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Objective: This study aimed to build a predictive model of lower lumbar instability.

Methods: This retrospective study included 199 patients. Patients were divided into the lower lumbar instability group
(LLIG) (n = 98) and lower lumbar stability group (LLSG) (n = 101). All participants of LLIG were recruited over a 2-year
period (2015–2017) from the patients who accept lumbar surgery at the First Hospital of Jilin University. The LLSG
was selected from outpatients who had underwent lumbar spine computed tomography (CT) and Flexion and extension
radiographs (FER) at the First Hospital of Jilin University from 2015 to 2017. Several lower lumbar parameters were
measured, including Lordosis angle (LA), intervertebral height (IH), ratio of anterior height to posterior height (APR),
angle between endplate and anterior edge of vertebral body (AEPVa), sagittal slip ratio (SSR), and angle between the
upper endplate and z-axis on sagittal plane (AUEZS). These parameters were keyed into the SPSS software to create a
predictive model for classification. Sensitivity, specificity, predictive accuracy, and Kappa value were used to evaluate
the predictive model.

Results: Compared with LLSG, the LA of LLIG decreased by 3.49� (126.54� vs 130.3�). Similarly, the IH of LLIG
decreased by 1.23�mm, 1.66�mm, and 0.71�mm at L3-4, L4-5, and L5-S1. Compared with LLSG, the SSR of LLIG is
higher at L3-4, L4-5, and L5-S1 (0.54 vs 0.51, 0.57 vs 0.46, and 0.59 vs 0. 47). Moreover, the APR of LLIG is higher
than those of LLSG at L3-4, L4-5, and L5-S1 (1.97 vs 1.81, 2.40 vs 1.97, and 2.69 vs 2.26). The LLIG has bigger
AEPVa than LLIG at L3-4, L4-5, and L5-S1. Compared with LLSG, the AUEZS of LLIG is bigger at L3-4 (91.75� vs
90.81�) and smaller at L4-5 and L5-S1(84.63� vs 85.85� and 73.27� vs 75.01�). The SSR (L4) show highest predic-
tive accuracy (83%) when every parameter was fed to LDA classifier to generate a univariate model. All parameters rep-
resent a statistically significant difference (P < 0.05) between LLSG and LLIG. The model including LA, APR (L5-S1), IH
(L4-5), SSR (L5), AUEZS (L5) has highest predictive accuracy of 88.2%. The sensitivity, specificity, and Kappa value
are 88.7%, 93.1%, and 0.77.

Conclusion: The predictive model has good classification performance and can be an auxiliary tool for clinicians to
evaluate lumbar instability in preoperative patients with severe pain aggravated by lumbar movement.
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Introduction

Lumbar spine instability is defined as abnormal lumbar
motion during physiological loading of the spine1–4.

Evaluating spinal instability is necessary to decide whether
fusion is needed. Compared with decompression surgery
alone, lumbar fusion surgery tends to have greater blood
loss, longer hospital stay, and higher costs. Thus, patients
should be adequately assessed for lumbar spine instability
to avoid subjecting them to unnecessary fusion surgery5.

Currently, there is no consensus regarding the criteria
for diagnosing lower spine instability. Various imaging
modalities have been used, including magnetic resonance
imaging (MRI), CT, and FER. The most common method to
assess lumbar instability is FER6,7. By performing FER in
patients, the extent of vertebral translation and degree of
angular displacement can be obtained, which can be used to
determine the presence of abnormal segment movement.
Although FER can reflect abnormal segment movement
directly, this method is very difficult to apply in those
patients who have severe back and leg pain aggravated by
lumbar movement, and such patients are not rare in spine
surgery departments. Thus, a comfortable and accurate
method of assessing lumbar instability is necessary.

