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Abstract 

Background:  Prostate cancer (PCa) is the second leading cause of cancer death in men in 2018. Thus, the evaluation 
of prognosis is crucial for clinical treatment decision of human PCa patients. We aim to establishing an effective and 
reliable model to predict the outcome of PCa patients.

Methods:  We first identified differentially expressed genes between prostate cancer and normal prostate in TCGA-
PRAD and then performed WGCNA to initially identify the candidate Gleason score related genes. Then, the candidate 
genes were applied to construct a LASSO Cox regression analysis model. Numerous independent validation cohorts, 
time-dependent receiver operating characteristic (ROC), univariate cox regression analysis, nomogram were used 
to test the effectiveness, accuracy and clinical utility of the prognostic model. Furthermore, functional analysis and 
immune cells infiltration were performed.

Results:  Gleason score-related differentially expressed candidates were identified and used to build up the outcome 
model in TCGA-PRAD cohort and was validated in MSKCC cohort. We found the 3-gene outcome model (CDC45, 
ESPL1 and RAD54L) had good performance in predicting recurrence free survival, metastasis free survival and overall 
survival of PCa patients. Time-dependent ROC and nomogram indicated an ideal predictive accuracy and clinical 
utility of the outcome model. Moreover, outcome model was enriched in 28 pathways by GSVA and GSEA. In addi-
tion, the risk score was positively correlated with memory B cells, native CD4 T cells, activated CD4 memory T cells and 
eosinophil, and negatively correlated with plasma cells, resting CD4 memory T cells, resting mast cells and neutrophil.

Conclusions:  In summary, our outcome model proves to be an effective prognostic model for predicting the risk of 
prognosis in PCa.
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Background
Prostate cancer (PCa) is the second leading cause of 
cancer death in men in 2018 [1]. Due to metastasis, the 
5-year relative survival rate of distant PCa is only 30% [2]. 

Despite decades of efforts in research, the standard treat-
ment options and guidelines for PCa patients diagnosed 
with metastatic progression have remained unchanged 
[3, 4]. Clinically, the Gleason scoring system has been 
widely used for assessment of prognosis of PCa based on 
histology [5]. However, in patients with metastatic PCa, 
metastatic biopsies are rarely performed [6]. Although 
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prostate specific antigen (PSA) screening contributes to 
decrease PCa metastases and mortality [7], over-diagno-
sis and over-treatment become a controversial issue [8, 
9].

With the development of precision medicine (PM), 
individualized treatment based on cancer genomic data 
has been achievable [10]. In view of the multiple treat-
ment options and inconsistent outcomes of PCa, reli-
able biomarkers might help to optimize clinical decisions 
[11, 12]. For instance, as for diagnosis, the combination 
of digital-rectal examination and PSA value provides 
the risk stratification in most patients but could not give 
more details for the following steps. Therefore, prostate 
health indexes (PHI), four-kallikrein panel (4K), and 
even combination of PHI and 4K have been introduced 
[13–15]. The prognosis of PCa is greatly variable because 
of its various features [16]. However, there is little 
research about the biomarkers of PCa prognosis. PTEN, 
as a suppressor of prostate cancer, might be a prognos-
tic biomarker for PCa [17]. Several miRNA, such as 
miR-145, has been demonstrated to suppress the andro-
gen receptor in PCa cells and correlate to PCa progno-
sis [18]. However, there is still a huge distance between 
clinical application and these biomarkers because of 
lacking enough validation. Therefore, establishing an 
effective prognostic model for PCa has significant clinical 
implications.

The recent development of high-throughput profiling, 
sequencing technology and bioinformatics has revolu-
tionized cancer research in general. By utilizing the pub-
lically available datasets and advanced bioinformatics 
tools, we aim to systematically explore biomarkers for 
PCa prognosis. The weighted gene co-expression net-
work analysis (WGCNA) is an R package for weighted 
correlation network analysis and can be used as a data 
exploratory tool or a gene screening (ranking) method to 
find clusters (modules) of highly correlated genes [19]. It 
has been widely used to find hub genes in various cancers 
[20–22]. The least absolute shrinkage and selection oper-
ator (LASSO) method was originally designed for regres-
sion analysis. Lately, it has been applied to many fields, 
including the construction of prognostic models for vari-
ous cancers [23–26].

