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Abstract: Src protein tyrosine kinases (SFKs) are a family of nonreceptor tyrosine kinases that are
localized beneath the plasma membrane and are activated during cell adhesion, migration, and
elongation. Due to their involvement in the activation of signal transduction cascades, SFKs have
been suggested to play important roles in the determination of cell polarity during cell extension and
elongation. However, the mechanism underlying Src-mediated polarity formation remains unclear.
The present study was performed to investigate the mechanisms underlying Src-induced cell polarity
formation and cell elongation using Src knockout fibroblasts (SYFs) together with an inhibitor of Src.
Normal and Src knockout fibroblasts were also transfected with a wild-type c-Src, dominant negative
c-Src, or constitutively active c-Src gene to analyze the changes in cell morphology. SYF cells cultured
on a glass substrate elongated symmetrically into spindle-shaped cells, with the formation of focal
adhesions at both ends of the cells. When normal fibroblasts were treated with Src Inhibitor No. 5,
a selective inhibitor of Src tyrosine kinases, they elongated into symmetrical spindle-shaped cells,
similar to SYF cells. These results suggest that cell polarity during extension and elongation may be
regulated by SFKs and that the expression and regulation of Src are important for the formation of
polarity during cell elongation.
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1. Introduction

Cell polarity refers to the spatial, morphological, and structural asymmetry of cells
and involves a characteristic spatial distribution of morphological, structural, and cellular
components, i.e., the plasma membrane, cytoskeletal components, and sites of cell–cell
adhesion (focal adhesions). Cell functions, such as transport, intracellular signaling, and
mechanosensing, are dependent on the asymmetrical distribution of intracellular compo-
nents. For example, epithelial cell polarity has an apical membrane–outer basal membrane
orientation, and neural cell polarity is involved in the formation of two types of neurites,
i.e., dendrites and axons [1]. Adhesive structures, adherens junctions, tight junctions,
and focal adhesions allow the formation of two distinct compartments, i.e., the apical
membrane that normally faces the external environment and the basolateral membrane
that is connected to the extracellular matrix (ECM) of the basement membrane via integrins
and their receptors.

Actin filaments are major components of actomyosin contractile systems in eukaryotic
cells that regulate the direction of cell movement. Actin molecules switch between poly-
merization and depolymerization with the activation of Rho GTPases, a family of small
G proteins, and their downstream molecules (the WASP/WAVE family and the Arp2/3
complex) [2,3]. Thus, stress fibers, lamellipodia, and pseudopodia, which control cell
morphology and plasma membrane dynamics via actomyosin contractile systems, function
in determining the polarization of cells [4].

When cells are cultured on a glass substrate, the plasma membrane begins to move
in from the distal end to the leading edge of the cell [5]. Depolymerization of the actin
cytoskeleton deforms the morphology of the cell membrane, and the focal adhesions
between the extracellular matrix and intracellular proteins move forward to the leading
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edge of the cell while those at the rear of the cell are destroyed, forming a web-like structure
when the cell moves, which results in the polarization of the moving cell [6].

The localization of receptors and adhesion molecules, such as integrins, is highly
polarized in cultured cells when moving directionally [7]. Integrins are focal adhesion
molecules that connect the inside of the cell and the extracellular matrix; they play essential
roles in the regulation of membrane transport mechanisms [8,9]. Such dynamic changes
in cell polarity during cell motility require changes in cytoskeletal components such as
F-actin and microtubules, which are involved in the mechanism of membrane transport,
closely associated with the membranous cytoskeletal systems described above [9].

Endocytosis of integrins occurs at the leading edge of cells, but it has not been observed
at the trailing edge. As they are the molecules that control this localization, the turnover of
focal adhesions by endocytosis or exocytosis of integrins is necessary for cell movement.
The organization of focal adhesions is controlled by focal adhesion kinase (FAK) and its
substrates, including members of the Src family of protein tyrosine kinases (SFKs) [10].