In the last decade, we have seen an increase in the
number of articles devoted to the development of predictive
models coming from the machine-learning community8.
These models use a predefined set of relevant features but
combine their values according to different classification par-
adigms, which, moreover, can automatically redefine the pre-
dictive models built when adding new records to the
database. The classifiers usually obtain very good perfor-
mance results after validation and are used as decision-
support systems for clinician.

Lumbar instability was defined as a loss of lumbar stiff-
ness, and such loss was related to damage to the restraining
structures4. Panjabi et al. developed a checklist for the diag-
nosis of lumbar spine instability9. In this checklist, the ante-
rior and posterior structure destroyed or unable to function
were included, which indicated that lumbar spine instability
is closely related to the anatomical changes. Leone et al.
maintain that spinal degenerative changes including disc
degeneration, facet joint osteoarthritis, and ligament degen-
eration play a role in the development of lumbar spine insta-
bility and degenerative spondylolisthesis10. We measured the

radiological parameters which are related to the above ana-
tomical changes and use them to build a predictive model.

Compared with MRI, we recognize that CT scans have
the added advantage of three-dimensional visualization of
the spinal instability assessment and a higher resolution for
bony details11. The CT scan of the lumbar spine has been
taken in the preoperative routine and the patient does not
need to accept extra radiation exposure. Thus, we measured
radiological parameters on three-dimensional computed
tomography (3D-CT).

The purposes of this study were: (i) to explore the dif-
ference of lumbar anatomical parameters between LLSG and
LLIG; (ii) to build a predictive model for preoperative
patients; and (iii) to verify the accuracy of this predictive
model and consistency between FER and predictive model.

Methods and Materials

This is a retrospective case–control pilot study. Before the
commencement of the study, the approval of the Ethics

Committee of First Hospital of Jilin University was sought,
and written informed consent was obtained from all subjects.

Inclusion and Exclusion Criteria
LLIG inclusion criteria included: (i) all participants of LLIG
were recruited over a 2-year period (2015–2017) from the
patients who accepted lumbar surgery at the First Hospital
of Jilin University patients; (ii) the preoperative patients were
diagnosed as lumbar disc herniation with severe nerve root
pain; and (iii) imaging performance: sagittal translation
exceeds 4 mm or sagittal plane rotation exceeds cut-off (15�

at L1–L2, L2–L3, and L3–L4; 20� at L4–L5; and 25� at L5–
S1) on lumbar FER.

LLSG inclusion criteria included: (i) the outpatients
who underwent lumbar spine CT and FER at the First Hos-
pital of Jilin University from 2015 to 2017; (ii) the symptom
of patients is low back pain without the being caused by
lumbar nerve root compression; (iii) imaging performance:
sagittal translation under 4 mm and sagittal plane rotation
under cut-off (15� at L1–L2, L2–L3, and L3–L4; 20� at L4–
L5; and 25� at L5–S1) on lumbar FER; and (iv) and the
radiological report showed no lumbar abnormality.

Exclusion criteria included: (i) participants with endo-
crine system diseases (diabetes mellitus, hyperthyroidism, hypo-
thyroidism, Hashimotoʼs thyroiditis, hyperparathyroidism, and
hypoparathyroidism); (ii) any history of spinal trauma (verte-
bral compression fractures and vertebral burst fractures);
(iii) previous history of spinal surgery (lumbar decompression
surgery, lumbar spinal fusion surgery, and other surgical proce-
dures that may affect the anatomy of the lumbar spine);
(iv) suspected findings of spinal malignancies (abdominal neo-
plasms and spinal tumor); (v) any history of inflammatory spi-
nal diseases (spinal brucellosis infection, spinal tuberculosis,
intervertebral infection, and vertebral infection); and (vi) con-
genital and developmental anomalies (idiopathic scoliosis and
congenital spine structure abnormality).