In this study, we firstly used WGCNA to identify hub 
genes associated with Gleason score. By using LASSO 
method, we then constructed a 3-mRNA signature and 
extensively tested for predicting patient disease free sur-
vival. Meanwhile, the outcome model was validated in 
various independent datasets. Next, we built a nomo-
gram based on the 3-mRNA signature combined with 
other clinical factors. We have confirmed the clinical util-
ity by decision curve analysis. Furthermore, to explore 
tumor associated immune cell infiltration and risk score 

derived from outcome model, we used CIBERSORT to 
calculate the immune cell infiltration abundance and per-
formed combination survival analysis.

Materials and methods
Clinical samples and data acquisition
Gene expression profiles of prostate cancer and corre-
sponding clinical information of patients were obtained 
from UCSC Xena database (http://xena.ucsc.edu/), 
Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/) and cbioportal database (http://
www.cbiop​ortal​.org/). Detailed information for the 8 
independent datasets including MSKCC, GSE116918, 
GSE46602, GSE54460, GSE70768, GSE70769, GSE16560 
and GSE53922 were listed in Additional file 1: Table S1.

Differentially expressed genes (DEGs) screening
Based on the pan-cancer normalized TCGA-PRAD data 
(498 prostate cancer samples and 52 non-tumor samples) 
in UCSC Xena database, we applied “limma” package in R 
to screen differentially expressed genes. Here, we set|log2 
(Fold change)| > 1 and false discovery rate (FDR) < 0.05 as 
the cutoff.

Weighted gene co‑expression network construction 
and progression related genes identification
For WGCNA analysis, we used the gene expression 
matrix after the DEGs screening. Using “WGCNA” R 
package, we first deleted the outliers in each dataset [19]. 
Then, proper soft-thresholding parameter β was chosen 
to ensure a scale-free network, and genes with similar 
expression pattern were clustered into the same module. 
We then combined the modules with different clinical 
features (overall survival (OS) time, overall survival sta-
tus, disease free survival (DFS) time, disease free survival 
status, age, biochemical recurrence, clinical M stage, 
clinical T stage, total Gleason score, laterality, number 
of positive lymphonode, pathological T stage, pathologi-
cal N stage, PSA value, radiation therapy and targeted 
molecular therapy), we could finally identify the key 
genes related to total Gleason score.

Establishment of outcome signature with LASSO 
regression model
LASSO (least absolute shrinkage and selection operator) 
is a regression analysis method that performs both vari-
able selection and regularization in order to enhance the 
prediction accuracy and interpretability of the statistical 
model. Here, using “glmnet” package in R, we applied 
the LASSO Cox regression analysis to build an optimal 
prognostic signature for PCa by using key genes related 
to total Gleason score [27]. Due to few dead patients in 
the overall survival cohort of TCGA-PRAD, we therefore 

http://xena.ucsc.edu/
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http://www.cbioportal.org/
http://www.cbioportal.org/
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chose the disease free survival of TCGA-PRAD (n = 436) 
as the training set to set up the outcome model. Firstly, 
we excluded the patients without complete disease free 
survival information, then, optimal values of the penalty 
parameter lambda were determined through 10-times 
cross-validations. The minimum mean cross-validated 
error of the best lambda value was screened out. The risk 
score of prognostic signature for each sample was calcu-
lated by the relative expression of each prognostic gene 
in the signature and its associated coefficient. The risk 
score of the outcome signature = 

∑
n

i=1
 (coefi × Expri), 

where Expri is the relative expression of the gene in the 
signature for patient i, coefi is the LASSO coefficient of 
the gene i.

Estimation of outcome signature for patients’ prognosis
According to the optimal p value, patients from different 
datasets were divided into low risk group and high risk 
group separately. Then we used “survivalROC” R package 
to perform time-dependent receiver operating character-
istic curve (ROC) analysis and calculate the area under 
curve (AUC) for 1-year, 3-year and 5-year disease free 
survival, recurrence free survival (RFS), overall survival 
and metastasis free survival (MFS) for further evaluating 
the prediction accuracy for our model [28].