The cell–substrate interface, referred to as a focal adhesion or adhesion plaque, plays
essential roles in many biological behaviors, including cell migration, wound healing, and
angiogenesis. These areas are composed of typical focal adhesion constituent proteins such
as vinculin, paxillin, talin, alpha-actinin, and integrin [11–15]. Some signal transduction
proteins, such as FAK, cellular Src (c-Src), and Rho A, are also colocalized with these
constituent proteins, in close association with stress fibers and focal adhesions [16–18]).
These observations strongly suggest that the focal adhesions play roles in transferring
certain migration and polarization signals from the external environment to the inside
of the cell. Focal adhesions recognize the boundary between the plasma membrane and
extracellular matrix proteins such as fibronectin and vitronectin, and focal adhesions also
determine cell orientation and polarity during cell movement [19].

The SFKs are a family of nonreceptor-type protein tyrosine kinases associated with
the plasma membrane, which play roles in cell–matrix and cell–cell adhesion and are
present in endosomal vesicles. Src mediates signaling by a variety of receptors [20,21], and
activated Src induces cell transformation in vitro [22–24]. For example, Src expression and
activity are elevated in many human epithelial cancers [25]. The first 16 N-terminal amino
acids of Src are required for membrane binding [26], and the subsequent 17–84 amino
acids constitute a unique domain. This is followed by the SH3 and SH2 domains, which
are connected by a short linker, with another linker connecting the SH2 domain to the
kinase domain, which is required for most of the biological functions of Src [26]. Tyr527
(or Tyr530 in human Src, Tyr534 in mouse, equivalent to Tyr527 in chicken) undergoes
inhibitory phosphorylation by the C-terminal Src kinase. In the inactive or “closed” form
of Src, the SH2 domain interacts with pTyr527 and places the SH3 domain in the correct
position to interact with the polyproline type II helix of the kinase-SH2 linker region, thus
inactivating the conformational change in the N-terminal domain of the kinase. Activation
can occur due to dephosphorylation or mutation of Tyr527 or by binding of the activating
ligand to the SH2 or SH3 domain [22–24,27]. Mutation of Tyr527 in c-Src that prevents
phosphorylation causes enzymatic activation [28].

In normal cells, c-Src is involved in a wide range of physiological functions, including
cell proliferation, migration, construction of the cytoskeleton, and interaction with the
extracellular matrix. Src was shown to translocate to focal adhesions at the cell periph-
ery [29], where it undergoes activation-dependent association with focal adhesions and the
associated stress fibers [30]. FAK contains a defined focal adhesion targeting domain and an
Src binding site created by FAK autophosphorylation [31,32]. Src exists in an inactive form,
phosphorylated by the specific regulator C-terminal Src kinase (CSK), and is activated in
response to a diverse array of extracellular stimuli, such as growth factors and extracellular
matrix [27]. CSK is a kinase that phosphorylates Tyr527, the negative regulatory site of
c-Src [28]. Tyr527-phosphorylated c-Src induces gene expression through activation of the
MAPK pathway and induces focal adhesions and other types of cytoskeletal reorganization
by activating Rho GTPases. These observations provide evidence that the tyrosine kinase
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activity of the Src family at focal adhesions regulates the metabolic turnover of focal adhe-
sions during cell motility, resulting in the formation of cell polarity. As a result, Src exerts
diverse physiological functions, such as activation of cell adhesion and motility, differenti-
ation, proliferation, survival, and even induction of transformation [29,33]. The present
study was performed to examine the effects of the expression of activated or dominant
negative forms of the c-Src gene in fibroblasts to gain insight into the role of Src tyrosine
kinase in cell motility, especially in the establishment of cell polarity.

Fibroblasts were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine
kinases, to block Src activation and allow us to investigate its influence on the physiological
characteristics of the cells and elucidate the mechanisms underlying polarized elongation.
Normal fibroblasts and Src family knockout cells [34] (SYF cells; ATCC, Manassas, VA)
were also transfected with constructs encoding wild-type c-Src (WT c-Src), constitutively
active c-Src, and dominant negative c-Src genes to analyze the changes in cell morphology.
In this study, SYF cells transfected with WT c-Src showed an elongated morphology while
extending pseudopodia similar to normal fibroblasts. Normal fibroblasts transfected with
the dominant negative c-Src mutant gene showed symmetrical spindle-shaped morphology.
Normal fibroblasts treated with the c-Src-specific inhibitor, Src Inhibitor No. 5 (Biaffin,
Kassel, Germany), adopted a symmetrical spindle shape similar to SYF cells. These obser-
vations suggest that SFKs regulate polarity formation during cell extension and elongation
and that the expression and regulation of at least one member of the SFKs, c-Src, are
important for polarity formation during cell elongation.