TABLE 1 Demographic information of the 199 observations

LLSG LLIG P-value

Numbers 98 101
Gender 48 (male) 50 (male) 0.863

50 (female) 51 (female)
Age (years) 43.5 ± 8.6 45.6 ± 6.8 0.083
Height (cm) 170 ± 23 172 ± 31 0.190
Weight (kg) 72.4 ± 16 76.7 ± 23 0.157
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Demographic Characteristic
Each patient’s relevant medical history was recorded as well
as patient details including age, sex, height, and weight. The
demographic characteristics of these subjects are listed in
Table 1. Lumbar instability was present on different seg-
ments in LLIG with the level L3-4 in three, L4-5 in 69, and
L5-S1 in 29 cases.

Measurement Methods and Parameters
The sagittal, coronal, and axial view of CT scan was
reconstructed in workstation (Advantage Workstation 4.3;
GE Medical Systems). The reconstructed 3D-CT models
could be rotated, cut, clipped, and measured. Six parameters
were measured on 3D-CT model. Measurements were made
independently by two blinded authors and averaged to
ensure accuracy, and inter-observer reliability was excellent
(Pearson’s P = 0.821).

The definition and clinical significance of measured
parameters were listed below:

Lordosis Angle (LA)
Definition. The lordosis angle of lumbar spine.

Measurement Method. On central sagittal plane, we set lower
right point of T12 as A point, upper right point of S1 as B
point, and midpoint of L3 front edge as O point. ∠AOB is
LA (Fig. 1).

Clinical Significance. This parameter is an indicator of height
change of whole lower lumbar spine. The bigger this angle,
the more the disc height is decreased.

Intervertebral Height (IH)
Definition. The height of intervertebral space between upper
and lower endplate.

Measurement Method. The distance from midpoint of lower
endplate of superior vertebra to midpoint of upper endplate
of inferior vertebra on central sagittal plane of 3D-
CT (Fig. 2).

Clinical Significance. Decreased intervertebral height is one
of most important factors which lead to lower lumbar
instability.

Ratio of Anterior Height to Posterior Height (APR)
Definition. The ratio of anterior IH to posterior IH (Fig. 3).

Measurement Method. On central sagittal plane of 3D-CT,
we define the distance from anterior edge of lower endplate
of superior vertebra to anterior edge of upper endplate of
inferior vertebra as anterior IH. Similarly, we measured pos-
terior IH by using the same method.

Clinical Significance. When the height of anterior and poste-
rior intervertebral spaces decrease asymmetrically, the sagit-
tal rotation could happen. This parameter can be used to
evaluate the degree of vertebral rotation which may lead to
vertebral abnormal movement.

Angle Between Endplate and Anterior Edge of Vertebral
Body (AEPVa)
Definition. The angle between upper endplate of inferior ver-
tebra and anterior edge of superior vertebra (Fig. 4).

Measurement Method. On central sagittal plane of 3D-CT,
we determined angle between upper endplate of inferior ver-
tebra and anterior edge of superior vertebra.

Clinical Significance. This parameter was used to evaluate the
degree of sagittal vertebral rotation based on inferior verte-
bra. This situation is related to the reduction of disc height
and laxity of the ligament.

Coordinate System
A standard coordinate system was established on 3D-CT
model. The midpoint of the sacrum’s anterior edge was set
as point O (Fig. 5).

Sagittal Slip Ratio (SSR)
Definition. The ratio of distance from anterior point of upper
endplate to the length of upper endplate.Fig 1 The lordosis angle (LA) measured on sagittal plane.
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Measurement Method. On the sagittal plane including z-axis,
the distance from the anterior edge of upper endplate to z-
axis was defined as DAUEZ. Similarly, the distance from the
posterior edge of upper endplate to z-axis was defined as
DPUEZ. SSR = DAUEZ/ (DAUEZ + DPUEZ) (Fig. 6).

Clinical Significance. This parameter is an indicator of the
degree of sagittal slip. Measurement in this manner ensured
adjustment for any differences in magnification, by standard-
izing against the length of upper endplate.

