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Abstract: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein overexpressed
in pancreatic cancer (PC). ANXA1 expression has been shown to take part in a wide variety of
cancer biology, including carcinogenesis, cell proliferation, invasion, apoptosis, and metastasis, in
addition to the initially identified anti-inflammatory effect in experimental settings. We hypothesized
that ANXA1 expression is associated with cell proliferation and survival in PC patients. To test
this hypothesis, we analyzed 239 PC patients in The Cancer Genome Atlas (TCGA) and GSE57495
cohorts. ANXA1 expression correlated with epithelial–mesenchymal transition (EMT) but weakly
with angiogenesis in PC patients. ANXA1-high PC was significantly associated with a high fraction
of fibroblasts and keratinocytes in the tumor microenvironment. ANXA1 high PC enriched multiple
malignant gene sets, including hypoxia, tumor necrosis factor (TNF)-α signaling via nuclear factor-
kappa B (NF-kB), and MTORC1, as well as apoptosis, protein secretion, glycolysis, and the androgen
response gene sets consistently in both cohorts. ANXA1 expression was associated with TP53
mutation alone but associated with all KRAS, p53, E2F, and transforming growth factor (TGF)-β
signaling pathways and also associated with homologous recombination deficiency in the TCGA
cohort. ANXA1 high PC was associated with a high infiltration of T-helper type 2 cells in the
TME, with advanced histological grade and MKI67 expression, as well as with a worse prognosis
regardless of the grade. ANXA1 expression correlated with a sensitivity to gemcitabine, doxorubicin,
and 5-fluorouracil in PC cell lines. In conclusion, ANXA1 expression is associated with EMT, cell
proliferation, survival, and the drug response in PC.

Keywords: ANXA1; biomarker; gene set; GSEA; metastasis; pancreatic cancer; survival; treatment
response; tumor microenvironment
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1. Introduction

Pancreatic cancer (PC) ranks as the fourth most common cause of cancer-related deaths
worldwide. Its five-year overall survival is less than 5% and is regarded as one of the most
devastating cancer diagnoses [1]. Numerous studies over the past decades have targeted
PC biology and uncovered mutations in KRAS, p53, cyclin-dependent kinase inhibitor 2A
(CDKN2A), and SMAD4 and their signaling pathways. These signaling pathways and the
associated aberrant activation of genes play critical roles in PC progression [2]. However,
the clinical relevance of these basic science findings remains vague due to a lack of studies
using large patient cohorts. Recent advances in the high-volume comprehensive genomic
sequencing of human tumor samples can help link the PC underlying mechanisms with
clinical practice. Analyses using algorithms on comprehensive transcriptomes enable a
deeper understanding of the clinical relevance of various signaling pathways and im-
mune status within human cancers. For example, the Gene Set Variation Analysis (GSVA)
allows us to understand multiple signaling pathways’ biological activity [3]. The xCell
algorithm permits us to measure the fractions of 64 infiltrating cell types in the tumor
microenvironment (TME) [4]. This approach has already yielded several candidates for
prognostic biomarkers. Yamazaki et al. reported that epithelial–mesenchymal transition
(EMT) activity in PC is a promising prognostic biomarker. Our group reported that high
activity of the G2M checkpoint pathway [5] and lympho-vascular invasion [6] is associated
with worse survival. In contrast, the abundance of mature blood vessels [7] and fibroblasts
in PC [8] is associated with better survival. The transcriptome analysis may also uncover
potential therapeutic targets for PC.

Annexin A1 (ANXA1, also known as lipocortin I) is a member of the annexin fam-
ily of calcium-dependent phospholipid-binding proteins located on the cytosolic face of
the plasma membrane and inhibits phospholipase A2 [9,10]. ANXA1 preserves the cy-
toskeleton integrity and plays a significant role in the malignant phenotypes of cancer
cells in vitro [11]. ANXA1 is known to play a wide variety of functions in cancer biology,
including carcinogenesis, cell proliferation, apoptosis, invasion, and metastasis, in addition
to an anti-inflammatory effect [12,13]. ANXA1 regulates transforming growth factor (TGF)-
β signaling and promotes epithelial–mesenchymal transition (EMT) [14]. We previously
reported that the high expression of ANXA1 is significantly associated with inflammation,
angiogenesis, and mast cell infiltration in breast cancer using in silico analyses [15]. Some
suggest ANXA1 is an attractive prognostic and predictive marker of PC due to its role
in metastasis based upon in vivo experiments [11]. In addition to its relationship with
cancer cells, ANXA1 expression is also associated with multiple cells in the TME, such as
fibroblasts, and, with angiogenesis, the generation of new vessels and metastasis [16,17].
Novizio et al. reported that the ANXA1 extracellular vesicle (EV) complex participates in
tumor cells–stroma intercommunication as a vehicle during PC progression, suggesting
that ANXA1 may have potential prognostic and diagnostic roles [18].

