phenotype, and defective recall capability
[9,23,41]. Our prior observations were reported using recombinant
Ad vectors expressing lymphocytic choriomeningitis virus glyco-
protein antigens (LCMV GP). Here, we have generalized these
observations to the SIV Gag system with two different boosting
platforms. Moreover, we show that in addition to PD-1 upregula-
tion, CD8 T cells elicited by Ad5 vectors exhibit Tim-3 upregula-
tion. These immunological differences may help to explain the
distinct recall potential of CD8 T cells elicited by Ad5 and alterna-
tive serotype Ad vectors when delivered at high doses.

The mechanism for the immune dysfunction induced by Ad5 is
not well understood, and the role of antigen persistence, dendritic
cell priming, and various innate immune pathways remain to be
determined. Our prior data show that cellular tropism does not
appear to account for the immune defects that are observed in
Ad5-induced CD8 T cells, as hexon hypervariable region-modified
Ad5 (Ad5HVR48), which exhibits a tropism similar to that of
Ad48, induces T cell immune dysfunction similar to Ad5 [42]. We
have also observed a similar pattern of memory CD8 T cell differ-
entiation following immunization of rhesus macaques with Ad5
versus Ad26 (data not shown).

PD-1+ Tim-3+ T cells are also known to be more functionally
impaired than CD8 T cell populations that remain single-positive
for either marker, as suggested by prior studies [26-32]. Lower
levels of the co-inhibitory receptors PD-1 and Tim-3, and increased
levels of memory markers on CD8 T cells elicited by Ad26 vaccina-
tion may help to explain the enhanced anamnestic potential rela-
tive to Ad5 vaccination. It has also been suggested that lowering
the dose of Ad5 vaccines may improve the functionality of CD8 T
cells [40]. Our study confirms and extends this prior report by
showing improved fold expansion of CD8 T cells and low inhibitory
receptor expression in low dose Ad5 vaccine groups relative to
high dose Ad5 vaccine groups. Since Ad26 is less immunogenic at
low doses (107 VP induce negligible responses in mice) [23], our
data cannot compare CD8 T cell function with high versus low
doses of Ad5 and Ad26. We therefore assessed Ad5-induced CD8
T cell responses at both high and low doses to demonstrate that
CD8 T cells are more functional with low doses of this vector.

In conclusion, we expand previous comparative findings on Ad5
and alternative serotype Ad vectors by providing additional data
showing that the phenotype, functionality, and recall potential of
memory CD8 T cells elicited by alternative serotype Ad and Ad5
vectors are substantially different in their phenotype and long-
term recall capacity. Importantly, we confirm that these observa-
tions are reproducible in multiple prime boost regimens. These
findings advance our current understanding of Ad vectors for
development as vaccine candidates against HIV-1.
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