Angle Between the Upper Endplate and Z-Axis on Sagittal
Plane (AUEZS)
Definition. The angle between right half upper endplate and
z-axis of coordinate system (Fig. 7)

Fig 2 The intervertebral height (IH) measured on sagittal plane.

Fig 3 The anterior height and posterior height of disk measured on

sagittal plane.

Fig 4 The AEPVa measured on sagittal plane.

Fig 5 Three-dimensional coordinate system. O, midpoint of the front

edge of sacrum. The x-, y-, and z-axes are vertical to each other as

intersecting lines of the sagittal, horizontal, and coronal planes.
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Measurement Method. On central coronal plane of 3D-CT,
we determined the angle between right half upper endplate
and z-axis of coordinate system.

Clinical Significance. This parameter is an indicator of sagit-
tal imbalance caused by decrease in disc height and acquired
collapse.

Data Analysis
Linear discriminant analysis (LDA) develops a discriminant cri-
terion and then finds an optimal discriminant function to effi-
ciently classify each participant into one of the groups. Because
of its simplicity and effectiveness, it has been widely used in
many fields. To avoid the curse of dimensionality (i.e. as dimen-
sions increase, the volume of space increases exponentially and
the available data becomes sparse), a parameter selection
method called stepwise discriminant analysis was used. By
applying stepwise discriminant analysis, the best subset of
parameters can be determined. We then fed the selected param-
eter to the linear discriminant classifier. The predictive model of
lower lumbar instability was created. To measure the perfor-
mance of the classification model, we used sensitivity, specificity,
and predictive accuracy, which were computed based on the
leave-one-out cross-validation (LOOCV).

The commonly used measure of a model’s quality is pre-
dictive accuracy. The predictive accuracy is usually estimated
from all the available samples, which are split into training and

testing sets. We understand that the training and the test sets
should be of sufficient size and independent in character so that
it can be used to generate a reliable estimate of predictive accu-
racy. We had two important issues to consider when we chose
a method to estimate predictive accuracy. There was concern
that our model will not be very robust because the training set
was small and, consequently, we may not be able to generalize
the findings to other independent datasets. However, the confi-
dence in the estimated predictive accuracy will be low because
our test set was also small. We therefore chose a method to
specifically deal with the limitations in our data. In our study,
we used LOOCV to get over the limitation of data. This
method is designed to test predictive accuracy within a single
small dataset. It uses a single observation from the original
sample as the validation data and the remaining observations
are the training data. Thus, we used (n − 1) samples for train-
ing and evaluated the remaining sample. This is repeated so
that each observation in the sample is used once as the valida-
tion data. This is a well-accepted approach but is used less
often because it has large computational requirements. There
are many examples of LOOCV in the medical field12, 13.

In this study, we aimed to build a predictive model based
on the data of 199 observations. The parameter data of 199
observations were input into the SPSS. Every parameter was
fed to LDA classifier to generate an univariate model. Then we
get the average, standard deviation, P-value, and predictive
accuracy based on LOOCV of every parameter by SPSS.
Finally, we fed the whole parameters into LDA classifier to cre-
ate a multivariate predictive model. The sensitivity, specificity,

Fig 6 The DAUEZ and DPUEZ measured on sagittal plane including

z-axis.

Fig 7 The AUEZS measured on sagittal plane including z-axis.
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predictive accuracy, and Kappa value was calculated. The
whole process of LDA and LOOCV was completed by SPSS.

Results

The Demographic Characteristic
Five demographic parameters were collected including num-
ber of patients in each group, gender, age, height, and
weight. These parameters were compared between the two
groups by SPSS software. The mean value, standard devia-
tion, and P value calculated by t test were listed below: Age
(43.5 ± 8.6 vs 45.6 ± 6.8, P value = 0.083), gender (48 male
and 50 female vs 50 male and 51 female, P value =0.863),
height (170 ± 23 cm vs 172 ± 31 cm, P value = 0.190) and
weight (72.4 ± 16 kg vs 76.7 ± 23kg, P value = 0.157).