Here, we hypothesized that ANXA1 expression is associated with cell proliferation
and survival in PC and tested this hypothesis using multiple large patient cohorts.

2. Results
2.1. Annexin A1 (ANXA1) Expression Correlates with Epithelial–Mesenchymal Transition (EMT)
but Not with Angiogenesis or Mature Vessel Formation in Pancreatic Cancer (PC)

Since ANXA1 expression was linked to EMT in multiple cancer types [19–21], we
first investigated the relationship between ANXA1 expression and EMT in PC. The EMT
pathway activity was measured using the gene set variation analysis (GSVA) algorithm,
following the method we previously reported [5,22–24]. Concordantly, we found that
ANXA1 expression significantly correlated with the EMT pathway score in PC consistently
in both The Cancer Genome Atlas (TCGA) and GSE57495 cohorts (Figure 1A; Spearman’s
rank correlations (r) = 0.453 and 0.536, respectively; all p < 0.01). The low and high expres-
sion of ANXA1 was determined by the median within each cohort (Figure S1). Further,
EMT-associated genes, CDH1 (Cadherin 1), CDH2, SNAI1 (Snail Family Transcriptional
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Repressor 1), SNAI2, and TWIST1 (twist family BHLH transcription factor 1) were all
elevated in ANXA1 high PC consistently in both cohorts, except for CDH1 in the GSE57495
cohort. We found that other EMT-associated genes, including FN1 (Fibronectin 1), VIM
(Vimentin), and TGFBI (transforming growth factor, beta-induced), were also significantly
elevated in ANXA1 high PC in both cohorts (Figure S2). Further, we found that almost all
of the expressions of genes that constitute the EMT pathway were significantly correlated
with ANXA1 expression (Table S1). We previously published that ANXA1 expression
was associated with angiogenesis in breast cancer [15] and that the abundance of mature
blood vessels was associated with better survival [7]; thus, it was of interest whether this
was the case in PC. We found that ANXA1 expression was weakly correlated with the
angiogenesis score measured by the GSVA algorithm consistently in both the TCGA and
GSE57495 cohorts (Figure 1C). There was no association between the ANXA1 expression
and angiogenesis-related cells such as endothelial cells, microvascular (mv), and lymphatic
(ly) endothelial cells, except for mv endothelial cells in the GSE57495 cohort (Figure 1D).
Generally, there was no association between ANXA1 expression and mature blood vessel-
related gene expressions, such as PECAM1 and S1PR1, except for PECAM1 in the TCGA
cohort (Figure 1E). However, ANXA1 high PC was significantly associated with a high
fraction of fibroblasts and keratinocytes in both cohorts (Figure 1F). These results show
that ANXA1 expression is associated with EMT but only weakly with angiogenesis.
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Figure 1. Association of Annexin A1 (ANXA1) expression with epithelial–mesenchymal transition 
(EMT), angiogenesis, and stromal cells in The Cancer Genome Atlas (TCGA) and GSE57495 cohorts. 
(A) Scatter plots of ANXA1 expression with the EMT score. (B) Boxplots of EMT-associated gene 
expression: cadherin1 (CDH1) and CDH2, snail family transcriptional repressor 1 (SNAI1) and 
SNAI2, and twist-related protein 1 (TWIST1) by ANXA1 low and ALXA1 high pancreatic cancer 
(PC). (C) Scatter plots of ANXA1 expression with the angiogenesis score. (D) Boxplots of infiltrating 
fraction of endothelial cells, microvascular endothelial (mvE) cells, and lymphatic endothelial (lyE) 
cells by ANXA1 low and ANXA1 high PC. (E) Boxplots of angiogenesis-associated genes expression: 
platelet and endothelial cell adhesion molecule 1 (PECAM1) and sphingosine-1-phosphate receptor 
1 (S1PR1) by ANXA1 low and ANXA1 high PC. (F) Boxplots of the infiltrating fraction of fibroblasts 
and keratinocytes by ANXA1 low and ANXA1 high PC. Median cut-off within each cohort was used 
to divide them into ANXA1 low and ANXA1 high groups (n = 88, respectively, in the TCGA and n 

Figure 1. Cont.