2. Materials and Methods
2.1. Cell Culture

Fibroblasts (3T3 cells; NIH, Bethesda, Rockville, MD, USA) or SFK-knockout mouse
fibroblasts (SYF cells; ATCC) [34] were cultured in a 1:1 mixture of Dulbecco’s modified
Eagle’s medium (DMEM) and a nutrient mixture (Gibco, Grand Island, NY, USA), pH 7.4,
containing 50 units/mL of penicillin, 50 µg/mL of streptomycin, and 10% fetal bovine
serum (Gibco). The cells were maintained at 37 ◦C in a humidified, 5% CO2 atmosphere.
Cells were cultured overnight on glass-bottomed culture dishes of 35 mm diameter (Mat-
sunami Glass, Tokyo, Japan) and used in the experiments.

2.2. Immunofluorescence Microscopy

Cultured cells were fixed with 1% paraformaldehyde in PBS for 30 min and permeabi-
lized by treatment with 0.05% Triton X-100 in PBS for 5 min. The fixed cells were incubated
with 10% normal goat serum for 30 min at room temperature and then stained with an
antibody against vinculin (Sigma, St. Louis, MO, USA) as a marker of focal adhesions
for 60 min. After washing in PBS for 20 min, the fixed specimens were incubated with
fluorescein-conjugated anti-mouse IgG. Samples were then observed by conventional
epifluorescence microscopy or phase-contrast microscopy (Olympus, Tokyo, Japan).

2.3. SFK Inhibitor

The SFK inhibitor, Src Inhibitor No. 5 (Biaffin), is one of several Src inhibitors that
belong to the quinazoline class of selective inhibitors of c-Src and has an IC50 of 10 nM
in vitro [35–37]. Fibroblasts were seeded onto dishes and cultured for 24 h, followed by
incubation with Src Inhibitor No. 5 at a concentration of 10 µM.

2.4. Transfection of pUSEamp-WT c-Src, pUSEamp-Dominant Negative c-Src (K295M/Y527F),
and pUSEamp-Constitutively Active c-Src (Y527F) Vectors

Dominant negative c-Src (K295M/Y527F) and constitutively active c-Src (Y527F;
chicken c-Src residue numbering) were generated by site-directed mutagenesis using
a KOD-plus mutagenesis kit, in accordance with the manufacturer’s protocol (Toyobo,
Tokyo, Japan), and cloned into a cytomegalovirus (CMV) promoter-driven pUSEamp-WT
Src expression vector (Upstate Biotechnology, Lake Placid, NY, USA). WT Src or dominant
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negative c-Src (K295M/Y527F) was inserted into peGFP-C1 (Clontech, Palo Alto, CA, USA).
eGFP-fused dominant negative c-Src (K295M/Y527F) and WT c-Src were transfected into fi-
broblasts using Tfx-50, in accordance with the manufacturer’s protocol (Promega, Madison,
WI, USA). pUSEamp-dominant negative c-Src (K295M/Y527F), constitutively active c-Src
(Y527F), or WT c-Src was also transfected into fibroblasts using Tfx-50 (Promega), in accor-
dance with the manufacturer’s protocol. Cells transfected with eGFP-C1 or pUSEamp(−)
alone did not show any differences in morphology from normal fibroblasts. Neomycin-
resistant cells were selected by growth in 400 µg/mL G-418 and maintained in 200 µg/mL
G-418. G-418 was removed prior to the experiments. Control cells were transfected with
vector alone, cloned, and treated in a manner similar to that described for the experimen-
tal cells. Transfected cells were plated on glass-bottomed culture dishes and placed on
a temperature-controlled stage at 37 ◦C (Matsunami, Tokyo, Japan). The cell–substrate
interface was examined by conventional phase-contrast microscopy and epifluorescence
microscopy (Olympus).