P values of all parameters were higher than 0.05, which
indicates no significant difference in all parameters studied.

Lumbar Anatomical Parameters Change with Lower
Lumbar Instability
To build a predictive model for evaluating the lower lumbar
instability, we collected CT data of 199 patients and mea-
sured six radiological parameters on reconstructed 3D-CT
images. The mean value, standard deviation, P value calcu-
lated by t test, the accuracy calculated by LOOCV and Kappa
value were listed in Table 2. As demonstrated in Table 2,
P values of all parameters were less than 0.05, which indi-
cates significant differences in all parameters studied between
two groups.

Compared with LLSG, the LA of LLIG decreased by
3.49� (126.54� ± 6.34� vs 130.3� ± 6.10�). The difference
indicates that the lordosis of lumbar spine increases when
lower lumbar instability occurs.

The IH was measured at L3-4, L4-5, and L5-S1 levels.
According to Table 2, the average IH of LLIG is 9.19 ± 2.09
mm, 8.35 ± 1.99 mm, and 8.40 ± 2.38 mm. The average IH
of LLSG is 10.42 ± 1.79 mm, 10.01 ± 1.94 mm, and
9.11 ± 2.08 mm. Compared with LLSG, the IH of LLIG is
lower, especially at L4-5 level. It suggests that the reduction
of intervertebral height may be related to the occurrence of
lumbar instability.

Moreover, APR and AEPVa were measured on 3D-CT
at L3-4, L4-5, and L5-S1 levels. The APR of LLIG is higher
than those of LLSG at L3-4, L4-5, and L5-S1 levels (1.97 vs
1.81, 2.40 vs 1.97, and 2.69 vs 2.26). The AEPVa of LLIG is
77.96� ± 3.57�, 74.44� ± 3.38�, and 67.73� ± 4.56�. LLSG has
smaller AEPVa at L3-4,L4-5, and L5-S1 levels (78.86� ±
3.06�, 73.18� ± 3.78�and 67.19� ± 4.34�). Compared with
LLSG, AEPVa increase by 1.26� and 0.54� at L3-4 and L5-S1
levels, which indicates the occurrence of vertebral rotation.
These results show that lower lumbar instability may be
related to vertebral rotation caused by reduction of disc
height and laxity of the ligament.

As demonstrated in Table 2, we measured SSR on
established coordinate system. The SSR of LLIG is 0.54, 0.57,
and 0.59. The SSR of LLSG is 0.51, 0.46, and 0.47. Compared
with LLSG, SSR of LLIG increased by 0.03, 0.11, and 0.12.
The result indicates that lower lumbar instability may hap-
pen with more severe sagittal slip.

According to Table 2, AUEZS of LLIG is 91.75�,
84.63�, and 73.27� at L3-4, L4-5, and L5-S1 levels. The
AUEZS of LLSG is 90.81�, 85.85�, and 75.01� at L3-4, L4-5,
and L5-S1 levels. We can know that AUEZS of LLIG is big-
ger at L3-4 (91.75� vs 90.81�) and decreased by 1.22� and
1.74� at L4-5 and L5-S1 (84.63� vs 85.85�and 73.27� vs
75.01�) compared with LLSG.

TABLE 2 The average, standard deviation, P-value, classified accuracy, and Kappa value of univariate model calculated by SPSS