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA)
According to the optimal separation, we divided the 
TCGA-PRAD samples into high risk and low risk groups. 
Here, to further identify the role of our model in tumor 
metastasis, we used “clusterProfiler” and “fgsea” pack-
ages in R to visualize the correlation. P value and padj 
both < 0.05 were set as the cutoff. For the metastasis phe-
notype identification, we chose prostate cancer metasta-
sis related gene sets as the reference; for the functional 
analysis, we chose Hallmark gene sets as the reference. 
For the GSVA analysis, we used “GSVA” R package and 
set t value > 2 and FDR < 0.05 as the cutoff [29]. Then the 
common gene sets were identified via GSEA and GSVA 
analysis.

Construction and assessment of the nomogram
Excluding all missing information would lead to not 
enough patient samples. Therefore, we only firstly per-
form univariate cox regression analysis to identify the 
proper terms to build the nomogram. The forest was 
used to show the p value, HR and 95% CI of each vari-
able through “forestplot” package in R. The nomogram, 
calibration plots and decision curve were generated 
using “rms” package. Afterwards, the calibration curves 
and decision curve analysis (DCA) were united to see 

whether our established nomogram was suitable for clin-
ical utility.

Evaluation of infiltrating immune cells and immune 
checkpoint with risk score
To evaluate the infiltration levels of immune cells in 
the PCa samples, we used the CIBERSORT algorithm 
[30], which provided an estimation of the abundances 
of member cell types by using gene expression data. B 
cells naïve, B cells memory, Plasma cells, T cells CD8, 
T cells CD4 naïve, T cells CD4 memory resting, T cells 
CD4 memory activated, T cells follicular helper, T cells 
regulatory (Tregs), T cells gamma delta, NK cells rest-
ing, NK cells activated, Monocytes, Macrophages M0, 
Macrophages M1, Macrophages M2, Dendritic cells 
resting, Dendritic cells activated, Mast cells resting, 
Mast cells activated, Eosinophils and Neutrophils were 
investigated. Furthermore, the correlation between risk 
score and immune cell infiltration was calculated and 
combination survival analyses were performed based 
on risk score and significantly-correlated infiltrating 
immune cells. Besides, the correlation between risk 
score and immune checkpoints were also investigated.

Statistical analysis
R software 3.5.0 was used for all statistical analyses. 
Package details were listed in Additional file 2: Table S2. 
Statistical significance was set at probability values of 
p < 0.05. Two-tailed Student’s t-test was used for sig-
nificance of differences between subgroups. One-way 
Anova test or Student t test were applied to analyze the 
correlation between risk score and clinicopathological 
parameters. Kaplan-Meier survival curves were built 
to analyze survival differences between the high risk 
group and low risk group. The ROC, calibration curve 
and DCA were compared for the predictive accuracy of 
the prognostic models.

Results
Differentially expressed genes (DEGs) screening 
and selection of candidate genes via WGCNA analysis
We identified 2245 DEGs (858 up-regulated and 1387 
down-regulated genes) (Additional file  3: Table  S3). 
Differentially expressed genes were visualized via vol-
cano plot and heatmap (Fig. 1a, b) and further, we used 
DEGs to construct co-expression network. Here, based 
on the average clustering, we detected the outlier sam-
ples and no one was removed (Fig. 1c). Then, we chose 
β = 4 as the proper soft-thresholding parameter and 
built a scale-free network (Additional file 4: Figure S1). 
Combined with the module and clinical information, 
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we eventually identified the yellow module which was 
highly correlated with total Gleason score (R = 0.4, 
p = 4E−20) and we subsequently selected the 73 hub 
genes in yellow module (Fig.  2 and Additional file  5: 
Table S4). 