Cells 2021, 10, 653 4 of 15

Cells 2021, 10, 653 4 of 16 
 

 
Figure 1. Association of Annexin A1 (ANXA1) expression with epithelial–mesenchymal transition 
(EMT), angiogenesis, and stromal cells in The Cancer Genome Atlas (TCGA) and GSE57495 cohorts. 
(A) Scatter plots of ANXA1 expression with the EMT score. (B) Boxplots of EMT-associated gene 
expression: cadherin1 (CDH1) and CDH2, snail family transcriptional repressor 1 (SNAI1) and 
SNAI2, and twist-related protein 1 (TWIST1) by ANXA1 low and ALXA1 high pancreatic cancer 
(PC). (C) Scatter plots of ANXA1 expression with the angiogenesis score. (D) Boxplots of infiltrating 
fraction of endothelial cells, microvascular endothelial (mvE) cells, and lymphatic endothelial (lyE) 
cells by ANXA1 low and ANXA1 high PC. (E) Boxplots of angiogenesis-associated genes expression: 
platelet and endothelial cell adhesion molecule 1 (PECAM1) and sphingosine-1-phosphate receptor 
1 (S1PR1) by ANXA1 low and ANXA1 high PC. (F) Boxplots of the infiltrating fraction of fibroblasts 
and keratinocytes by ANXA1 low and ANXA1 high PC. Median cut-off within each cohort was used 
to divide them into ANXA1 low and ANXA1 high groups (n = 88, respectively, in the TCGA and n 

Figure 1. Association of Annexin A1 (ANXA1) expression with epithelial–mesenchymal transition
(EMT), angiogenesis, and stromal cells in The Cancer Genome Atlas (TCGA) and GSE57495 cohorts.
(A) Scatter plots of ANXA1 expression with the EMT score. (B) Boxplots of EMT-associated gene
expression: cadherin1 (CDH1) and CDH2, snail family transcriptional repressor 1 (SNAI1) and
SNAI2, and twist-related protein 1 (TWIST1) by ANXA1 low and ALXA1 high pancreatic cancer
(PC). (C) Scatter plots of ANXA1 expression with the angiogenesis score. (D) Boxplots of infiltrating
fraction of endothelial cells, microvascular endothelial (mvE) cells, and lymphatic endothelial (lyE)
cells by ANXA1 low and ANXA1 high PC. (E) Boxplots of angiogenesis-associated genes expression:
platelet and endothelial cell adhesion molecule 1 (PECAM1) and sphingosine-1-phosphate receptor
1 (S1PR1) by ANXA1 low and ANXA1 high PC. (F) Boxplots of the infiltrating fraction of fibroblasts
and keratinocytes by ANXA1 low and ANXA1 high PC. Median cut-off within each cohort was used
to divide them into ANXA1 low and ANXA1 high groups (n = 88, respectively, in the TCGA and
n = 31 and 32, respectively, in the GSE57495 cohort). Spearman’s rank correlation was used for the
correlation analysis. For group comparison, p-values were calculated by the Mann–Whitney U test.

2.2. Annexin A1 (ANXA1) High PC Enriched Multiple Malignant Pathways

To better understand the functional characteristics of ANXA1 high PC, we performed
a pathway analysis using the Gene Set Enrichment Analysis (GSEA) with Hallmark gene
sets in the TCGA and GSE57495 cohorts. In both cohorts, ANXA1 high PC consistently
enriched multiple malignant pathways such as hypoxia, transforming growth factor (TGF)-
β signaling, TNF-α signaling via nuclear factor-kappa B (NF-kB), and MTORC1, as well as
apoptosis, protein secretion, glycolysis, and the androgen response (Figure 2; all gene sets;
normalized enrichment score (NES) > 1.5, false discovery rate (FDR) < 0.25). These results
suggest that ANXA1 high PC is associated with EMT and other malignant pathways in PC.

