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Abstract: It was verified that deep learning can be used in creating multilayer membranes with
multiple porosities using the CO2-assisted polymer compression (CAPC) method. To perform training
while reducing the number of experimental data as much as possible, the experimental data of the
compression behavior of two layers were expanded to three layers for training, but sufficient accuracy
could not be obtained. However, the accuracy was dramatically improved by adding the experimental
data of the three layers. The possibility of only simulating process results without the necessity for a
model is a merit unique to deep learning. Overall, in this study, the results show that by devising
learning data, deep learning is extremely effective in designing multilayer membranes using the
CAPC method.

Keywords: CO2-assisted polymer compression; multilayer porous membrane; deep learning; carbon
dioxide; process simulation

1. Introduction

Polymers, especially thermoplastics, are used for many purposes due to their ease of molding [1,2].
However, the fabrication of polymer materials is a process that requires a certain amount of energy for
processing, as it involves heating and then cooling. I previously devised the CO2-assisted polymer
compression (CAPC) method, in which polymers are plasticized with CO2 and then crimped so that
they can be processed without applying heat [3]. Thus, this process is more energy-efficient than the
heat-pressing process, and it contributes a key element of the Sustainable Development Goals (SDGs),
“Target 9.4: Upgrade all industries and infrastructures for sustainability”, which aims at building
sustainable societies [4].

CAPC is a method of plasticizing and crimping polymer fibers under the existence of CO2,
and it can be realized at room temperature. Although CAPC is a high-pressure process, CO2 can
be introduced by simply opening and closing a valve without using a pump. It is known that CO2

dissolves in polymers [5–7] and that polymers are plasticized by dissolving CO2 in their amorphous
parts [8–10]. In the case that a plasticized polymer is a fibrous polymer, bonding is generated, as the
fibers are overlapped and strongly pressed. The CAPC method produces porous materials by creating
this point-bonding everywhere in the fibers, and the used CO2 is a low-toxicity substance that is
also used in foods. Additionally, since CO2 does not remain in the created polymers when using
the CAPC method, there is no concern about contamination, so this process can also be used in
the medical and food industries. Among polymer fibers, nonwoven fabrics are mass-produced and
inexpensive fabrics [11,12], and CAPC products made from this material can be applied not only to some
high-value-added products but also to mass-produced products. In a previous report, the adhesive
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strength and penetration strength of a CAPC porous material was evaluated, and it was found that the
adhesive strength was in good agreement with the experimental results, considering the aggregate
of point bonding [13]. The control of porosity and pore size was examined, and it was found that
increasing the compression rate reduced both the porosity and pore size [14]. In the CAPC procedure,
since the compressibility can easily be changed by the press position, the characteristics of the porosity
and pore size of a CAPC porous material can be controlled by the process conditions. The porosity
and pore size cannot be controlled independently; if the porosity is determined, the pore size is also
determined. When a polyethylene terephthalate nonwoven fabric with a fiber diameter of 8 µm was
used, the pore size decreased from 8 to 1 µm as the porosity decreased from 0.32 to 0.07 [14]. It has also
been found that it is easy to carry a drug between sheets and that the sustained release of the drug can
easily be controlled by changing the number of sheets and the compression rate [15]. Regarding the
productivity concerns due to batch production, producing multiple products with a single press was
successful, and further study is being conducted on the necessary procedures for mass production [16].

Porous materials based on nonwoven fabric are used in various components, such as filters [17],
with recent research investigating air filters [18] and solution filters [19]. There is also research on
the applications of functional materials, such as battery separators [20]. For these porous materials,
high functionality is a major theme. When considering filter applications, low pressure loss, a high
particle capture rate, and a long life are key to high functionality. With regard to pressure loss, porosity
exerts a strong influence, and CAPC porous materials are no exception [21]. A multilayer membrane
with porosity and pore size gradients represents one possible solution to this problem.

Additionally, since CAPC products are porous materials with through holes, where the gaps between
the fibers are pores, filters are considered to be among their applications. Therefore, the possibility
of producing multilayer filters was examined, and it was found that it is possible to produce them
by creating thick porous materials in the first step and then stacking and compressing them in the
second step [22]. It was difficult to predict the thickness of each layer of the product, because each
layer was not compressed in the same ratio during the compression process, and the softer layers
were compressed more compared with harder layers. Moreover, in the design of these multilayer
filters, it was found that the compression-after-expansion model is consistent with the experimental
results. The initial expansion was modeled by determining an appropriate expansion value through
an experiment, which was then incorporated into the model. Finally, the initial expansion value was
adjusted as a parameter by fitting. The compression was modeled by incorporating the longitudinal
modulus of the porous polymer material plasticized by CO2 as a function of density. Every time the
raw material is changed, evaluating the initial expansion and the longitudinal modulus for building a
new model is a laborious operation, so if a method for building a model can be found without using
the initial expansion, the search for process conditions would be easier.

