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The dynamic transcriptional and translational
landscape of the model antibiotic producer
Streptomyces coelicolor A3(2)

Yujin Jeong"2*, Ji-Nu Kim3*, Min Woo Kim?3, Giselda Bucca®, Suhyung Cho'?, Yeo Joon Yoon®,
Byung-Gee Kim3, Jung-Hye Roe®, Sun Chang Kim'%/, Colin P. Smith*" & Byung-Kwan Cho'2’

Individual Streptomyces species have the genetic potential to produce a diverse array of
natural products of commercial, medical and veterinary interest. However, these products are
often not detectable under laboratory culture conditions. To harness their full biosynthetic
potential, it is important to develop a detailed understanding of the regulatory networks
that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale
measurements of the transcriptome and translatome of Streptomyces coelicolor, the model
antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start
sites and identifies 230 small RNAs and a considerable proportion (~21%) of leaderless
mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling
reveals that the translation efficiency of secondary metabolic genes is negatively correlated
with transcription and that several key antibiotic regulatory genes are translationally induced
at transition growth phase. These findings might facilitate the design of new approaches to
antibiotic discovery and development.
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ecent advances in next-generation sequencing techniques

have unveiled the previously under-estimated potential for

secondary metabolite production in Streptomyces bacteria,
known producers of more than 70% of antibiotics and other
bioactive compounds used in medicine, agriculture and in the
food industry™™?. As an example, the 8.7-Mb high G 4 C genome
of the model Streptomyces species, Streptomyces coelicolor,
encodes hundreds of secondary metabolic genes, which
orchestrate the synthesis of various antibiotic compounds®?,
The biosynthesis of these metabolites often coincides with a
physiological transition from primary to secondary metabolism
and morphological differentiation. Both developmental switches
are governed by highly interconnected regulatory mechanisms at
transcriptional, translational and post-translational levels.

During the last two decades much progress has been made in
the understanding of the molecular basis of antibiotic gene
regulation, mainly focusing on the transcriptional changes in gene
expression occurring at the physiological transition to antibiotic
production. In recent years, a comprehensive array of genome-
scale measurement techniques have been developed, mainly in
bacterial systems to understand multi-layered and interconnected
organizational components of bacterial genomes such as
promoters, transcri7ption start sites (TSSs) and regulatory small
RNAs (sRNAs)>~7. Although expression at the level of
transcription represents an important level of control, it is
emerging that the extent of post-transcriptional regulation of
gene expression in bacteria has been relatively underestimated.
It is therefore important to determine which transcripts are
being translated, through recently optimized techniques such as
‘ribosome profiling’; this method has been successfully used in
prokaryotic and eukaryotic systems, where the quantification of
such ribosome-protected fragments was shown to correlate well
with cellular protein abundance®10.

Systems-level analyses of unprecedented depth that integrate
multiple genome-scale measurements have recently been reported
for Caulobacter crescentus, and comprehensive transcriptional
profiling of Salmonella enterica (including systematic TSS
identification) has also been reported!®!!. Here we describe the
transcriptome and translatome in both primary and secondary
metabolism of an antibiotic-producing bacterium, S. coelicolor,
and we catalogue comprehensively the transcribed sequences and
their associated TSSs within the genome.

Results
Landscape of primary transcriptome. TSS maps of bacterial
genomes allow the discovery of regulatory elements of gene
expression, such as the regulatory sRNAs and 5'-untranslated
regions (5-UTRs) that regulate translational efficiency!>~1°,
In order to catalogue these components, we mapped
comprehensively the landscape of the whole set of newly
synthesized RNAs (the primary transcriptome) of S. coelicolor
A3(2) strain M145. 5’-Ends of primary transcripts were massively
sequenced from mycelium that had been cultivated under a
diverse range of growth conditions by using the differential
RNA-sequencing (dARNA-seq) approach”!®, We designed a suite
of 44 different growth conditions that reflect many of the
environmental perturbations encountered by the bacterium, in
order to maximize the chances of detection of the full repertoire
of TSSs (Supplementary Table 1)*17. As illustrated in Fig. 1a, the
5'-ends of primary transcripts were selectively determined (see
the Methods for sequencing statistics and TSS mapping criteria),
identifying a total of 3,570 TSSs (Supplementary Data 1).

These were further categorized by their positions relative to
known coding sequences (Fig. 1b), giving 2,771 primary TSSs
associated with currently annotated genes, which corresponds to
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35.0% of the total genes in the S. coelicolor genome (note that the
monocistronic and operonic structure have not been considered).
333 secondary TSSs were identified, which were detected in
addition to the primary TSSs (see the Methods for detection
criteria), revealing a total of 297 transcription units initiated by
more than one TSS. A total of 256 TSSs mapped in the antisense
strand of 241 genes, suggesting the presence of regulatory
antisense sSRNAs. A total of 79 internal TSSs were also detected,
within 73 genes, and 131 TSSs mapped to intergenic regions with
no previously associated genes. In total, 230 novel transcripts
were predicted, 138 of which were represented as antisense
transcripts and the others transcribed from intergenic regions. Of
the 3,570 TSSs identified in the present study, 2,353 are reported
here for the first time, whereas the other 1,217 of the TSSs were
identified previously (Fig. 1c) (refs 16,18); 666 TSSs reported in
previous studies were not identified in this study and this
discrepancy could be attributable to condition-specific expression
from TSSs, because of the complex metabolism of the organism®!”.

Our cultivation conditions encompassed those appropriate to
triggering secondary metabolism as 10 out of 11 secondary
metabolic gene clusters that previously had identified TSSs were
also identified in our study (Supplementary Table 2). In our
study, a total of 68 TSSs were assigned to 18 of the 28 secondary
metabolic gene clusters identified in the S. coelicolor genome
(Supplementary Fig. 1) (ref. 1). For example, the biosynthesis of
prodiginine is mediated via at least six TSSs in the upstream
regions of SCO5877, SCO5878, SCO5881, SCO5882, SCO5887
and SCO5888 in the 30-kb biosynthetic gene cluster (Fig. 1d)'.
Independent verification of the TSS mapping for the prodiginine
cluster was obtained by 5'-rapid amplification of cDNA ends
(Supplementary Fig. 2). Furthermore, we observed nine primary
TSSs for putative secondary metabolic gene clusters, such as
bacteriocin (genomic position: 796,462) and siderophore
(genomic position: 6,338,652) (Fig. 1d and Supplementary
Fig. 1). Although TSS mapping confirmed that S. coelicolor can
use any nucleotide to initiate transcription, a purine is preferred
in 87.9% of the cases (Fig. le). Interestingly, a pyrimidine is
strongly preferred at the —1 (T, 22.7% and C, 55.5%) and + 2
(T, 41.0% and C, 23.4%) positions, respectively. Based on the
current S. coelicolor genome annotation, we have identified an
average of 1 TSS for every 2.3 protein-coding genes, which
approximates to more than one TSS per predicted transcription
unit??, To evaluate reproducibility of TSS results, an independent
dRNA-seq experiment was conducted with RNA from a single
mid-exponential phase culture; the results demonstrated good
concordance between a high proportion of the TSSs identified
from this sample and the above analysis of the pooled RNA
(Supplementary Fig. 3).