2.5. Calculation of the Vertical Axis of the Cell and the Aspect Ratio

The vertical axis and aspect ratio of 50 cells were measured using open-source Fiji
image analysis software [38]. Statistical analyses were performed using Excel (Microsoft,
Redmond, WA, USA). Unpaired two-tailed Student’s t-test was used to compare the means
between the two groups. All statistical tests were two-sided, and p < 0.05 was taken to
indicate statistical significance.

3. Results

SFKs are nonreceptor tyrosine kinases that play key roles in the regulation of signal
transduction. SFK activation and protein levels are elevated in various types of cancer, and
there has been a great deal of research regarding the regulation of Src kinase activity. SFKs
consist of several proteins, i.e., Src, Fyn, Yes, Fgr, Lck, Hck, Blk, Lyn, Frk, and Yrk, that
interact with the intracellular domains of growth factors/cytokine receptors, G protein-
coupled receptors (GPCRs), and integrins [39–42]. Members of the SFK family have similar
domain structures, and several small molecule inhibitors that show selectivity for SFKs
are available.

When cultured on a glass substrate, SYF cells first adopted an extended pancake
shape and then spread out into symmetrical spindle-shaped cells (Figure 1c, arrowheads;
compare to Figure 1a for normal fibroblasts adhering to the coverslip). In this process,
typical focal adhesions are formed at both ends of the cells, and many relatively small
adhesive patch-like structures are observed at the center of the cells (Figure 1d, arrow;
compare to Figure 1b for normal fibroblasts adhering to the coverslip).

Cells were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine kinases,
to investigate its influence on the physiological characteristics of fibroblasts and elucidate
the mechanisms underlying polarized cell elongation. Normal fibroblasts cultured in
medium containing 10 µM Src Inhibitor No. 5 first adhered to the glass substrate and
then showed a symmetrical spindle-like extension (Figure 2, arrowheads), similar to the
morphology of SYF cells stretched on the glass substrate (see Figure 1c), as shown in the
time-lapse phase-contrast microscopy images (Video S1).
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Figure 1. Morphology of normal 3T3 cells and Src knockout fibroblast (SYF) cells (c-Src, c-Yes, and
Fyn knockout cells), as observed by phase-contrast microscopy. (a) The morphology of normal
fibroblasts. (b) Fluorescence microscopy showing focal adhesions stained with anti-vinculin antibody.
(c) When SYF cells were cultured on a glass substrate, they first showed a pancake-like morphology
and then adopted a symmetrical spindle shape (arrowheads). (d) In this process, focal adhesions were
formed at both ends of the cells, and a relatively small adhesive patch-like structure was observed
at the center of the cells (arrows). (a,c) Phase-contrast microscopy. (b,d) Fluorescence microscopy
showing focal adhesions stained with anti-vinculin antibody. Scale bars: (a,c), 100 µm; (b,d), 20 µm.

After washing the c-Src inhibitor-treated cells (shown in Figure 2) with an inhibitor-free
culture medium, the symmetrically stretched fibroblasts began to show directed migra-
tion and extended pseudopodia and eventually exhibited typical fibroblast morphology
(Figure 3; see also Video S2).