Construction of outcome model
Excluding the samples with incomplete disease free 
survival data, we finally used 436 TCGA-PRAD patients 
as the training set. Using LASSO cox regression, we 

then generated a formula based on the expression of 
the three genes to predict DFS in TCGA-PRAD train-
ing dataset, and the formula for the risk score in each 
sample was calculated as follows: risk score = 1.562E−
01*ExpCDC45 + 2.850E−02* ExpESPL1 + 1.148E−04* Exp 
RAD54L (Additional file 6: Figure S2). Meanwhile, expres-
sion levels of these 3 genes were shown in Additional 
file  7: Figure S3. According to the risk score, patients 
were stratified into low-risk and high-risk groups at the 
best separation cut-off. KM curves indicated that high-
risk groups were significantly associated with poorer 

Fig. 1  Identification of differentially expressed genes between prostate cancer and normal prostate in TGCA-PRAD and sample cluster of DEGs. 
a Volcano plot of the DEGs in TCGA-PRAD. Red dots represent up-regulated genes, blue dots represent down-regulated genes and grey dots 
represent genes with no significance. b Heatmap of DEGs in TCGA-PRAD. c Sample cluster of DEGs via average clustering method
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DFS and low-risk groups were associated with better 
DFS (p = 0.00013) (Fig.  3a, c). Time-dependent ROC 
analysis showed that the area under the ROC curve 
(AUC) for DFS in TCGA-PRAD cohort was 0.765 at 
1 year, 0.698 at 3 years and 0.628 at 5 years (Fig. 3e).

Validation of prognostic model
To validate our outcome model, MSKCC cohort was 
used for the DFS validation. We could observe the same 
significant prognostic value with p = 0.00026 and AUC 
with 1-, 3- and 5-year prognostic accuracies were 0.715, 

0.713, 0.760, respectively (Fig.  3b, d, e). Since the total 
Gleason score was correlated with tumour behaviour, 
we then investigated our model’s role in overall survival 
and recurrence free survival. Due to few dead patients in 
TCGA-PRAD OS cohort, we didn’t include this cohort 
and used 2 independent cohorts to prove its utility in 
OS prediction. The results from the two OS validation 
datasets (GSE16560 and GSE53922) showed significant 
prognostic values were p = 0.005 and p = 0.032, respec-
tively. The AUC of each dataset was 0.606 and 0.585 at 
1  year; 0.562 and 0.552 at 3  years; 0.608 and 0.495 at 

Fig. 2  Identification of Gleason score-related candidate genes. a Dendrogram of all differentially expressed genes clustered. b Distribution of 
average gene significance in the modules. c The correlation between module eigengenes tumor grade. d Dotplot to screen hub genes in hub 
module. Genes in upper-right corner are hub genes associated with Gleason score
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Fig. 3  Risk score derived from 3-gene signature is a prognostic biomarker for disease free survival (DFS). a, c, e KM survival, risk score and 
time-dependent ROC curves of DFS in TCGA-PRAD training cohort. b, d, f KM survival, risk score and time-dependent ROC curves of DFS in MSKCC 
validation cohort. The high-risk and low-risk groups were stratified at optimal cut-off due to the risk score. The AUC was assessed at 1, 3 and 5 years
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5 years, respectively (Additional file 8: Figure S4). Moreo-
ver, in the 5 validation cohorts (GSE116918, GSE46602, 
GSE54460, GSE70768 and GSE70769) for RFS, we could 
obviously see the significant outcomes that all the high-
risk groups were associated with the poorer progno-
sis (Fig. 4a, d, g, j, m). The significant prognostic values 
of 5 RFS validation cohorts were p = 0.028, p < 0.0001, 
p = 0.001, p = 0.005 and p = 0.003, respectively. The AUC 
of each dataset was 0.988, 0.585, 0.600, 0.779 and 0.646 
at 1 year; 0.533, 0.681, 0.625, 0.655 and 0.570 at 3 years; 
0.560, 0.794, 0.661, 0.759 and 0.618 at 5  years, respec-
tively (Fig. 4).

Metastasis phenotype identification and metastasis free 
survival validation
Since Gleason score was correlated with tumor invasion, 
thus we used GSEA analysis to evaluate the correlation 
between metastasis and our model. We could find that 
high risk score was positively correlated with metastasis 
up and negatively correlated with metastasis down gene 
sets (Fig.  5a). Then the MFS validation set GSE116918 
revealed that high-risk groups were significantly asso-
ciated with poorer MFS and low-risk groups were 
associated with better MFS (p = 0.009) (Fig.  5b). Time-
dependent ROC analysis showed that the area under 
the ROC curve (AUC) for MFS in GSE116918 cohort 
was 0.988 at 1 year, 0.896 at 3 years and 0.659 at 5 years 
(Fig. 5c).