Artificial intelligence is, today, used in various fields of big data analysis, such as image
analysis [23,24]. Even in chemistry fields, which to date, have primarily been experimental, studies
on material informatics have begun [25–27]. Some artificial intelligence applications in chemistry
fields are utilized in material design [28,29] and in analyzing various materials [30]. The background
of the increase in these studies is the computing power improvements due to the development of
GPGPU (general-purpose computing on graphics processing units) and the lowering of the hurdles of
setting up computing environments due to the availability of free computing libraries. The advantage
of deep learning is that it enables us to perform simulations without having to think about models.
I was very interested in whether this advantage could be applied to the design of porous polymer
materials using the CAPC method. However, deep learning often requires a huge amount of training
data, which contradicts the preparation of huge amounts of training data to reduce the number of
trial-and-error procedures necessary for creating target materials. Therefore, it is necessary to improve
the accuracy of training data by adding data as needed and to construct initial training data with as
few data as possible.
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In this study, the objective was verifying whether it was possible to simulate a whole polymer
fabrication process without using the initial expansion data and by learning the compression results
through deep learning. In addition, it was studied whether it was possible to construct a deep learning
model with a certain degree of accuracy by using as few training data as possible.

2. Results and Discussion

In a previously published paper [22], the goal was to create a multilayered filter with three layers
of equal thickness but different porosities via a two-step CAPC treatment (Figure 1). As an example of
the product, an optical microscope image of the cross-section of the product created under particular
conditions is shown in Figure 1. The surfaces of layer 2 and layer 3 were colored before the second
CAPC to make the layer boundaries easier to see. To achieve this, I inferred the phenomena occurring
in the high-pressure vessel and carefully explored the compression for two samples in order for humans
to come up with a model based on this phenomenon. The results of the experiment, which were
previously graphically presented, are presented as numerical values in Table 1.

Figure 1. Fabrication process for the three-layer porous material (V1: introduction valve, V2: exhaust
valve, V3: exhaust valve, V4: metering valve). The first CAPC process was carried out three times
to produce layer 1, layer 2, and layer 3 samples; the second CAPC process was carried out once to
construct the stacked sample. An optical microscope image of the cross-section of the porous product
with three layers is shown in the figure.

Table 1. Thickness of each layer for the two-layer compression (Reference [22]).

Before Compression After Compression
Layer 1 Layer 2 Layer 1 Layer 2

Thickness (mm) Thickness (mm) Thickness (mm) Thickness (mm)

5.001 4.001 4.140 3.866
5.000 4.000 3.589 3.408
5.000 4.001 3.038 2.963
5.000 4.001 2.547 2.459
5.001 4.000 2.298 2.228
5.000 4.001 2.028 1.980
5.000 3.003 3.853 3.123
5.000 3.002 3.145 2.843
5.000 3.002 2.565 2.443
5.000 3.002 2.287 2.236
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Table 1. Cont.

Before Compression After Compression
Layer 1 Layer 2 Layer 1 Layer 2

Thickness (mm) Thickness (mm) Thickness (mm) Thickness (mm)

4.999 3.003 2.033 1.979
5.000 2.000 3.749 2.243
5.001 2.000 2.849 2.164
5.000 1.999 2.458 2.061
5.001 2.000 2.125 1.871
4.000 3.002 3.119 2.859
4.000 3.002 2.532 2.471
4.000 3.002 2.276 2.239
4.000 3.002 2.016 1.992
4.000 1.998 2.864 2.153
4.000 1.999 2.461 2.055
3.999 1.999 2.118 1.898
3.003 2.000 2.112 1.906

The sample weight of all the layers is 0.521 g.

Because this deep learning method requires three layers of data to be given as input values,
creating three layers of data based on these two layers was considered. Deep learning was carried out
using 10,000 generated training data. Since the number of training data was large for the total number
of parameters (41,503), training was carried out without falling into over-training.