Analysis of 5 upstream sequences. The diverse sequences of
S. coelicolor promoters must reflect, to some extent, the fact that
its genome encodes > 60 different sigma factors, contributing to
its complex transcriptional patterns. To gain insight into the
transcription efficiency of individual genes, it is important to
identify the conserved promoter elements, such as the — 10 and
— 35 sequences. The TSS positions enabled us to analyse the
5’-upstream sequence of each transcription unit. The conserved
—10 motif (TANNNT) and less-conserved —35 motif
(NTGACC) were identified in 80.4% (2,870 out of 3,570; P<0.05;
MEME) and 58.6% (2,093 out of 3,570; P<0.05; MEME) of the
identified TSSs, respectively (Fig. 2a and Supplementary Fig. 4).
In addition to the variable internal NNN region of the — 10
motif, which plays a critical role in promoter activity, the diversity
in length of the spacer region probably reflects the sigma factor
diversity, some of which are known to have different promoter
spacing requirements (Supplementary Figs 5 and 6) (refs 21,22).
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Figure 1 | Determination of the transcriptional architecture of the S. coelicolor genome. (a) Example of a dRNA-seq profile mapped onto the S. coelicolor
genome. For TSS determination, total RNA samples from 44 growth conditions were pooled and two sequencing libraries were constructed, one from
TEX-treated (TEX +) and the other from untreated total RNA (TEX —); TEX, terminator-5'-phosphate-dependent exonuclease. The criteria for assigning
TSS are detailed in the Methods. (b) A total of 3,570 TSSs were identified and classified according to their positions relative to adjacent open reading
frames (ORFs). TSSs located from 500 bp upstream to 150 bp downstream of the respective annotated start codon of each ORF were classified as the
primary (P) or secondary (S). TSSs located within an annotated ORF or on the opposite strand were classified as internal (1) or antisense (A), respectively.
TSSs not included in any of these categories were classified as intergenic (N). (¢) Mapped TSSs in relation to those reported from previous studies. |, this
study; II, ref. 16.; 1ll, ref. 18. (d) TSSs associated with secondary metabolic gene clusters; prodiginine (left), bacteriocin (middle) and siderophore (right).
(e) Proportion of each nucleotide at TSS (41) and 2 nt upstream and downstream of the TSS.

The 5-UTR of bacterial mRNAs typically contains a short
motif called the Shine-Dalgarno sequence, which mediates
ribosome binding and influences translational efficiency?®. In
addition to this, 5'-UTR sequences frequently contain additional
regulatory sequences for post-transcriptional regulation®%. From
the primary TSSs of known coding sequences (2,705 in total), we
calculated the distribution of 5'-UTR lengths; they have a median
length of 44 nucleotides (nt) and the most frequent size range of
30-39 nt (Fig. 2b) (refs 7,25,26). Long leader sequences (length
of 5'-UTR longer than 150 nt) were found in 413 transcripts
(15.3%), suggesting the presence of potential regulatory RNA
structures mediating post-transcriptional regulation!®. Interestingly,
21.0% of primary TSSs produce leaderless mRNAs (ImRNAs) with
the length of 5'-UTR shorter than 9 nt. The full list of InRNAs is
detailed in Supplementary Data 2 and the comparison with
reported ImRNAs from other studies is summarized in
Supplementary Fig. 7 (refs 16,18,25). The InRNAs are transcribed
from promoters that have similar consensus sequences to
promoters for 5-UTR-associated mRNA transcripts (umRNAs;
Fig. 2¢); the third motif found at the + 1 position represents the
translation initiation codon, suggesting the InRNAs are translated
without 5'-UTR-mediated recognition. AUG (584%) and GUG
(37.1%) are almost exclusively used as the translation initiation
codons for umRNAs, whereas AUG (76.4%) is highly preferred for
ImRNAs (Fig. 2d). Functional categorization of genes encoded by
ImRNAs (together with associated operonic genes, if the leaderless
transcript is polycistronic) revealed that many are linked with the
cell membrane and transcriptional regulation, particularly the TetR
family regulators (Supplementary Data 2) (ref. 20). Five of the 49
primary TSSs assigned to the secondary metabolic gene clusters
generate InRNAs.

Dynamic transcriptional landscape. Temporal alteration of
cellular functions is achieved by the modulation of expression of a
large array of genes. To elucidate the changes in expression levels
of the individual genes, we used strand-specific RNA-seq
(ssRNA-seq) that exploits the dUTP second-strand marking
method (Supplementary Fig. 8a-c) (ref. 27). Four sampling
times for S. coelicolor cultures grown in liquid R5— to
mid-exponential, transition, late exponential and stationary
phase were monitored. The onset of secondary metabolism was
signalled by the appearance of the pigmented antibiotics
produced by S. coelicolor at the transition growth phase
(prodiginine) and during stationary phase (actinorhodin),
respectively (Supplementary Fig. 9). As an example, ssRNA-seq
of the prodiginine gene cluster shows a marked increase in
expression between transition and late exponential growth phases
(Supplementary Fig. 10) (ref. 28). The ssRNA-seq data were also
used to determine the temporal modulation of expression of
sRNAs identified from dRNA-seq (Supplementary Data 3). As an
example, two sRNAs were observed from the antisense strand
of SCO6762 (sRNA209) and the intergenic region between
SCO3436 and SCO3437 (sRNA090), respectively (Supplementary
Fig. 11).

We estimate that at least 6,000 genes are transcribed at the
mid-exponential growth phase of S. coelicolor (Supplementary
Data 4 and Supplementary Fig. 12). The most highly expressed
genes under all four time points were SCO4655, SCO4729,
SCO4762 and SCO4296, the first two encoding DNA-directed
RNAP subunits and the second two encoding, respectively,
the two chaperonin genes groELI and groEL2. Among the
highly expressed genes, a total of 4,558 showed twofold or
greater changes in expression at two or more time points
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Figure 2 | Genome-scale analysis of promoter sequences. (a) — 10 motif (5-TANNNT) and — 35 motif (5'-NTGACC) were identified relative to TSS
position (+1). The analysis showed three identical positions to the —10 motif of the E. coli promoter (that is, 5'-TATAAT) recognized by its housekeeping
sigma factor (c79). It has been suggested that the well-conserved TTG motif commonly found in the 5’ half of the E. coli — 35 motif (that is, TTGACA) is
located in the 5’ half of the S. coelicolor — 35 motif38. Although S. coelicolor has a lower level of conservation of the TTG motif this analysis clearly identifies
the motif at the same position. The bottom panel shows the position distribution of the — 10 motif (red) and — 35 motif (blue) relative to the TSS.

(b) Distribution of 5-UTR lengths reveals a dual peak distribution at 30-39 nt and 0-9 nt; the latter group are considered to produce leaderless MRNAs
(ImMRNAs). (¢) The same —10 and — 35 consensus sequences are observed upstream of IMRNAs. The motif around the TSS (+1) is also indicated.