LLSG LLIG
P LOOCV (%) Kappa value

Means SD Means SD

LA 130.03 6.10 126.54 6.34 0.001 82.3 0.64
APR (L3-4) 1.81 0.56 1.97 0.62 0.016 54.5 0.32
APR (L4-5) 1.97 0.54 2.40 1.84 0.002 57.9 0.29
APR (L5-S1) 2.26 0.68 2.69 0.78 0.037 62.8 0.45
IH (L3-4) 10.42 1.79 9.19 2.09 0.046 80.7 0.61
IH (L4-5) 10.01 1.94 8.35 1.99 0.003 81.4 0.64
IH (L5-S1) 9.11 2.08 8.40 2.38 0.034 82.2 0.59
AEPVa (L3-4) 78.86 3.06 77.96 3.57 0.002 60.0 0.38
AEPVa (L4-5) 73.18 3.78 74.44 3.38 0.009 59.3 0.41
AEPVa (L5-S1) 67.19 4.34 67.73 4.56 0.004 54.5 0.46
SSR (L3) 0.51 0.64 0.54 0.71 0.048 80.2 0.63
SSR (L4) 0.46 0.52 0.57 0.43 0.002 83.0 0.65
SSR (L5) 0.47 0.33 0.59 0.28 0.004 81.2 0.61
AUEZS (L3) 90.81 5.06 91.75 6.26 0.036 57.2 0.37
AUEZS (L4) 85.85 5.23 84.63 5.86 0.007 57.2 0.34
AUEZS (L5) 75.01 5.90 73.27 5.96 0.009 57.9 0.31

LOOCV, leave-one-out cross validation; SD, standard deviation.
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The Results of Predictive Accuracy and Kappa Value of
Univariate Models
Every parameter was fed to LDA classifier to generate an
univariate model. The accuracy of univariate model calcu-
lated by LOOCV is presented comparatively in Table 2. As
demonstrated in Table 2, seven parameters have predictive
accuracy higher than 80%, including LA, IH (L3-4), IH (L4-
5), IH (L5-S1), SSR (L3), SSR (L4), and SSR (L5). The SSR
(L4) show the highest predictive accuracy (83%), which indi-
cates it is a very useful indicator to diagnose the lower lum-
bar instability. Also, the predictive accuracy of other
parameters is lower than or equal to 62.8%, which indicates
these parameters have poor predictive performance. As dem-
onstrated in Table 2, the Kappa value of LA, IH (L3-4), IH
(L4-5), SSR (L3), SSR (L4), and SSR (L5) was higher than
0.6, which indicates that these parameters have satisfactory
consistency.

Predictive Accuracy, Sensitivity, Specificity, and Kappa
Value of Multivariate Predictive Model
We used machine-learning methods to identify subsets of
radiological parameters with the highest predictive accuracy.
The LDA was applied to all possible subsets derived from the
16 radiological parameters. The subset consisting of LA, APR
(L5-S1), IH (L4-5), SSR (L5), and AUEZS (L5) has highest
predictive accuracy of 88.2%. This subset was defined as set A.

The origin data was tested by a predictive model created
by set A. The result was listed in Table 3. The sensitivity and
specificity are 88.7% and 93.1%. The Kappa value was used to
evaluate the consistency between FER and predictive model. The
Kappa value is 0.77, which indicates a good level of consistency.

The Result of Subgroup Analyses
We collected five demographic parameters – number of
patients in each group, gender, age, height, and weight. To
the best of our knowledge, previous studies have revealed the
existence of lumbar anatomical difference between males and
females. We assumed that the anatomical difference related
to the gender may aggravate when lumbar instability
occurred. Then, we carried out subgroup analyses to verify
this hypothesis.

According to the gender, the LLIG is divided into two
group: LLIG (male) 48 and LLIG (female) 50. Similarly, the
LLSG is also divided into LLSG (male) 50 and LLSG (female)
51. Then, we perform sexual subgroup analysis. The results
of separate analyses for females and males are presented in
the Tables 4–7. As demonstrated in Tables 4, 5, the male
subgroup analysis gets similar results as the analysis without

considering gender. The accuracy of multivariate predictive
model created by stepwise discriminant analysis is 88.9% (vs
88.2%). The sensitivity, specificity, and Kappa value are
89.5% (vs 88.7%), 90.0% (vs 93.1%), and 0.78 (vs 0.77).