The validation of the training results was carried out using the compression results for the three
measured layers in the previously reported study. Because the training results varied depending
on the initialization state, the best result after ten training sessions was used to validate the results.
The validation loss during a training session is shown in Figure 2. Table 2 shows the training results,
which do not seem to properly correspond to the experimental results. The reason for this might be
that the data were created by expanding the results of compressing two layers of the same weight into
three layers, so training was carried out under the implicit rule of w1i = w2i + w3i (or w2i = w1i + w3i,
or w3i = w1i + w2i). It was assumed that learning was performed in the presence of the rules and that
there was a problem with the reproducibility of the data that deviated from the rules.

Figure 2. Changes in validation loss with respect to epochs based on training using the two-layer
compression data shown in Table 1. The results for the first 20 epochs are displayed as an inset.
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Table 2. Experimentally obtained thickness [22] for three-layer compression and deep learning
prediction based on training using the two-layer compression data shown in Table 1.

Before Compression After Compression
Experimental Results Prediction by Deep Learning

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)

0.696 0.695 0.694 0.501 0.589 0.711 0.577 0.612 0.626
0.697 0.647 0.600 0.535 0.602 0.658 0.609 0.614 0.579
0.740 0.573 0.535 0.608 0.604 0.586 0.673 0.575 0.551

The sample weights were 0.081, 0.098, and 0.122 g for layer 1, layer 2, and layer 3, respectively.

Therefore, the experimental results for the three samples that deviated from this rule were added,
and it was determined experimentally whether learning was performed. In particular, experiments
with 20 sheets (0.163 g total mass), 25 sheets (0.204 g total mass), and 30 sheets (0.244 g total mass) were
conducted. The experimental results are provided in Table 3, which shows the average value for each
of the four experiments. Table 4 shows the best results of 10 different training procedures, and it shows
a dramatic improvement over the obtained training results for which only two-layer compression
data were used. The validation loss during a training session is shown in Figure 3. The change in
validation loss was similar to that in Figure 2. If the accuracy were improved to achieve this level,
process design using deep learning could be applied to certain applications. Thus, the objective of
this study, which was to establish a deep learning model with a certain degree of accuracy using
as few training data as possible, was achieved. I believe that this method can be very effective in
designing multilayer membranes using the CAPC method. Furthermore, the accuracy of the model
can be improved by adding experimental training data.

Table 3. Thickness of each layer for the three-layer compression (this work).

Before Compression After Compression
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

Thickness
(mm)

Thickness
(mm)

Thickness
(mm)

Thickness
(mm)

Thickness
(mm)

Thickness
(mm)

1.400 1.400 1.400 1.137 1.322 1.441
1.400 1.400 1.400 1.021 1.218 1.361
1.400 1.400 1.400 0.917 1.113 1.270
1.400 1.400 1.400 0.822 1.009 1.169
1.200 1.200 1.200 0.954 1.119 1.227
1.200 1.200 1.200 0.842 1.014 1.144

The sample weights were 0.163, 0.204, and 0.244 g for layer 1, layer 2, and layer 3, respectively.

Table 4. Experimentally obtained thickness [22] for three-layer compression and deep learning
prediction based on training using both two-layer compression data (Table 1) and three-layer
compression data (Table 3).

Before Compression After Compression
Experimental Results Prediction by Deep Learning

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)
Thickness

(mm)

0.696 0.695 0.694 0.501 0.589 0.711 0.513 0.603 0.682
0.697 0.647 0.600 0.535 0.602 0.658 0.546 0.606 0.639
0.740 0.573 0.535 0.608 0.604 0.586 0.609 0.574 0.609

The sample weights were 0.081, 0.098, and 0.122 g for layer 1, layer 2, and layer 3, respectively.



Molecules 2020, 25, 5786 6 of 10

Figure 3. Changes in validation loss with respect to epochs based on training using both two-layer
compression data (Table 1) and three-layer compression data (Table 3). The results for the first 20 epochs
are displayed as an inset.

3. Materials and Methods

3.1. Materials

The used sample was a nonwoven fabric (30 g m−2) with 8µm-diameter fibers made of polyethylene
terephthalate (model no.: TK3; Bell Polyester Products, Inc., Yamaguchi, Japan), and it was purchased
from Nippon Nozzle Co., Ltd., Kobe, Japan. The nonwoven fabric was punched out to an 18 mm-diameter
circle using a punch. The punched samples were transformed into samples for pressing by matching
the numbers and weights. The prepared samples for this study were 20 sheets, 25 sheets, and 30 sheets
with weights of 0.163, 0.204, and 0.244 g, respectively. In a previous study [22], the sample weights
were both 0.521 g (64 sheets) for two-layer compression (Table 1), and the sample weights were 0.081 g
(10 sheets), 0.098 g (12 sheets), and 0.122 g (15 sheets) for three-layer compression (Tables 2 and 4).