The third motif found at the +1 position clearly shows the translation initiation codon, indicating that ImMRNAs are translated without 5/-UTR-mediated
recognition. (d) Start codon usage of all open reading frames (ORFs; Total), primary TSS-identified ORFs (TSS), 5’-UTR-associated genes (umRNA) and

leaderless genes (IMRNA).

(DESeq P<0.05; Supplementary Data 5 and Supplementary
Fig. 13a,b). We assessed growth phase-dependent changes in
expression of all predicted regulatory genes, based upon the
current genome annotation. Their expression patterns formed
two large clusters in which almost equal numbers of regulatory
genes were either differentially expressed (cluster I) or showed no
or negligible changes in expression levels (cluster II) relative to
the growth phase (Fig. 3a and Supplementary Data 6). In
cluster I, transcription of 417 regulatory genes showed growth
phase-dependent induction or repression. This includes the
antibiotic cluster-specific regulators SCO5085 (actII-ORF4),
SCO5881 (redZ), SCO5877 (redD), SCO3217 (cdaR), SCO6280
(kasO) together with SCO6286, and SCO6288. The gene encoding
the housekeeping c-factor hrdB showed strong expression under
all growth phases, whereas the expression levels of genes encoding
alternative o-factors such as sigE, sigN and bIIN were
significantly altered at different growth phases (Supplementary
Data 6).

The dynamics of expression of the different transcript classes
were compared, revealing higher median transcript levels for
umRNAs at all growth conditions relative to those for InRNAs
(Wilcoxon rank-sum test P<2.6 x 10 ~7; Supplementary Fig. 14).
The majority of ImRNAs and sRNAs (58.8% and 63.0%,
respectively) displayed twofold or greater changes in their
transcript level at two or more time points (P<0.05; Fig. 3b
and Supplementary Data 6); similarly, 63.2% umRNAs were
differentially expressed. Taken together, our integration of
dRNA-seq and ssRNA-seq data measured from diverse sets of
culture conditions provides a comprehensive and quantitative
picture of the transcriptional landscape of S. coelicolor.
Furthermore, independent quantitative PCR analysis was
conducted on RNA from independent cultures at different
growth phases using a selection of genes that represent a broad
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range of expression levels; the comparison of the ssRNA-seq
data and quantitative PCR results showed a R? value of
0.92 demonstrating the validity and reproducibility of the
ssRNA-seq-based quantification (Supplementary Fig. 15).

Dynamic translational landscape. To evaluate the correlation
between transcription and translation, we determined the trans-
latome of S. coelicolor using the ribosome profiling (Ribo-seq)
method (Supplementary Fig. 16) (ref. 24). This method enables
the monitoring of protein synthesis efficiency (rates) at a genome-
wide scale by using deep sequencing of ribosome-protected
mRNA fragments (RPFs)®?°. To capture translating ribosomes
with mRNA molecules, the mycelia at different growth phases
were treated with the antibiotic thiostrepton, an inhibitor of
translation elongation, followed by rapidly freezing the mycelia in
liquid nitrogen, and isolation of the polysome fraction using
sucrose cushions. Sequencing resulted in more than four million
uniquely mapped reads with an average read length of 31bp
(Supplementary Data 7 and Supplementary Fig. 17). The RPF
data were then compared directly with the transcriptome data
obtained from the cultures sampled at the four different time
points for in R5— liquid medium (an example is given in
Fig. 4a). In this way, we could accurately discriminate
protein-coding RNAs from the non-coding sRNAs
(Supplementary Fig. 18); this led to the important discovery
that 31 of the 230 potential SRNAs were in fact occupied by
ribosomes (Supplementary Data 3), whereas the majority likely
represent bona fide sRNAs. Longer putative sRNAs (median
length = 622 nt) showed higher occupancy by ribosomes than the
shorter transcripts (median length =290 nt; Wilcoxon rank-sum
test P=1.1x 10~ !'!; Supplementary Fig. 19). Eleven of the
‘coding’ sRNAs (36%) are predicted to encode proteins with
sequence identity to hypothetical proteins and ATP-binding
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proteins of other Streptomyces (e-values <10~
Supplementary Data 8) (ref. 30).

Next, we examined the proportional relationship between
subunit stoichiometry in known protein complexes and their
respective RPF levels. The balanced cellular concentration of each

subunit of a protein complex is achieved at the translational level,
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rather than the transcriptional level?®. According to this
observation, we focused on the top 80 highly expressed
subunits of 26 protein complexes by using the median reads
per kilobase of transcript per million reads (RPKM) value of
mid-exponential growth phase as a cutoff value (9.8;
Supplementary Data 9). The levels of RPFs of transcripts
corresponding to the first and second subunits of protein
complexes were shown to be linearly correlated, indicating that
the proportional relationship between subunits in protein
complexes 1is strictly controlled at the level of translation
(Fig. 4b). Furthermore, the RPF reads from mRNAs encoding
non-equimolar subunits such as AtpB/E and RplJ/L were
proportional to their respective subunit stoichiometries while in
contrast the mRNA levels were comparable across the respective
operons (Fig. 4c and Supplementary Fig. 20).

A systems-level comparison was undertaken between changes
in levels of ssRNA-seq and Ribo-seq reads across the growth
phases (Fig. 5a and Supplementary Fig. 21). We obtained global
correlation coefficients between the mRNA and RPF levels of
0.85, 0.79, 0.85 and 0.89 at mid-exponential, transition, late
exponential and stationary growth phases, respectively. The linear
proportionality is likely to be maintained across the growth
phases. Regardless of growth phase, the distribution patterns of
total RNA were similar to the RPF distributions, with
convergence of median values to zero. This general observation
could be explained by the fact that the cellular availability of
RNAP and ribosome complexes are limited, and therefore directly
influences the cellular economics?®*!. However, although the
changes in the mRNA and RPF levels of primary metabolic genes
showed similar patterns, those for secondary metabolic genes
increased gradually across the growth phases. Interestingly,
although the distribution of mRNA abundance widened at later
growth phases, the distribution of RPF abundance retained a
similar range at each growth phase; the same pattern was
observed with genes of primary metabolism. This phenomenon
can be explained by ‘translational buffering’, where ribosome
occupancy is more consistently maintained than transcript
abundance??.

Translation efficiency (TE)—the efficiency with which an
mRNA is translated—was calculated by dividing RPF levels by the
corresponding mRNA transcript levels for each gene. The
correlation between mRNA change and TE change provided a
clear demonstration of translational buffering, evidenced by the
observed negative correlation between mRNA changes and TE
changes, which become more pronounced as the growth
progresses towards stationary phase (Fig. 5b). Notably, secondary
metabolism-related transcripts showed a tendency of increasing
mRNA levels across time while the TE decreased. A striking
finding is that the TE change of many secondary metabolic genes
is markedly enhanced at the transition from mid-exponential to
transition phase, whereas their transcription is not correspond-
ingly enhanced.