Correlation between the risk score with other 
clinicopathological characteristics
Clinicopathological data, including age, clinical M stage, 
clinical T stage, total Gleason score, laterality, number of 
positive lymphonodes, pathological N stage, pathological 
T stage, PSA value, radiation therapy and targeted molec-
ular therapy were collected from TCGA-PRAD dataset. 
The detailed information of patients’ clinicopathologi-
cal characteristics in TCGA-PRAD cohort were dis-
played in the Additional file  9: Table  S5. Comparison 
results between risk score and different clinicopathologi-
cal characters were shown in Additional file  10: Figure 
S5. In terms of clinical features, risk score was robustly 
increased in patients with lymphovascular invasion, more 
advanced stage and Gleason score and additional therapy, 
which indicated risk score was significantly positive cor-
related with tumour malignancy.

Subgroup analysis of prognostic value of the outcome 
model
To check the good applicability of our outcome model, 
the stratification survival analyses were performed. The 
prognosis of the high-risk group in different age, early 
clinical stage, late pathological stage, pathological N- 
stage and different lymphnodes positive subgroups were 
still worse than the low-risk group (Additional file  11: 
Figure S6a, b, e, h, i, k, l). Although there was no sig-
nificance between different Gleason score groups, late 
clinical stage, early pathological stage and pathological 
N + stage, we could still either find a worse prognostic 
trend in high risk group or more high-risk patients clas-
sified into high risk level group (Additional file 11: Figure 
S6c, d, f, g, j).

Univariate cox regression analyses for the model 
prognostic ability and nomogram construction
We performed univariate cox regression analysis to 
investigate whether our model was a clinically inde-
pendent prognostic factor for PCa patients. And from 
the unicox regression analysis, Gleason score, risk score, 
pathological T stage, clinical T stage, PSA value, tar-
geted molecular therapy, radiation therapy and number 
of lymph nodes positive were significant (Fig. 6a). When 
we merged all clinical features to perform the multivari-
ate cox regression, we found it would lose almost half 
of our included patients. Thus we skipped this step and 
used all significant variables to construct the nomogram 
which could provide a quantitative method for the clini-
cians to predict the probability of 3-, 5- and 8-year DFS 
in PCa patients (Fig. 6b). Every patient would get a total 
point by plus the each prognostic parameters point, and 
the higher total points mean a worse outcome for that 
patient. Moreover, the calibration curve indicated that 
good performance in the estimation of 3-, 5- and 8- year 
DFS of the nomogram compared with the estimation of 
Kaplan–Meier (Fig.  6c–e). The results of DCA analy-
sis also demonstrated that our nomogram was of high 
potential for clinical usefulness (Fig. 6f–h).

Functional enrichment analysis
GSVA analysis showed that 30 gene sets were signifi-
cantly changed, meanwhile 41 changed significantly 
via GSVA analysis (Fig. 7a, b and Additional file 12, 13: 
Tables S6, S7). We then chose the common activated 

Fig. 4  Risk score derived from 3-gene signature is a prognostic biomarker for recurrence free survival (RFS). a–c KM survival, risk score and 
time-dependent ROC curves of RFS in GSE116918 validation cohort. d–f KM survival, risk score and time-dependent ROC curves of RFS in GSE46602 
validation cohort. g–i KM survival, risk score and time-dependent ROC curves of RFS in GSE54460 validation cohort. j–l KM survival, risk score and 
time-dependent ROC curves of RFS in GSE70768 validation cohort. m–o KM survival, risk score and time-dependent ROC curves of RFS in GSE70769 
validation cohort. The high-risk and low-risk groups were stratified at optimal cut-off due to the risk score. The AUC was assessed at 1, 3 and 5 years

(See figure on previous page.)
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or suppressed gene sets and eventually 11 activated 
gene sets (DNA repair, G2M checkpoint, MYC targets 
V1/2, oxidative phosphorylation, E2F targets, glycoly-
sis, mitotic spindle, MTORC1 signaling, spermatogen-
esis and unfolded protein response) and 17 suppressed 
gene sets (allograft rejection, inflammatory response, 
interferon gamma response, myogenesis, TNFA signal-
ing via NFKB, apical junction, complement, epithelial 

mesenchymal transition, estrogen response early, 
KRAS signaling UP/DN, apical surface, apoptosis, 
hypoxia, IL2/STAT5 signaling, IL6/JAK/STAT3 signal-
ing and UV response DN) were identified (Fig. 7c–f ).