And the result of female subgroup analysis is presented
in Tables 6, 7. The accuracy of multivariate predictive model
created by female subgroup analysis is 88.1% (vs 88.2%). The
sensitivity, specificity, and Kappa value are 88.0% (vs 88.7%),
94.1% (vs 93.1%), and 0.75 (vs 0.77). The result shows there
is no significant difference between whole population analy-
sis and female subgroup analysis.

In conclusion, it is observed that the results of sub-
group analyses (for gender) are consistent with the results of
whole population analysis.

Discussion

Current Research Status of the Evaluation of Lower
Lumbar Instability
Since the concept of lumbar instability was introduced in the
1980s, the definitions of lumbar instability have always been
controversial. However, a reasonable definition has been pro-
posed by Pope and Panjabi4, and Frymoyer and Selby2.They
advocated a biomechanical approach and defined instability
as a loss-of-motion segment stiffness, such that force applica-
tion to that motion segment produces abnormal gross move-
ments compared to that of a normal spine. This abnormal
movement can be explained by the damage to restraining
structures, such as the facet joints, discs, ligaments, and mus-
cles; if these structures are damaged or became lax, altered
equilibrium and thus instability occur4. When nerve symp-
tom arises from abnormal movement of the spine, decom-
pression often cannot be adequately achieved unless the
spine is stabilized and fused.

The most common diagnostic method is FER, which
evaluates lower lumbar instability using angular change and
vertebral displacement14. Although FER emits low radiation
and is inexpensive, limited range of motion caused by pain-
related fear misguides the diagnosis and surgical decision
making. Many clinical doctors realize this problem and make
efforts to improve it. For example, Hey et al. improved the
FER using the slump sitting posture to replace the standing
posture in flexion. The new method of slump sitting dynamic
radiography was shown to have higher efficacy than FER in
measuring the angular change. However, this method still
requires patients to endure pain in executing complete flex-
ion and extension movements as much as possible. It is still
very painful and difficult for some pain-sensitive patients.

The Advantage of Predictive Model on Evaluation of
Lower Lumbar Instability
In this study, we innovatively used the method of esta-
blishing a coordinate system to assess the slip degree of the
vertebral body. Since the sacrum is connected to the pelvis,
its position can barely change. Thus, we set a standard coor-
dinate system, with the midpoint of the sacrum’s front edge

TABLE 3 Test results of the prediction model

LLIG LLSG

Positive 86 7
Negative 12 94
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as point O. In this system, SSR show the degree of lumbar
vertebral sagittal displacement. The anterolisthesis usually
happens along with severe disc degeneration, facet joint

osteoarthritis, and ligament degeneration. Similarly, we can
determine the degree of lumbar vertebral rotation from
AUEZS.

Moreover, we analyzed six radiological parameters
acquired from 3D-CT, all of which had obvious statistical
differences (P < 0.05). The univariate model (LA, SSR, and
IH) has predictive accuracy which is higher than 80%. The
predictive accuracy of a univariate model reached up to 80%,
indicating that the parameter has significant correlation with
lumbar spine instability. Furthermore, the three parameters
mainly reflect the sagittal displacement and intervertebral

TABLE 4 The average, standard deviation, P-value, classified accuracy, and Kappa value of male subgroup analysis calculated by SPSS