We observed that the TE of InRNAs slightly increased relative
to the growth phase, whereas the TE of umRNAs did not change

Figure 3 | Transcriptome dynamics at different growth phases. (a) All
transcriptional regulatory genes are clustered by their expression patterns
where almost half of the regulatory genes are differentially expressed at
different growth phases (I), whereas the other half showed no changes,
or expression levels lower than the cutoff (II). Bold black letters indicate
sigma factors, and bold red letters indicate regulators of secondary
metabolic gene clusters. (b) Differential expression of umRNAs, ImMRNAs
and sRNAs at different growth phases. Clusters are labelled U-I, U-II,

L-I, L-Il, S-I and S-Il and the genes comprising each cluster are listed in
Supplementary Data 6. M, mid-exponential phase; T, transition phase;

L, late exponential phase; S, stationary phase.
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Figure 4 | Determination of the translatome of S. coelicolor. (a) An example of visualization of transcription start sites (TSS), mRNA expression profiles
(RNA) and ribosome-protected fragment profiles (RPF) at genomic region between 4,924,959 and 4,969,730. (b) RPF read data for the first and the
second gene in the operon were compared at four growth phases: M, mid-exponential phase; T, transition phase; L, late exponential phase; S, stationary
phase. (¢) RPF data for ribosomal proteins RplJ and RplL (stoichiometry =1:4) and ATP synthase operon encoding AtpB, AtpE, AtpF, AtpH, AtpA, AtpG,
AtpD and AtpC (stoichiometry =1:10:2:1:3:1:3:1) show proportional relationships with their subunit stoichiometry.

(Fig. 5¢). With umRNAs, the change in TE is likely to converge to
zero by different positive and negatively acting factors, whereas
ImRNAs are likely to be controlled by common factors en bloc;
the latter was also observed for translation of ImRNAs at
stationary phase in Escherichia coli*>. To investigate the
correlation between the 5-UTR and TE in relation to predicted
secondary structure within the UTR, we focused on a total of 174
(top 20%) and 200 (bottom 20%) genes on the basis of TE at each
growth phase. The G 4 C content of the 20-bp sequence upstream
from the start codon was measured, revealing that the low TE
group had a higher G+ C content (71.3%) than the high TE
group (64.1%; Fig. 5d). Similarly, umRNAs with 5'-UTRs of lower
free energy tend to have a low TE (Fig. 5e). This suggests that the
highly structured 5-UTRs, along with features such as G+ C
content and low free energy, are likely to decrease the rate of
translation of mMRNAs3*3°. A more conserved polypurine (G>A)
motif 8-12 bp upstream region from the start codon was observed
in genes from the high TE group relative to the low TE group
(Fig. 5f). This motif was comparable to the general bacterial
Shine-Dalgarno sequence (or RBS) and suggests that a highly
conserved RBS sequence is correlated with enhanced TE in
S. coelicolor. Taken together, these findings suggest that antibiotic
productivity could be potentially improved by engineering the
5-UTR sequence of genes involved in secondary metabolism.

Translational buffering during secondary metabolism. Changes
in RPF patterns and TEs across the four growth phases for all
genes of secondary metabolism of S. coelicolor®® are illustrated
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in Fig. 6a. Among 28 secondary metabolites, 4 representative
antibiotics of S. coelicolor (CDA, actinorhodin, prodiginine and
coelimycin) showed dynamic expression patterns contingent on
the growth phases. However, the dynamics differed between the
respective gene clusters; for example, the TE of the prodiginine
and CDA clusters increased specifically from mid-exponential
to transition growth phases, whereas the coelimycin and
actinorhodin clusters showed maximum expression at the
late exponential and stationary growth phase, respectively.
Interestingly, the level of translation of the respective cluster-
situated regulator (CSR) genes, cdaR (SCO3217), actlI-ORF4
(SCO5085), redD (SCO5877) and redZ (SCO5881), was higher at
the transition growth phase than the late exponential growth
phase, whereas their respective transcript levels gradually
increased across the growth phases (Fig. 6b). These contrasting
dynamics of transcription and translation were not observed in
other regulatory genes related to secondary metabolism (Fig. 6¢).
Importantly, the CSR genes demonstrated highest TE changes
between the mid-exponential and transition growth phases
compared with other regulators of secondary metabolism,
which show near zero TE changes (Fig. 6d). This
unprecedented finding suggests that translational (more so than
transcriptional) induction of the CSR genes is mediated
specifically at the transition phase, immediately before onset of
secondary metabolism.

To further investigate the growth phase-dependence of
transcription and translation, we correlated the abundance of
mRNA transcripts and RPFs. First, the genes were divided into 16
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Figure 5 | Translational buffering revealed by comparison of changes in mRNA and ribosome-protected fragment abundances. (a) Distribution of
mRNA fold-change and RPF fold-change of total genes, primary metabolic genes and secondary metabolic genes; ***P < 0.001 (Wilcoxon signed-rank test);
T, fold-change between mid-exponential and transition phases; L, fold-change between mid- and late exponential phases; S, fold-change between mid-
exponential and stationary phases. (b) Negative correlation between changes in mRNA levels and translational efficiency (TE) becomes higher at later
growth phases. Red dots indicate secondary metabolic genes. (¢) TE change distributions of umRNAs and ImMRNAs across growth phases. *P<0.05;
***p < 0.001 (Wilcoxon rank-sum test). (d) G + C content of translation initiation regions (TIR: 20 nt sequence upstream of start codon); high, genes with
high TE (upper 20%); total, all coding sequences; low, genes with low TE (lower 20%). (e) Correlation between free energy of TIR and TE. (f) Conserved
ribosome-binding sequences for umRNAs were observed at 8-12 bp upstream region of start codon; ImRNAs, 5’-UTR length = 0. TIR of genes with high TE
(High) shows more conserved polypurine (G> A) motif than genes with low TE (Low).

groups according to mRNA and RPF expression patterns,
respectively, by hierarchical clustering (using Pearson correlation)
and the 16 groups were analysed in a combinatorial manner,
generating 256 groups (Supplementary Fig. 22a). Interestingly,
some genes showed an anti-correlation between mRNA transcript
and RPF levels: a group with mRNA-increasing and RPF-
decreasing (ID) pattern comprised gene functions related with
transport, cell membrane and macromolecule degradation
(Supplementary Data 10 and Supplementary Fig. 22b), whereas
another (the DI group) showed a strikingly anti-correlated trend
with decreasing levels of mRNA abundance and increasing trend
in RPF abundance; these include regulatory functions such as
RNAP core enzyme binding, regulation (including anti-c factors)
and protein kinases (Supplementary Data 10 and Supplementary
Fig. 22b). Although further studies are needed, we predict that
the genes in the DI group are controlled at the translational level.

Discussion

Systematic integration of multiple genome-wide data sets allowed
us to visualize in unprecedented depth the expression of the
S. coelicolor genome and to elucidate the relationship between
transcription and translation at a genome-wide scale across four
representative growth phases of this model antibiotic-producing
bacterium. A total of 3,570 TSSs were identified in this study, and
revealed the existence of a high proportion (21%) of leaderless
transcripts; it has been speculated that this may be correlated with
their capacity for antibiotic production because many antibiotics
target the translation system®’. We observed a general reduction
in the translation rate of secondary metabolic genes after the
transition growth phase. The results from this study suggest
that translational control of gene expression is widespread in
S. coelicolor and that it clearly influences expression of secondary
metabolic genes and their associated transcription factors.
The comprehensive transcriptional and translational data

reported here will provide an important reference resource for
molecular genetic and systems-level studies of streptomycetes.
The study has also identified key genes that are subject to
translational control and therefore offers target genes for
investigating the molecular basis of such control. Engineering of
such translational control systems offers a potentially novel
route for strain engineering to enhance secondary metabolite
production. Our observation that some CSRs are translationally
induced at transition phase suggests one approach to synthetically
manipulate secondary metabolic gene clusters.