The landscape of immune infiltration in prostate cancer
Based on the CIBERSORT algorithm, we obtained an 
estimation of the abundances of 22 immune cells infil-
trating in prostate cancer (Fig. 8a and Additional file 14: 

Fig. 5  Risk score derived from 3-gene signature reveals a metastatic phenotype and is a prognostic biomarker for metastasis free survival (MFS). a 
Fgsea plot reveal the correlation between risk score and metastasis phenotype in prostate cancer. b, c KM survival and time-dependent ROC curves 
of MFS in GSE116918 validation cohort
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Table  S8). We then calculated the correlation between 
immune cell infiltrations, risk score as well as 3 genes 
in the outcome model (Additional file 15: Table S9). The 
results showed that B cells memory, T cells CD4 native, 
T cells CD4 memory activated and eosinophil were 
positively correlated with our risk score and 3 genes in 

outcome model; while, plasma cells, T cells CD4 memory 
resting, mast cells resting and neutrophil were negatively 
correlated with our risk score and 3 genes in outcome 
model (Fig.  8b). Furthermore, we used those 8 immune 
cells to perform combination survival analysis with our 
risk score and we could find that each of them could 

Fig. 6  Risk score derived from 3-gene signature is an independent prognosis factor in the nomogram. a Forest plot summary of the univariate 
Cox analysis of risk score and clinicopathological characteristics. The blue diamond squares on the transverse lines represent the HR, and the black 
transverse lines represent the 95% CI. The p value and 95% CI for each clinical feature are displayed in detail. b Nomograms for predicting the 
probability of patient mortality at 3-, 5- or 8- year DFS based on risk score. c–e Calibration curves of the nomogram for predicting the probability of 
DFS at 3-, 5- and 8-year. f–h Decision curve analyses (DCA) curve of the nomograms based on TMERS risk-score for 3-year 5- and 8-year
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Fig. 7  Functional analysis based on TCGA-PRAD. a Barplot of GSVA results. b Barplot of GSEA results. c Common activated gene sets. d Common 
suppressed gene sets. e GSEA plot of common activated gene sets. f GSEA plot of common suppressed gene sets
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Fig. 8  The landscape of immune infiltration and its correlation with risk score. a Relative abundance of immune cell infiltration in high- and 
low- risk groups. b Correlation matrix of risk score, Gleason score-related genes, and the amount of 22 types of immune cell. The blue indicated 
negative correlation, while red indicated positive correlation. Shading colour and asterisks represents the value of corresponding correlation 
coefficients. * p < 0.05, ** p < 0.01. c Combination KM survival with immune cell infiltration and risk score
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divide patients into 4 groups which showed significant 
prognosis, especially plasma cell infiltration (Fig.  8c). 
As for the correlation between risk score and immune 
checkpoints, we found that risk score is significantly neg-
ative correlated with GAL9, LAG3, PD1LG2 and PDL1 
(Additional file 16: Figure S7).

Discussion
In recent years, quite a lot of promising biomarkers either 
for diagnosis or prognosis prediction were identified via 
high-throughput transcriptome profiling techniques. 
Although some gene signatures or nomograms have been 
established to predict the outcome for human prostate 
cancer, few of them used different independent validation 
cohorts [31–33].