Next, we examined the effects of transfection of cultured fibroblasts with a dominant
negative Src expression vector (Figures 4 and 5). Mutation of Lys295 in the catalytic site to
methionine (K295M) inactivates Src kinase activity [43,44]; studies on mutant cells have
indicated that both splicing and transport activities require the kinase activity of Src [45].
An Src mutant containing both Src K295M/Y527F mutations was also generated and was
shown to have an open conformation and no kinase activity but to retain SH2 and SH3
binding activity due to the lack of interaction with intramolecular SH2-pTyr527 [46,47]. A
constitutively active Src mutant was also generated by mutating the inhibitory Tyr527 to
phenylalanine (Y527F). The dominant negative c-Src gene (pUSEamp-dominant negative
c-Src) was expressed in normal fibroblasts, and living cells were recorded under phase-
contrast microscopy (Figure 4). Cells expressing the dominant negative c-Src gene were
elongated at both poles in a symmetrical cone shape.
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Figure 2. Normal fibroblasts cultured on a glass substrate in medium containing c-Src inhibitor (Src Inhibitor No. 5). Normal
fibroblasts cultured in a medium containing 10 µM Src Inhibitor No. 5, a c-Src inhibitor, adhered to the glass substrate and
then showed symmetrical spindle-like extension (arrowheads). The morphology was similar to that of SYF cells stretched
on the glass substrate (see Figure 1c). Phase-contrast microscopy time-lapse images. The numbers at the top left indicate the
number of minutes since the start of incubation. Scale bar, 100 µm. See also Video S1.
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Figure 3. Morphological changes in normal fibroblasts after removal of c-Src inhibitor. After washout of the c-Src inhibitor
with inhibitor-free culture medium, the elongated fibroblasts began to migrate in one direction, extending their pseudopods
and eventually showing typical fibroblast morphology (arrowheads). The medium of the cells shown in Figure 2 was
replaced with normal culture medium. The time intervals are shown in minutes at the top left corner of each time-lapse
phase-contrast microscopy image. Scale bar, 100 µm. See also Video S2.
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Figure 4. Normal fibroblasts expressing the dominant negative c-Src gene. The dominant negative c-Src gene (pUSEamp-
dominant negative c-Src) was expressed in normal fibroblasts, and living cells were recorded under phase-contrast
microscopy. The time intervals are shown in minutes at the top left corner of each time-lapse phase-contrast microscopy
image. Scale bar, 100 µm. See also Video S3.
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cells expressing dominant negative c-Src (Figure 5e, phase-contrast microscopy; Figure 5f, 

Figure 5. Normal fibroblasts expressing WT c-Src, constitutively active c-Src, and dominant negative c-Src genes. pUSEamp-
WT c-Src (a,b), pUSEamp-constitutively active c-Src (c,d), and pUSEamp-dominant negative c-Src (e,f) were transfected
into normal fibroblasts, and fixed cells were recorded under phase-contrast microscopy. Cells expressing the dominant
negative c-Src gene were elongated at both poles in a symmetrical cone shape (e,f). (c) The cells expressing constitutively
active c-Src show a pancake-like morphology. (a,c,e) Phase-contrast microscopy. (b,d,f) Fluorescence microscopy of cells
stained with anti-vinculin antibody. Figure 1b shows normal fibroblasts stained with anti-vinculin antibody as a control.
Scale bar, 20 µm.

To examine c-Src expression in the polarization of cells, we transfected the constitu-
tively active or dominant negative form of c-Src into normal fibroblasts (Figure 5). Here,
pUSEamp-WT c-Src (Figure 5a,b), pUSEamp-constitutively active c-Src (Y527F; Figure 5d,e),
and pUSEamp-dominant negative c-Src (K295M/Y527F; Figure 5d,e for a single image of
the fixed cells) were transfected into normal fibroblasts. Some cells were stained with an
antibody to vinculin as a marker of focal adhesions (Figure 5b,d,f). The cells expressing
WT c-Src showed almost the same morphology as normal fibroblasts (Figure 5a,b), while
cells expressing dominant negative c-Src showed a symmetrical cone shape (Figure 5e,f;
see also Figure 4). Focal adhesions were not significantly different from those of normal
fibroblasts in cells expressing normal c-Src but were formed at both ends of the cells ex-
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pressing dominant negative c-Src (Figure 5e, phase-contrast microscopy; Figure 5f, staining
for vinculin). The cells expressing constitutively active c-Src showed a pancake-like mor-
phology (Figure 5c), and vinculin-positive focal adhesions were observed mainly at the cell
periphery but not in the center of the cell (Figure 5d).