Methods

Strains and cell growth. A 20% glycerol stock of S. coelicolor A3(2) M145
(ATCC BAA-471) spores was used to inoculate R5 — liquid complex medium
containing 0.16 gml ~ ! glass beads (3 mm (0.3 mm) diameter) and cultured to
mid-exponential phase (ODys0 nm ~ 0.6). Composition of the R5 — liquid complex
medium was as follows: 25 mM TES (pH 7.2), 103 g1~ ! sucrose, 1% glucose,
5g1~ 1! yeast extract, 10.12gl~ ! MgCl, - 6H,0, 0.25g1 ~! K,0,, 0.1gl~!
casamino acids, 0.08 mgl ~ ! ZnCl,, 0.4mgl~! FeCl; - 6H,0, 0.02mgl !

CuCl, - 2H,0, 0.02 mgl~! MnCl, - 4H,0, 0.02 mgl~! Na,B,0; - 10H,0 and

0.02 mgl’1 (NH4)sMo0;0,4 - 4H,0. The mycelium was then diluted 1:100 into
fresh R5 — liquid complex medium and cultivated at 30 °C to appropriate cell
density in an orbital shaker. For directional ssRNA-seq and Ribo-seq experiments,
mycelium was harvested in mid-exponential phase (14 h), transition phase (18h),
late exponential phase (22h) and stationary phase (36 h). To prepare the Ribo-seq
samples, thiostrepton (Sigma), a translation elongation inhibitor, was added to
cultures to a final concentration of 20 uM and subsequently incubated for 5min at
30 °C before harvesting. For dRNA-seq, mycelia were cultivated under 44 different
conditions as follows: four time points in the R5 — liquid cultures, three time
points from SMMS solid cultures, mycelia grown with 32 different nutrient
combinations (10 g1~ ! each carbon source: glucose, N-acetylglucosamine, glycerol
and maltose; 0.5 g1~ ! each nitrogen source: ammonium, asparagine, glutamine,
serine, leucine, histidine, phenylalanine and casamino acids) in liquid minimal
medium, composed of 0.5g1~! K,HPO,, 0.2g1~! MgSO,-7H,0 and 0.01gl~!
FeSO, - 7H,0, and mycelium exposed to five different stress conditions (0.5 M
sodium chloride, 1% ethanol, 42 °C heat shock, 12 °C cold shock and 0.01% SDS)
for 1h in the liquid minimal medium with 10g1~! glucose and 0.5g1~!
asparagine. Cell growth was monitored by measuring the OD4s0 nm.
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Figure 6 | Translational landscape of secondary metabolic genes. (a) Ribosome-protected fragment (RPF) levels and translation efficiency (TE)
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phases; S, fold-change between mid-exponential and stationary phases.
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RNA purification. The mycelium was resuspended in 500 pl lysis buffer composed
of 20 mM Tris-HCI (pH 7.4), 140 mM NaCl, 5mM MgCl, and 1% Triton X-100.
Resuspended cells were dripped into liquid nitrogen and then ground with pestle
and mortar. The powdered mycelia were thawed and the cell debris was removed
by centrifugation at 4 °C for 5min at 3,000g. The supernatant was further clarified
by centrifugation at 16,000g for 10 min. For ssRNA-seq and dRNA-seq samples,
total RNA was isolated using miRNeasy Mini kit (Qiagen) in accordance with the
manufacturer’s instructions.

ssRNA-seq library preparation. To remove genomic DNA, the isolated RNA was
incubated at 37 °C for 1 h with 4 U of rDNase I (Ambion) and 5 pl of 10 x DNase I
buffer (Ambion). The DNA-free RNA was purified by phenol-chloroform
extraction and ethanol precipitation. Ribosomal RNA (rRNA) was removed by
using Ribo-Zero rRNA Removal Kit for Meta-bacteria (Epicentre) according to the
manufacturer’s instructions. rRNA-depleted RNAs were checked for quality con-
trol with Agilent 2200 TapeStation system (Agilent Technologies). 200 ng mRNA
was then fragmented by incubation at 70 °C for 5min with 10 x Fragmentation
buffer (Ambion). The reaction was terminated by adding 1 pl of Stop solution
(Ambion) and the fragmented mRNA was purified by ethanol precipitation. For
first strand cDNA synthesis, 3 ug of Random primers (Invitrogen) were added to
the fragmented mRNA and denatured by incubation at 65 °C for 5min. Then, the
following was added to the reaction: 2 pl of 10 x RT buffer (Invitrogen), 1 pl of
10 mM dNTP mix, 4 pl of 25 mM MgCl,, 2 pl of 100 mM dithiothreitol (DTT), 1 ul
of SuperScript I11 Reverse Transcriptase (200 U ul ~ 1, Invitrogen) and 1 pl of
RNaseOUT (40 Upl~ L Invitrogen). The mixture was incubated 10 min at 25 °C
for annealing then 50 min at 50 °C for reverse transcription. The reaction was
terminated by incubation at 85 °C for 5min. Synthesized first strand cDNA was
purified by using Agencourt AMPure XP beads (Beckman Coulter). The following
mixture was added to the purified cDNA for second strand synthesis: 1 ul of 10 x
RT buffer (Invitrogen), 0.5 ul of 25 mM MgCl,, 1 ul of 100 mM DTT, 2 pl of 10 mM
mixture of each ANTP (dATP, dGTP, dCTP and dUTP), 15l of 5 x second-
strand buffer (Invitrogen), 5l of E. coli DNA polymerase (10 U pl ~ 1, Invitrogen),
1l of E. coli DNA ligase (10 U pl ~ !, Invitrogen) and 1 pl of E. coli RNase H
(2U W~ |, Invitrogen). The mixture was incubated at 16 °C for 2 h and synthesized
c¢DNA was purified using Agencourt AMPure XP beads (Beckman Coulter).