In this study, we first identified differentially expressed 
genes between normal prostate and prostate cancer and 
then by using WGCNA analysis, we discovered a mod-
ule highly-correlated with Gleason score and selected 
hub genes in this module. Based on the hub genes, we 
then constructed a 3-gene outcome model via LASSO 
cox regression analysis to predict the disease free sur-
vival of human PCa in TCGA-PRAD. Simultaneously, 
the patients were divided into high- and low-risk groups 
based on optimal cutoff and high risk group revealed a 
poor prognosis than low risk group, which could be vali-
dated in MSKCC cohort. We also successfully validated 
the effectiveness of model in predicting OS, RFS and 
MFS in 7 independent datasets. In addition, the nomo-
gram based on the model exhibits an impressive perfor-
mance and clinical applicability.

The genes (CDC45, ESPL1 and RAD54L) in our prog-
nostic model have been previously reported to be asso-
ciated with various cancers. However, only few papers 
revealed their roles in human prostate cancer. Li et  al. 
reported that cell division cycle 45 (CDC45) might be 
useful markers for predicting tumor metastasis and 
therapeutic targets for the treatment of PCa patients via 
protein–protein network analysis [34]. Zhang et al. dem-
onstrated that extra spindle pole bodies like 1 (ESPL1) 
could encode separase protein, which was up-regulated 
in numerous human cancers including breast, bone, 
brain, and prostate [35]. As for RAD54L, Li et al. found 
that castration-resistant prostate cancer (CRPC) cells 
showed a set of homologous recombination (HR) -associ-
ated genes, including BRCA1, RAD54L, and RMI2 were 
elevated [36].

Since our outcome model showed considerable power 
in risk stratification, the potential biological process 
and signaling pathways need to be investigated. By 
using GSEA and GSVA analysis, we identified several 
activated pathways which were highly correlated with 
cell cycle such as MYC targets, E2F targets, mitotic 

spindle and G2M checkpoint. Therefore, we sup-
posed that outcome model derived cell cycle altera-
tion might play a critical role in cancer progression 
which could lead to poorer prognosis in PCa patients. 
We also found some pathways associated with immune 
response and inflammation were suppressed which 
might suggest high-risk patients could have higher risk 
of immunosuppression.

The crosstalk of tumor and immune cells from the 
tumor microenvironment (TME) is essential for tumor 
progression and metastasis development [37, 38]. In this 
study, we also put emphasis on tumor immune cells infil-
tration. We calculated the correlation between immune 
cell abundance and risk score derived from outcome 
model. The 4 positive correlated immune cells were 
memory B cells, native CD4 T cells, activated CD4 mem-
ory T cells and eosinophil. It was reported that B-cells 
were activated, differentiate to a memory B-cell phe-
notype in high-grade serous ovarian cancer (HGSOC); 
they could be activated by DCs and promote a cytotoxic 
response and cause HGSOC metastases [39]. CD4+  T 
cells were reported to play a central role in initiating and 
maintaining anticancer immune responses in human 
head and neck cancer [40]; meanwhile, they were also 
reported to correlate with lymph node involvement and 
unfavorable prognosis in human breast cancers [41]. 
Therefore, we cannot just easily draw a conclusion as 
the immune cells infiltration was dynamic. The other 4 
negative correlated immune cells were plasma cells, rest-
ing CD4 memory T cells, resting mast cells and neutro-
phil. Mast cells were immune cells that accumulated in 
the tumors and their microenvironment during disease 
progression. For instance, mast cells could secrete pro-
angiogenic and growth factors but also pro- and anti-
inflammatory mediators, thus it was really difficult to 
explain clearly its role in tumor progression [42]. As for 
the tumor-associated neutrophils (TAN), it functioned 
like a “double-edged sword” [43]. On one hand, it could 
acquire a tumor-promoting phenotype via induction by 
TGF-β [44]. On the other hand, it could mediate immu-
nosuppression by inhibiting the tumor-killing function of 
cytotoxic T cells [45].

Conclusions
In conclusion, our study was the first to construct an 
outcome model based on WGCNA analysis in human 
prostate cancer. Consisting of Gleason score related 
genes, our outcome model had promising potential in 
predicting prognosis of PCa. Meanwhile, some limita-
tions of our study should be acknowledged. First, this is 
a retrospective bioinformatics analysis; large prospec-
tive clinical trials were needed to prove its real utility. 
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Second, experimental studies are required to further 
explore underlying mechanisms of 3 candidate genes in 
our outcome model.
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