3.2. Fabrication Procedure

The samples were prepared by the first-step CAPC for the porous polymer material, which constituted
the layer. Then, the final layer structure was prepared by overlapping the porous materials with second-step
CAPC treatment, and it was bonded while compressing the porous materials (Figure 1).

The outline of the CAPC apparatus is as follows. A piston and a pressure vessel were attached to
a press machine (model no.: JP-1504; Janome Sewing Machine Co., Ltd., Hachioji, Japan). There was a
CO2 channel in the center of the piston with a hole below the O-ring to seal the piston with the pressure
vessel and to introduce CO2 into the pressure vessel or to exhaust CO2 from it. The import and export
lines of the CO2 were connected to the top of the piston. The import line was connected through a ball
valve (V1) from the CO2 cylinder, and the export line was divided into two lines: an instantaneous
exhaust line for release to the atmosphere through a ball valve (V2) and a slow exhaust line with both a
metering valve (V4) and a ball valve (V3).

In the first-step CAPC treatment, a predetermined amount of fiber sheets was set in the pressure
vessel. Then, the piston was lowered to the CO2 introduction position, and the V1 valve was opened
with the V2 and V3 valves closed to introduce the CO2. As the pressure vessel was initially filled with
air, the air was diluted 60 times by the high CO2 pressure. Each time V1 was closed, V2 was opened,
and the CO2 was exhausted along with the air. This process was repeated three times for the air in the
container to be almost completely replaced by CO2. The CO2 was then introduced at vapor pressure by
closing V2 and opening V1. After the CO2 was introduced, V1 was closed and the piston was moved to
the press position and kept pressed for 10 s. Then, V2 was opened to exhaust the CO2. After the piston
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was raised, when the sample was removed from the pressure vessel, a porous polymer product was
obtained with approximately the thickness of the press position. The CO2 introduction pressure was
about 6 MPa, and the treatment was performed at room temperature.

Regarding the second-step CAPC process, Figure 1 shows the procedure of creating multilayer
membranes. However, since it is difficult to measure the thickness of each layer when each layer
is adhered to another one, separators were sandwiched between the layers, and CAPC treatment
was performed under the condition that the layers did not adhere to each other. A sample with two
separators sandwiched between three layers was set in a pressure vessel, the piston was lowered to the
CO2 introduction position, the air was replaced with CO2 as in the first-step CAPC treatment, and then,
CO2 was introduced. Then, the piston was lowered to the press position and pressed for 10 s. In a
previous study, when processing multiple samples with separators, there was a tendency for the upper
sample to become thicker when CO2 was instantly exhausted [16], so in the second CAPC treatment,
V3 was opened for 30 s, and the V4 metering valve was used. After slow exhaustion through the valve,
V2 was opened to release the CO2 to the atmosphere instantaneously. It is known that this treatment
eliminates the phenomenon of the upper layer becoming thicker [16]. Regarding the thickness of each
layer, the thickness of the central portion was measured using a micrometer caliper and a sample.

3.3. Deep Learning Model

A deep learning environment was constructed with Anaconda3 2019.7 [31] on a Windows 10 laptop
PC with an NVIDIA GeForce RTX 2070. The Python version used in this study was 3.6.9 [32]. The model
was built with Keras 2.2.4 [33] using TensorFlow 1.14.0 [34] as the backend, and the computation was
performed in GPGPU via CUDA 10.0 [35] and cuDNN 10.0 [36].

Machine learning was carried out using a neural network model. First, the input and output
layers were determined. The input layer was defined as the weight and thickness of the top sample at
the time of preparation, the weight and thickness of the middle sample, the weight and thickness of
the bottom sample, and the overall thickness after compression. The output layer was defined as the
thickness of the top layer, the thickness of the middle layer, and the thickness of the bottom layer after
compression. The hidden layer was five layers of 100 units for each layer. The activation function was
the ramp function (parameter “ReLU” in Keras) for all the layers, as all the weights and thicknesses
were positive numbers. The parameter “Glorot_Uniform” was used for initialization in all the layers.
A loss evaluation was performed for the mean squared error, which was indicated using the “MSE”
parameter, and training was performed 10,000 times, with 100,000 training data available, specifying
that 90% of the input data should be used for training and 10% for validation. The total number of
parameters in the model was 41,503, all of which were used as training parameters. The parameter
“Adam” was specified as an optimizer.