The libraries for Illumina sequencing were constructed using TruSeq DNA Sample
Prep Kit (Illumina Inc) according to the manufacturer’s instructions. Briefly, the
synthesized cDNA was end-repaired and 3'-ends of the blunt fragments were
adenylated for the adapter ligation. The adenylated DNA fragments were ligated
with Illumina adapters. A fraction of the adapter-ligated DNA between 180 and
380bp was size-selected from a 2% agarose gel after electrophoresis. Size-selected
DNA was purified by using MinElute Gel Extraction Kit (Qiagen) according to the
manufacturer’s instructions and eluted in 1 x TE buffer with low EDTA (10 mM
Tris-HCI (pH 8.0), 0.1 mM EDTA) for the following enzyme reaction. For
degradation of the second strand that contains dUTP instead of dTTP, 1 U of
USER enzyme (NEB) was added to the purified DNA and incubated at 37 °C for
15 min. After 5min incubation at 95 °C for enzyme inactivation, the library was
enriched by PCR. The amplification was monitored on a CFX96 Real-Time PCR
Detection System (Bio-Rad) and stopped at the beginning of the saturation point.
The amplified library was purified by using Agencourt AMPure XP beads and
quantified using a Qubit 2.0 fluorometer (Invitrogen).

dRNA-seq library preparation. RNA samples from various growth conditions
described previously were pooled to make 10 pg of total RNA. Genomic DNA was
removed by using DNA-free Kit (Ambion) in accordance with the manufacturer’s
instructions. To enrich mRNA from the isolated total RNA samples, rRNA was
removed by using Ribo-Zero rRNA Removal Kit for Meta-bacteria. rRNA-depleted
RNA samples were verified for quality control with the Experion system (Bio-Rad).
Total mRNA was split into two samples for two different libraries: the library of the
primary transcriptome and the library of whole transcriptome, respectively. One
unit of Terminator 5 -Phosphate-Dependent Exonuclease (TEX, Epicentre) was
used to treat one of the samples to enrich primary transcripts, which have
triphosphate at their 5'-ends, resulting in the preparation of the TEX-treated
(TEX +) and non-treated (TEX — ) samples. 2 pl of 10 X Terminator Reaction
Buffer A (Epicentre) and 0.5 pl of RNaseOUT (40 U pl ~ 1) were added to the
TEX + sample and incubated at 30 °C for 1h. The reaction was terminated

by adding 1 pl of 100mM EDTA (pH 8.0). To ligate 5'-RNA adaptor, the
triphosphates at the 5'-ends of mRNA were converted to monophosphate by
treating with 20 U of RNA 5'-polyphosphatase (Epicentre) in a 20-pl volume
containing 2 pl of 10 x RNA 5'-polyphosphatase Reaction buffer (Epicentre) and
0.5 ul of RNaseOUT (40U il — 1y at 37°C for 1h. The mRNA was then purified by
phenol-chloroform extraction and ethanol precipitation. 5 uM of 5-RNA adaptor
(5'-GUUCAGAGUUCUACAGUCCGACGAUC-3') was added to the purified
mRNA with 4 pl of T4 RNA Ligase (5U pl~ 1, Epicentre), 2 ul of 10 x T4 RNA
Ligase buffer (Epicentre), 2 pl of 10 mM ATP and 0.5 pl of RNaseOUT (40 Upl ~ 1).
The ligation reaction was incubated at 37 °C for 3 h. Following this step, cDNA was
synthesized from adaptor-ligated RNA using random 3’ overhanging primer (N9;
5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNN-3).
The primer-RNA mixture was incubated at 70 °C for 10 min then at 25 °C for

10 min. The following components were added to the reaction: 6 pl of 10 x RT

buffer, 6 pl of 100 mM DTT, 3 pl of 10 mM dNTP mix, 1 pl of actinomycin D
(Imgml ™~ 1), 0.75 ul of RNaseOUT (40 U pl ~ 1) and 3 pl of SuperScript III Reverse
Transcriptase (200 U pl ~ 1), The mixture was incubated 10 min at 25°C, 1h at
37°C, 1 h at 42°C and 15 min at 70 °C, sequentially. The reaction was then chilled
to 4 °C. To remove residual RNAs, the reverse transcribed product was incubated
at 65 °C for 30 min with 20 pl of 1 N NaOH followed by 20 pl of 1 N HClI for
neutralization. Synthesized cDNA was purified using QIAquick PCR Purification
Kit (Qiagen) according to the manufacturer’s instructions. The cDNA was purified
again by ethanol precipitation. Purified cDNA was selected at a size range between
100 and 350bp on a 2% agarose gel by Pippin Prep (Sage Science). Size selected
DNA was purified by ethanol precipitation. The purified sequencing library was
then amplified by PCR with indexed primers for the Illumina sequencing platform.
The success of the amplification step was monitored on a CFX96 Real-Time PCR
Detection System and stopped at the beginning of the saturation point. The
enriched library was then purified by ethanol precipitation. Purified libraries at a
size range between 150 and 400 bp were extracted from a 2% agarose gel by Pippin
Prep. The size-selected library was purified by ethanol precipitation. A second PCR
amplification was carried out with a few PCR cycles to produce enough DNA
for Illumina sequencing. The final amplified library was purified by ethanol
precipitation and the libraries in the range 150-400 bp were extracted from a 2%
agarose gel after electrophoresis. The final library was then purified using MinElute
Gel Extraction Kit and quantified using Qubit 2.0 fluorometer. High-throughput
sequencing is described after the ribosome profiling protocol. Approximately 92%
of sequence reads (~4.2 million sequence reads) were uniquely mapped to the
S. coelicolor genome (NC_003888) with an average read length of 118 nt
corresponding to ~53-fold genomic coverage.

Ribosome profiling (Ribo-seq) library preparation. The mycelium was washed
in 500 pl polysome buffer composed of 20 mM Tris-HCI (pH 7.4), 140 mM NaCl,
5mM MgCl, and 20 uM thiostrepton. The cells were then resuspended in the lysis
buffer (20 mM Tris-HCI (pH 7.4), 140 mM NaCl, 5mM MgCl, and 1% Triton
X-100) with 20 pM thiostrepton, dripped into liquid nitrogen and then ground
with pestle and mortar. The powdered cells were thawed and centrifuged at 4 °C for
5 min at 3,000¢ to remove cell debris. The supernatant was recovered and clarified
by centrifugation at 16,000¢ for 10 min. To digest RNA, 750 U of RNase I
(Ambion) was added to the cell lysate containing 50 pg total RNA in 300 pl of
10 mM Tris-HCI (pH7.6). The samples were incubated at 37 °C for 45 min with
gentle rotation, followed by addition of 200 U of SUPERase - In (Invitrogen). The
digested samples were carefully pipetted onto 900 pl of 1 M sucrose cushion (34%
(w/v) sucrose) in a polycarbonate ultracentrifuge tube (13 X 51 mm, Beckman).
Ribosomes were pelleted by centrifugation with TLA100.2 rotor (Beckman) at
215,000g for 4h at 4°C, and subsequently resuspended in 700 ul of RLT buffer
(Qiagen). RNA was purified by phenol-chloroform extraction and ethanol
precipitation. rRNA was removed by using Ribo-Zero rRNA Removal Kit for
Meta-bacteria. The ribosome-protected RNA ‘footprint’ fragments were separated
by electrophoresis for 65 min at 200 V using 15% polyacrylamide TBE-urea gel
(Invitrogen). RNA fragments between 26 and 32 bp were size-selected and eluted in
400 pl of RNA gel extraction buffer (300 mM sodium acetate (pH 5.5), 1 mM
EDTA and 0.25% (w/v) SDS). The samples were frozen for 30 min at — 80 °C
then incubated overnight at room temperature with gentle mixing. Size-selected
fragments were purified by ethanol precipitation and dissolved in 10 pl of 10 mM
Tris-HCI (pH 8.0). The dephosphorylation reaction was carried out as follows:
samples were denatured for 90s at 80 °C; after this step, the samples were
equilibrated to 37 °C and incubated for 1h at 37 °C with 5ul of 10 x T4 PNK
buffer (NEB), 1 ul of SUPERase - In (20 U pul — 1y and 1l of T4 PNK (10U pl 1,
NEB). Thereafter, the enzyme inactivation was performed for 10 min at 70 °C and
RNA was purified by ethanol precipitation. Dephosphorylated RNA was dissolved
in 8.5l of 10mM Tris-HCI (pH8.0) and 1.5 pl of Universal miRNA Cloning
Linker (NEB) was added to the RNA. RNA-linker mixture was denatured at 80 °C
for 90's then cooled to room temperature. The mixture was ligated in 20 ul volume
with 2 pl of 10 x T4 RNA Ligase Reaction Buffer (NEB), 6 pil of PEG 8000 (50%,
w/v) and 1 pl of T4 RNA Ligase 2, truncated (200 U pl ~ 1 NEB). The mixture was
incubated for 2.5h at room temperature. Linker-ligated RNA was purified by
ethanol precipitation and dissolved in 10 ul of 10 mM Tris-HCI (pH 8.0). For
reverse transcription, 2 pl of 1.25 uM reverse transcription primer (5'-AGATCG
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGC-SpCl18-
CACTCA-SpC18-TTCAGACGTGTGCTCTTCCGATCTATTGATGGTGCCTA
CAG-3'; where SpC18 indicates a hexa-ethyleneglycol spacer) was added to the
RNA; the mixture was denatured at 80 °C for 2 min then placed on ice. The reverse
transcription reaction was prepared as follow: 12 pl of RNA-primer mixture, 4 pl
of 5% first-strand buffer, 1 pl of 10mM dNTPs, 1l of 100 mM DTT, 1l of
SUPERase - In (20U pl ~ 1) and 1 pl of SuperScript ITI Reverse Transcriptase