LLSG (male) LLIG (male)
P LOOCV (%) Kappa value

Means SD Means SD

LA 131.04 5.91 127.56 6.54 0.011 83.3 0.66
APR (L3-4) 1.83 0.61 1.98 0.72 0.035 56.5 0.37
APR (L4-5) 2.01 0.84 2.73 1.85 0.001 58.9 0.39
APR (L5-S1) 2.28 1.52 2.74 1.78 0.027 61.7 0.41
IH (L3-4) 10.46 3.79 9.21 4.09 0.016 80.9 0.58
IH (L4-5) 10.04 1.13 8.39 1.36 0.001 84.4 0.67
IH (L5-S1) 9.17 2.65 8.42 3.38 0.048 82.1 0.58
AEPVa (L3-4) 78.96 3.26 78.06 4.57 0.001 61.7 0.48
AEPVa (L4-5) 73.68 3.98 74.94 5.38 0.019 59.9 0.40
AEPVa (L5-S1) 67.59 3.89 67.96 5.57 0.014 57.5 0.46
SSR (L3) 0.52 1.23 0.54 1.71 0.028 80.7 0.68
SSR (L4) 0.45 1.52 0.59 2.43 0.032 82.0 0.63
SSR (L5) 0.49 1.33 0.62 0.98 0.001 81.7 0.62
AUEZS (L3) 90.99 4.06 91.83 4.26 0.002 58.2 0.41
AUEZS (L4) 85.96 2.23 84.78 5.73 0.017 57.5 0.37
AUEZS (L5) 75.12 3.18 73.64 2.96 0.003 58.9 0.34

LOOCV, leave-one-out cross validation; SD, standard deviation.

TABLE 6 The average, standard deviation, P-value, classified accuracy, and Kappa value of female subgroup analysis calculated by SPSS

LLSG (Female) LLIG (Female)
P LOOCV (%) Kappa value

Means SD Means SD

LA 129.02 6.83 125.54 7.54 0.021 80.3 0.63
APR (L3-4) 1.79 0.98 1.96 1.72 0.016 57.5 0.38
APR (L4-5) 1.93 1.84 2.08 3.85 0.007 58.2 0.39
APR (L5-S1) 2.24 2.86 2.64 1.49 0.041 64.8 0.43
IH (L3-4) 10.38 1.89 9.17 2.06 0.036 81.7 0.62
IH (L4-5) 10.04 4.52 8.31 3.95 0.001 81.9 0.65
IH (L5-S1) 9.05 2.78 8.38 4.38 0.004 81.1 0.62
AEPVa (L3-4) 78.76 3.96 78.86 4.57 0.009 60.0 0.45
AEPVa (L4-5) 72.70 5.78 73.94 4.38 0.017 59.4 0.42
AEPVa (L5-S1) 66.80 6.81 67.50 5.56 0.005 54.9 0.45
SSR (L3) 0.50 2.67 0.54 2.71 0.018 80.6 0.64
SSR (L4) 0.47 1.52 0.55 2.43 0.022 82.8 0.66
SSR (L5) 0.45 1.33 0.56 2.28 0.014 81.8 0.62
AUEZS (L3) 90.63 5.16 91.67 7.26 0.018 57.4 0.39
AUEZS (L4) 85.74 4.23 84.48 5.17 0.003 56.2 0.33
AUEZS (L5) 74.90 3.90 72.90 4.83 0.004 57.8 0.32

LOOCV: leave-one-out cross validation; SD, standard deviation.

TABLE 5 Test results of prediction model of male subgroup
analysis

LLIG (male) LLSG (male)

Positive 43 5
Negative 5 45
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disc height change of the vertebral body. Several biomechani-
cal and clinical studies have reported the association of disc
degeneration with segmental instability2, 9, 10, 15, 16. They
reported that an anterior translation of 3 mm or greater was
positively associated with disc degeneration and facet joint
osteoarthritis. Thus, our result is consistent with that of a
previous study. The multivariate predictive model tested
using original data demonstrated sensitivity and specificity of
88.7% and 93.1%, respectively. This shows that our

predictive model has good classification performance. The
Kappa value is 0.77, which indicates a good level of
consistency.

Limitation of the Study
Nevertheless, our proposed method does have some limita-
tions. Firstly, this is a retrospective study, and a prospective
study should be performed to exclude the effect of other fac-
tors. Secondly, the mechanism by which lumbar anatomical
parameters change wasn’t studied in this research. It is our
goal to explore the mechanism in the future.

Conclusion
The predictive model has good classification performance
and can be an auxiliary tool for clinicians to evaluate lumbar
instability.
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