SYF cells expressing eGFP-fused WT c-Src (Figure 6a) and eGFP-fused dominant
negative c-Src (Figure 6b) were examined by phase-contrast microscopy. Transfection of the
cells with each eGFP-fusion gene construct was examined by fluorescence microscopy, and
photographs were taken under phase-contrast microscopy. Cells expressing eGFP-fused
dominant negative c-Src had a symmetrical shape (Figure 6b). SYF cells cultured on a glass
substrate were extended with a symmetrical slim spindle-like structure. When transfected
with a vector carrying the wild-type c-Src gene, SYF cells were extended with pseudopodia
and showed normal fibroblast-like morphology.
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Figure 6. SYF cells expressing eGFP-fused wild-type (WT) c-Src and eGFP-fused dominant negative c-
Src genes. SYF cells expressing (a) eGFP-fused WT c-Src and (b) eGFP-fused dominant negative c-Src
were observed by phase-contrast microscopy. Cells transfected with (a) eGFP-fused WT c-Src were
elongated with pseudopodia (arrowheads) similar to normal fibroblasts, whereas (b) cells expressing
eGFP-fused dominant negative c-Src showed an elongated symmetrical cone shape (arrows). Scale
bar, 20 µm.

Normal fibroblasts transfected with a vector encoding dominant negative c-Src ad-
hered to the glass substrate and began to extend in both polar regions, eventually becoming
spindle-shaped cells. The mean ± standard error of the mean (SEM) aspect ratio of the
vertical axis to the long axis of the SYF cells transfected with dominant negative c-Src was
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7.51 ± 0.43 (n = 50). The aspect ratio of SYF cells was 5.98 ± 0.24, while the aspect ratio of
normal fibroblasts was 2.38 ± 0.13 (Figure 7) .

1 
 

 

Figure 7. Elongation ratio of the vertical axis to the long axis.

SYF cells cultured on a glass substrate adopted a symmetrical spindle shape. SYF cells
transfected with a vector carrying WT c-Src became elongated, had extended pseudopodia,
and showed almost the same morphology as normal fibroblasts. Normal fibroblasts trans-
fected with the vector carrying the dominant negative c-Src gene adopted a symmetrical
spindle shape. On treatment with the specific c-Src inhibitor, Src Inhibitor No. 5, normal
fibroblasts were elongated in a similar manner to SYF cells, with focal adhesions formed at
both ends of the elongated cells. Following washout of the c-Src inhibitor, the pseudopodia
were actively extended, and the cells returned to a morphology that was almost identical
to normal fibroblasts. These observations suggest that polarity formation during cell ex-
tension and elongation is regulated by the SFKs and that the expression and regulation
of at least one member of the family, c-Src, are important for polarity formation during
cell elongation.

4. Discussion

Signal transduction mechanisms in cells involve tyrosine phosphorylation for acti-
vation or inactivation of specific proteins. The levels of tyrosine phosphorylation reflect
the local levels of signal transduction activity. Phosphotyrosine proteins are highly ac-
cumulated at the sites of focal adhesion in cells in culture, reflecting the involvement of
these sites in signal transduction. SFKs are membrane-bound, nonreceptor tyrosine kinases
that function as important signaling intermediates in the regulation of cell proliferation,
differentiation, apoptosis, migration, and metabolism [21,25,48].

Due to their role in regulating cellular adhesion, the turnover of integrins by endo-
cytosis or exocytosis is necessary for cell movement [49]. These processes seem to be
controlled by FAK and its substrates [50], including SFKs [51]. SFK is a family of oncogenes
that were initially discovered in association with cancer. Tumors in chickens were shown
to be caused by the Rous sarcoma virus oncogene, v-Src, which is similar to the typical
cellular protein, c-Src. Unlike c-Src, v-Src is constitutively active as it lacks the C-terminal
inhibitory phosphorylation site (Y527) [52]. The c-Src protein is a signaling molecule that
has important roles in controlling cell growth, proliferation, and/or motility.