(200 U pl ~1). The mixture was incubated at 48 °C for 30 min. RNA was hydrolysed
by adding 2.2 ul of 1 N NaOH and incubated at 98 °C for 20 min. cDNA was
purified by ethanol precipitation and separated from the unextended primer

by polyacrylamide gel electrophoresis as describe above, except using DNA gel
extraction buffer (300 mM NaCl, 10 mM Tris-HCI (pH 8.0) and 1 mM EDTA)
instead of RNA gel extraction buffer. Circularization reaction was prepared as
follow: 15 ul of cDNA, 2 pl of CircLigase 10 x Reaction Buffer (Epicentre),

1ul of ImM ATP, 1l of 50mM MnCl, and 1 pl of CircLigase ssDNA Ligase
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@aooupl—1, Epicentre). The mixture was incubated at 60 °C for 1h followed by
enzyme heat-inactivation by incubation at 80 °C for 10 min. The sequencing library
was amplified from the circulated DNA by PCR. PCR amplification was performed
with varying numbers of cycles in order to determine the optimal cycle. The
amplified library was separated from the unextended primers by electrophoresis for
40 min at 180V using an 8% polyacrylamide gel. The final library was extracted
from the gel slice as described above, and quantified using a Qubit 2.0 fluorometer.

High-throughput sequencing. The resulting library was loaded onto a flow-cell
and sequenced using an Illumina Miseq v.2 instrument. The 50-bp read recipe was
used for the ssRNA-seq and Ribo-seq libraries, and the 150-bp read recipe was used
for dRNA-seq libraries in accordance with the manufacturer’s instructions. The
ssSRNA-seq generated more than 120 million reads with an average read length of
50 bp and the number of sequence reads for each library ranged from 1.0 x 107 to
1.7 x 107. The quality-processing steps yielded 76.5-87.6% of these reads as
uniquely mapped onto the S. coelicolor genome, corresponding to 75.4-fold average
genomic coverage (602-fold in total). The rRNA depletion method used in this
study efficiently enriched the mRNA molecules for the cDNA library
construction!8-8,

Data processing. The linker sequence was trimmed from reads of the Ribo-seq
libraries before being aligned to the genome. Reads that were shorter than 25bp
after trimming or did not contain the linker sequence were discarded. Also,

the random 3’-overhanging (N9) sequences in reads of dRNA-seq library were
trimmed. Reads shorter than 25 bp after trimming were discarded. The reads were
then aligned to the S. coelicolor genome (NC_003888, ftp://ftp.ncbi.nlm.nih.gov/
genomes/Bacteria/Streptomyces_coelicolor_A3_2_ uid57801/) using CLC
Genomics Workbench (CLC bio) with the following parameters: mismatch cost 2,
deletion cost 3, insertion cost 3, length fraction 0.9 and similarity fraction 0.9.
Only uniquely mapped reads were retained. To validate the reproducibility between
duplicate data, the expression of genes was normalized by RPKM. High coefficient
of determination (R%>0.96) calculated between duplicate data confirmed high
reproducibility (Supplementary Fig. 8b). The expression of the genes was nor-
malized using the DESeq package in R*, and the expression values for replicate
data were merged as a normalized value. For all transcriptomic analysis, the count
value after normalization by DESeq was used. To estimate the numbers of
transcripts present at biologically relevant expression levels, we assumed that the
normalized expression levels of the secondary metabolic genes (221 genes in total)
are minimal at the mid exponential growth phase’ and therefore we used the
expression levels of these genes as cutoff value (median = 32.8). Among the four
time points, only genes that had normalized mRNA expression level greater than
32.8 for at least one time point were considered. Comparing every two time points,
genes having mRNA fold changes over 2 and P-value smaller than 0.05 (calculated
by DESeq) were subsequently included in the analysis. 4,557 genes satisfying these
criteria were hierarchically clustered (method = manhattan, complete) by using R,
then visualized as a heat map in log, scale. For calculation of TE, an arbitrary value
of 1 was added to all data to avoid a zero value denominator. Because the sequences
of the first 20 genes and the last 20 genes of S. coelicolor represent duplications,
these 40 genes were excluded from all analysis.

TSS identification and data analysis. Genomic positions of the 5'-ends of
uniquely aligned dRNA-seq reads from the TEX-treated (TEX +) libraries

were considered to be potential TSSs. TSSs were then determined as described
previously, followed by manual curation*!. Briefly, potential TSSs within 100 bp
were clustered together, partitioning the 8.7 Mb S. coelicolor genome into 11,916
clusters; then, adjacent peaks in each cluster were sub-clustered by calculating the
standard deviation of their genomic positions to select a local maximum peak as
the TSS in each sub-cluster. If two or more peaks located nearby had standard
deviation of <10 they were sub-clustered together. During this sub-clustering step,
if the total read count in a cluster or a sub-cluster is less than three, the cluster
or the sub-cluster was removed. For example, in a case where three peaks are
positioned at 100, 114 and 128, only the first two peaks are grouped in the same
cluster because the standard deviation of (100, 114) is 9.9, whereas the standard
deviation of (100, 114, 128) is 14. On the other hand, if there are 29 peaks at every
position from 100 to 128, they are grouped in one cluster because the standard
deviation of the 29 genomic positions is 8.5. Thus, standard deviation measure is
the criterion required to sub-cluster peaks that are densely located in a certain
region of the genome. Then, the peak with maximum reads in each sub-cluster was
designated as the TSS. Among the selected TSSs in one cluster, if two or more TSSs
were closely located (standard deviation of genomic positions <10) the lower
peaks were removed. Finally, we compared the assigned TSSs with data from the
respective non-TEX-treated libraries. If the peak is not found in TEX — data within
+ 5bp, the peak was removed. Further, manual curation was performed by
comparing the data with the corresponding ssRNA-seq profiles. If the expression
level of a gene (or operon) is extremely high, the internal peaks from processed
RNAs are not properly removed by the steps described above, and therefore we
manually removed those peaks. In contrast, if a peak is present in the TEX +
library and has a clear ssRNA-seq profile, this was selected as a TSS. Among the
TSSs located from 500 bp upstream to 150 bp downstream of the respective