3.4. Procedure for Making Training Data from Two-Layer Compression Data

A case was considered in which the thicknesses of the two layers were x1i and x2i and the
thicknesses after compression were x1f and x2f, respectively. The total thickness xf after compression
was x1f + x2f, and x1i and x2i were randomly selected from Table 1. Note that there are two combinations
of x1i and x2i for the same row of data. In one combination, x1i is larger, and in the other one, x2i is larger.
Thus, from Table 1, there are 46 possible combinations of x1i and x2i. In order to create three-layer data
from two-layer data, one layer must be split. Therefore, the splitting ratio, defined as the amount that
determines the division ratio of one layer, was introduced. Considering the splitting ratio r (0 ≤ r ≤ 0.5),
x2i was divided into two layers: x2i1 = x2i × r and x2i2 = x2i × (1 − r). The compression results were also
split by the ratio r: x2f1 = x2f × r and x2f2 = x2f × (1 − r). The x1i, x2i1, and x2i2 were randomly shuffled
to create y1i, y2i, and y3i, respectively, and there were six shuffling combinations. The corresponding
compression results were stored in y1f, y2f, and y3f. If the same combination of materials was used
and the preparation thickness was halved, it was expected that the result would be halved as well.
Therefore, the coefficients f (0 < f ≤ 1) were introduced to increase the variation of this preparation



Molecules 2020, 25, 5786 8 of 10

thickness, and z1i = y1i × f, z2i = y2i × f, z3i = y3i × f, z1f = y1f × f, z2f = y2f × f, and z3f = y3f × f were
prepared. The introduction of these two factors of r and f made it possible to increase the number
of training data beyond the fitting parameters. In practice, the weights w1i, w2i, and w3i were also
determined after considering the effects of r and f, and w1i, z1i, w2i, z2i, w3i, z3i, and t were included as
input layers, where t is the total thickness after compression (t = z1f + z2f + z3f). The corresponding
output layers were z1f, z2f, and z3f. I used this method to create 100,000 training data for deep learning
based on Table 1. Note that 100,000 training data were prepared that did not have exactly the same
data by recalculating the results determined by random numbers when they were the same.

3.5. Procedure for Making Training Data from Both Two-Layer and Three-Layer Compression Data

In the case of three-layer data, it was not necessary to split one layer to make three-layer data
as in the case of the two-layer data. The initial thicknesses (x1i, x2i1, and x2i2) and thicknesses after
compression (x1f, x2f1, and x2f2) were obtained from experimental data. Thus, only the process of
making y1i, y2i, and y3i through shuffling and the process of introducing the coefficients f to make
z1i, z2i, and z3i were performed. In other words, for the production of the data of Tables 1 and 3
together, each datum was randomly chosen, and when the data from Table 1 were chosen, the data
were produced using the same training-data-generation process described in Section 3.4. Moreover,
when the data of Table 3 were chosen, the data were produced by shuffling the samples and taking
into account the coefficients f. The 100,000 different training data, while making sure not to make the
data the same, were created.

4. Conclusions

In this study, by using deep learning, I attempted to predict the thickness of each layer of
three layers that were to be produced using the CAPC process without building a complex model
and by simply learning the actual compression results. Though it was not sufficient to create three
pseudo-compression results from two compression results, the addition of three compression results
was found to result in a good simulation. In this paper, it was found that the experimental results
could be explained by adding six three-layer experimental data points to the three-layer data extended
from two layers, but additional data may be required depending on the target multilayer-membrane
configuration. However, this paper suggests that it is possible to reduce the quantity of data required
for initial training by using data extended from two layers as the foundational data. The possibility of
only simulating process results without the necessity for a model is a merit unique to deep learning.
This time, it was applied to compression in the presence of CO2, but it is believed that it can also be
applied when forming multiple layers by compression, such as in heat pressing. Generally, when the
number of training data can be increased by processing experimental data, deep learning is considered
an effective method for selecting the process conditions, as it allows the prediction of process outcomes
with fewer data by appropriately selecting training data. However, when increasing data, it is often
the case that the data are increased based on a certain rule, so it is important to note that the learning
result may not be an expected one because of that rule.
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