Stress fibers are a contractile apparatus that can generate isometric tension in cells,
which is possible because both ends of the stress fibers are anchored to the substrate via
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focal adhesions [17]. Cell motility seems to be regulated by the crosstalk between Rho, Rac,
Ras, and/or Cdc42. Although the mechanisms underlying the regulation of cell polarity
are still unknown, the results of the present study indicate the roles of activation and
deactivation of c-Src in the control of cell polarity. Normal fibroblasts transfected with
dominant negative c-Src showed greater cell elongation than control cells.

In this study, SYF cells transfected with dominant negative c-Src retained an elon-
gated morphology. In addition, WT c-Src-transfected SYF cells showed almost the same
morphology as normal fibroblasts. When the cell migrates, the leading edge shows a
filopodium-like structure. Migrating cultured cells have polarity, with a leading edge at
the front of the cell and a trailing edge at the rear of the cell. However, the mechanism by
which the leading edge and the trailing edge are specified is still unclear. The results of the
present study suggest that deactivation of c-Src results in an elongated morphology and a
symmetrical cell shape [19].

SFKs are translocated to the sites of cell adhesion [53]. Previous studies have shown
that Src kinase activity influences cell proliferation and cell migration [54–56]. Moreover,
the results presented here suggest that the kinase activity of SFKs plays a role in the
regulation of symmetrical elongation of fibroblastic cells under physiological conditions.

SYF cells showed no consistent differences in the actin cytoskeleton in comparison
to WT controls. Focal adhesions form in the absence of tyrosine phosphorylation of focal
adhesion-associated proteins, and SYF cells show reduced motility [34]. In this study, the
reintroduction of WT c-Src into SYF cells restored the defective motility and bipolarity of the
fibroblastic cells. SYF cells formed focal adhesions, which showed a typical arrowhead-like
appearance and were present in the same numbers as in normal fibroblasts; no differences
in the number of stress fibers were observed [57]. The present study demonstrates that SYF
cells and normal fibroblasts transfected with dominant negative c-Src will show reduced
cell motility, consistent with previous reports. Moreover, fibroblasts transfected with
dominant negative c-Src showed polarized movement, with a symmetrical cell shape.
These results indicate that the deactivation of c-Src plays a role in cell motility, resulting
in cell polarization. With regard to fibroblastic cell proliferation, the activity of Src is
physiologically important to the polarized elongation of the cell.

The initiation of Src tyrosine kinase signal transduction pathways leads to the prolifer-
ation and activation of fibroblasts, which deposit extracellular matrix into the surrounding
connective tissue. Fibrosis, defined by the accumulation of excess extracellular matrix
components, is a pathological feature of most chronic inflammatory diseases. The results
of the present study show that Src tyrosine kinase is a candidate molecule involved in the
regulation of fibroblast elongation and polarization. The interaction of Src with integrin
αV is required for integrin αV-mediated Src activation and subsequent fibroblast migra-
tion [58]. The interaction of SFKs and integrins plays critical roles in the development
of lung fibrosis [59–61], liver fibrosis [62,63], and chronic kidney disease [64]. SFKs seem
to play critical roles in the development of lung fibrosis, and the signaling involved may
represent a novel opportunity to target fibrotic diseases [58]. The pathogenesis of these
diseases is not fully understood, but they do appear to be associated with alterations in
fibroblast migration and excessive matrix deposition [65,66]. Fibroblast migration and
proliferation are tightly controlled processes [67,68]. Protein-kinase-regulated cell migra-
tion is involved in the development of lung fibrosis [66]. Src tyrosine kinase regulates
focal adhesion kinase activation and seems to cause cell elongation [69]. However, the
involvements of Src tyrosine kinase in fibroblast migration and proliferation and in lung
fibrosis have yet to be explored in detail. Treatment with the Src inhibitor, PP2, was re-
ported to significantly reduce fibroblast migration stimulated by platelet-derived growth
factor-BB (PDGF-BB) and to reduce lung fibrosis in mice in vivo [58]. The results of the
present study indicate that c-Src tyrosine kinase is involved in fibroblastic polarized cell
elongation and symmetrical cell shape changes. It has been suggested that Src tyrosine
kinases are involved in the pathogenesis of renal fibrosis, and the selective Src tyrosinase
inhibitor PP1 may inhibit fibrosis and have therapeutic potential for the treatment of CKD
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chronic kidney disease [70]. The findings outlined above suggest that SFKs play roles in
the development of fibrosis that is related to the proliferation and elongation of fibroblasts.