10

annotated start codon of each open reading frames, the TSS scoring the maximum
number of reads was classified as the primary (P) and the others as secondary
TSSs (S). The mapped TSSs were compared with previously known TSSs (within
the range of *4bp of our data). All data were visualized using SignalMap (Roche
NimbleGen, Inc.)!618,

Motif discovery. The conserved promoter sequence analysis was conducted using
the MEME software. We first extracted the 20-bp upstream sequences of each TSS
(3,570 in total) to identify the — 10 motif. After obtaining the conserved sequence
(TANNNT), we extracted 8 bp upstream and 7 bp downstream sequences from the
first and the last nucleotide of the conserved sequence, respectively. The 21-bp
(NgTANNNTN;) sequences were then used to draw the conserved motif sequences
using Weblogo*2. Then, the sequences between 40 and 25 bp upstream of each TSS
were extracted to obtain — 35 motif (NTGACC). The 16-bp sequences composed
of 4bp upstream and 6 bp downstream sequences (N;JNTGACCNj) was extracted
and used to obtain the conserved sequence. Then, the variable length of the space
between — 10 and — 35 was calculated for each promoter. To obtain the — 10
and — 35 motifs for promoters associated with each class of transcript—ImRNAs,
primary TSSs, antisense TSSs, internal TSSs, intergenic TSSs and sRNAs—we
repeated the procedure described above. A conserved hexanucleotide — 10 motif
(that is, TANNNT) was found from 80.4% (2,870 out of 3,570; P<0.05; MEME)
of the identified TSSs, which is similar to the recently reported — 10 motif for
Mycobacterium tuberculosis®®. This is consistent with the observation that the
number of conserved nucleotides within the — 10 motif tends to diminish when
genomic G+ C content is above 60% (ref. 43). It is worth noting that the average
G+ C content of the S. coelicolor promoter region is 63.9%, contrasting with that
of the S. coelicolor genome as a whole of 72.1%. Sequences and length of spacer
between the 5 end of the — 10 hexamer and the 3’-end of the — 35 hexamer have
been shown to have significant influence on bacterial promoter activity because this
region is specifically recognized by each c-factor. To test this, the promoters with
identified — 10 and — 35 consensus regions were grouped on the basis of spacer
length, resulting in 62.1% (1,036 out of 1,667) of them having the spacers between
15 and 20 nt (Supplementary Fig. 5).

5'-Rapid amplification of cDNA ends. Specific primers were designed to amplify
200-300 bp covering the downstream regions of selected TSSs. Cells were harvested
in late exponential phase (22h). The mycelium was resuspended in 500 pl lysis
buffer composed of 20 mM Tris-HCI (pH 7.4), 140 mM NaCl, 5 mM MgCl, and 1%
Triton X-100. Resuspended cells were dripped into liquid nitrogen and then
ground with pestle and mortar. The powdered mycelia were thawed and the cell
debris was removed by centrifugation at 4 °C for 5 min at 3,000g. The supernatant
was further clarified by centrifugation at 16,000¢ for 10 min. Total RNA was
isolated using miRNeasy Mini kit (Qiagen) in accordance with the manufacturer’s
instructions. To remove genomic DNA, 10 ug of the isolated RNA was incubated at
37°C for 1 h with 4 U of Turbo DNase (Thermo Fisher Scientific) and 5 pl of 10 x
Turbo DNase buffer (Thermo Fisher Scientific). The DNA-free RNA was purified
by phenol-chloroform extraction and ethanol precipitation. To enrich mRNA from
the isolated total RNA samples, rRNA was removed by using Ribo-Zero rRNA
Removal Kit for Meta-bacteria. 5'-Tag-cDNA library was constructed as described
previously with optimized amounts of reagents*4, Briefly, 50 uM of short RNA
adaptor (5'-ACGGACUAGAAGAAA-3') was added to 1 pug of the rRNA-depleted
RNAs with 10 U of T4 RNA ligase (Thermo Fisher Scientific). The ligation reaction
was incubated at 37 °C for 90 min, then 70 °C for 10 min. The adapter ligated RNAs
were purified using Agencourt AMPure XP beads (Beckman Coulter). Half of the
recovered RNAs were then treated with 20 U of RNA 5'-polyphosphatase (TAP;
Epicentre). Identical treatments were applied to the other half of the RNAs, except
that RNA 5'-polyphosphatase was omitted, providing a negative control. Both
reactions were incubated at 37 °C for 1h, then the RNAs were purified by ethanol
precipitation. RNA 5'-polyphosphatase-treated sample (TAP + ) and negative
control (TAP —) were ligated to 10 M of second RNA adapter (5'-AUAUGCGC
GAAUUCCUGUAGAACGAACACUAGAAGAAA-3') with 10U of T4 RNA
ligase (Thermo Fisher Scientific). The adapter ligated RNAs were purified using
Agencourt AMPure XP beads (Beckman Coulter). cDNA was synthesized from
the adapter ligated RNAs with SuperScript III First-Strand Synthesis System
(Invitrogen) according to the manufacturer’s instruction. Synthesized cDNA was
purified twice using Agencourt AMPure XP beads (Beckman Coulter). Then, the
cDNA was amplified with 10 uM of the selected gene-specific primer and 25 uM
of primer (5-GCGCGAATTCCTGTAGAACG-3'), which is complementary to
second RNA adapter. The sequences of gene-specific primers are indicated in
Supplementary Table 3. Amplified products were separated by gel electrophoresis.

Quantitative real-time PCR. First-strand cDNA was synthesized from 8 ug of
total RNA by using SuperScript III First-Strand Synthesis System (Invitrogen) in
accordance with the manufacturer’s instructions. The amplification of the cDNAs
was monitored on a CFX96 Real-Time PCR Detection System with SYBR Green I
Nucleic Acid Gel Stain (Invitrogen) under the following conditions: 98 °C for 10's;
62 °C for 30s; 72°C for 105 for 35 cycles. The sequences of primers used for
amplification are indicated in Supplementary Table 4.
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Data access and in-house scripts availability. The reference genome for

S. coelicolor A3(2) strain M145 (accession code NC_003888) is available from
National Center for Biotechnology Information. In-house scripts used for data
processing are available at http://cholab.or.kr/data/.
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