The mechanism by which the cell determines the direction of migration is still unclear.
The direction of migration seems to be determined randomly, according to the orientation
of stress fibers in cultured cells. The position of the Golgi apparatus appears to be critical
in specifying various aspects of cell migration [71]. Disruption of the Golgi apparatus,
even under conditions where the cytoskeleton remains intact, results in failure of cell
polarization and inhibition of cell migration [71]. The microtubule organization center
(MTOC) and its associated microtubules determine the position of the Golgi apparatus [72],
which is thought to facilitate polarized secretion of the plasma membrane at the leading
edge of the cell [73]. The positions of the Golgi apparatus and MTOC have been suggested
to be involved in determining the direction of cell migration. However, as focal adhesions
represent the footholds of migrating cells, elongation and determination of polarization
seem to be determined to a greater extent by cytoskeletal components than the Golgi
and/or MTOC associated with focal adhesions.

In this study, cells transfected with a dominant negative c-Src construct showed a
symmetrical shape, suggesting that the deactivation of c-Src causes bidirectional elonga-
tion. Moreover, the formation of pseudopodia at the leading edge of the cell was reduced.
Well-developed focal adhesions were detected at both ends of the leading edge of these
cells. Random migration was inhibited in cells transfected with the dominant negative
c-Src construct. The Arp 2/3 complex is involved in the regulation of the actin-containing
cytoskeleton in pseudopodia at the leading edge of the cell. Arp 2/3 interacts with the
small rho-type GTPase Cdc42, and, thus, Arp 2/3 may align actin filaments to the plasma
membrane through the activity of Cdc42 [3,74]. Deactivation of c-Src resulted in a lack of
pseudopodia at the leading edge of the cell (Figure 5), reflecting the disorganization of
pseudopodia in both c-Src-deficient cells and cells with deactivated c-Src. The above obser-
vations suggest that the deactivation of c-Src also causes Cdc42-dependent organization of
the Arp 2/3 meshwork in pseudopodia structures.

SYF cells lacking the SFK members Src, Yes, and Fyn, cultured on glass substrates,
were observed to elongate into symmetrical spindle-shaped cells. The introduction of the
WT c-Src gene into SYF cells resulted in the elongation and extension of pseudopodia, and
they adopted a morphology that was similar to normal fibroblasts. Normal fibroblasts
transfected with a construct carrying the dominant negative c-Src gene adopted a symmet-
rical spindle shape. Treatment of normal fibroblasts with the c-Src-specific inhibitor, Src
Inhibitor No. 5, resulted in symmetrically shaped cells, similar in morphology to SYF cells.
Focal adhesions were formed at both ends of the elongated cells. Following washout of the
c-Src inhibitor, the pseudopodia were actively extended, and the cells returned to a mor-
phology that was almost identical to normal fibroblasts. Other Src family inhibitors caused
the cells to adhere to the glass substrate but not to adopt the spindle-shaped morphology.
These observations address the question of how the symmetrically elongated features of
the cell are organized. The results of the present study indicate that cells transfected with
the dominant negative c-Src gene or incubated with a c-Src inhibitor will first attach to the
glass substrate with a pancake-like morphology, after which they elongate along both poles
and adopt a symmetrical shape within 2 h. Inactivation of c-Src results in highly elongated
cells, both ends of which are slender and narrow in shape.

The results of the present study suggest that polarity formation during cell extension
and elongation may be regulated by the Src family and that the expression and regulation
of at least one member of the family, c-Src, are important for polarity formation during
cell elongation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9
059/9/2/135/s1, Video S1: Normal fibroblasts cultured on a glass substrate in medium containing
c-Src Inhibitor No. 5., Video S2: Morphological changes in normal fibroblasts after removal of c-Src
inhibitor No. 5., Video S3: Normal fibroblasts expressing the dominant negative c-Src gene.
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