2.3. ANXA1 High PC Was Associated with Homologous Recombination Deficiency (HRD), TP53
Mutation, and Other Signaling Pathways but Not with Mutation Load

The mutation of TP53, KRAS, CDKN2A, and SMAD4 plays a key role in the carcinogen-
esis of PC. As such, it was of interest whether ANXA1 expression related to the mutation
load and HRD, as well as the mutation rates and signaling pathways of these genes in
the TCGA cohort. We found that ANXA1 high PC was not associated with either silent
or non-silent mutation rates, fraction altered, single nucleotide variation (SNV), or Indel
neoantigens; however, it was associated with HRD (Figure 3A; p = 0.026). ANXA1 high PC
was significantly associated with high mutation rates of the TP53 gene but not with KRAS,
CDK2A, or SMAD4 (Figure 3B). However, p53, KRAS, E2F, and TGF-β signaling pathways,
measured by the GSVA algorithm, were all significantly associated with ANXA1 expression
(Figure 3C, all p < 0.001). These findings suggest that ANXA1 high PC are associated with
HRD; TP53 mutation; and the signaling of TP53, KRAS, CDKN2A, and SMAD4.



Cells 2021, 10, 653 5 of 15

Cells 2021, 10, 653 5 of 16 
 

= 31 and 32, respectively, in the GSE57495 cohort). Spearman’s rank correlation was used for the 
correlation analysis. For group comparison, p-values were calculated by the Mann–Whitney U test. 

2.2. Annexin A1 (ANXA1) High PC Enriched Multiple Malignant Pathways 
To better understand the functional characteristics of ANXA1 high PC, we performed 

a pathway analysis using the Gene Set Enrichment Analysis (GSEA) with Hallmark gene 
sets in the TCGA and GSE57495 cohorts. In both cohorts, ANXA1 high PC consistently 
enriched multiple malignant pathways such as hypoxia, transforming growth factor 
(TGF)-β signaling, TNF-α signaling via nuclear factor-kappa B (NF-kB), and MTORC1, as 
well as apoptosis, protein secretion, glycolysis, and the androgen response (Figure 2; all 
gene sets; normalized enrichment score (NES) > 1.5, false discovery rate (FDR) < 0.25). 
These results suggest that ANXA1 high PC is associated with EMT and other malignant 
pathways in PC. 

 
Figure 2. Gene set enrichment analysis of pancreatic cancer with high annexin A1 (ANXA1) expres-
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glycolysis, and the androgen response of hallmark gene sets with NES and FDR. Median cut-off 
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Figure 2. Gene set enrichment analysis of pancreatic cancer with high annexin A1 (ANXA1) expres-
sion in the TCGA and GSE57495 cohorts. Enrichment plots of hypoxia, transforming growth factor
(TGF)-β signaling, tumor necrosis factor (TNF)-α signaling, MTORC1, apoptosis, protein secretion,
glycolysis, and the androgen response of hallmark gene sets with NES and FDR. Median cut-off
within each cohort was used to divide into ANXA1 low and ANXA1 high groups (n = 88, respectively,
in the TCGA and n = 31 and 32, respectively, in the GSE57495 cohort). NES, normalized enrichment
score and FDR, false discovery rate.

2.4. ANXA1 High PC Was Associated with High Infiltration of T-Helper Type 2 (Th2) Cells

We reported that ANXA1 high breast cancer is associated with a high infiltration of
mast cells [15]. Therefore, we wanted to investigate whether similar immune cell infiltration
is seen in ANXA1 high PC. The xCell algorithm was used to estimate the fraction of immune
cells in the tumor microenvironment of PC in the TCGA and GSE57495 cohorts. We found
that ANXA1 high PC was significantly associated with a high infiltration of Th2 cells
consistently in both the TCGA and GSE57495 cohorts (Figure 4; p = 0.003 and p < 0.001,
respectively). Interestingly, ANXA1 high PC was associated with a high infiltration of mast
cells in the TCGA; however, it was associated with a low infiltration in the GSE57495 cohort.
Furthermore, ANXA1 high PC was associated with a low infiltration of CD8+ T cells and
Th1 cells in the GSE57495 cohort but not in the TCGA. These findings suggest that a high
expression of ANXA1 is associated with a high infiltration of Th2 cells in PC.
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Figure 3. The association of ANXA1 with gene mutation and homologous recombination deficiency (HRD) in the TCGA
pancreatic cancer cohort. (A) Bar plots of the mutation rate of KRAS, TP53, CDK2A, and SMAD4 by ANXA1 low and ANXA1
high groups. p-values were calculated with Fisher’s exact test. (B) Boxplots of the mutation-related scores, including altered
fraction, single nucleotide variant (SNV) and indel neoantigens, and silent and non-silent mutations, and (C) HRD scores by
ANXA1 low (blue) and ANXA1 high (red) groups. Median cut-off was used to divide into ANXA1 low and ANXA1 high
groups (n = 88, respectively). p-values were calculated by the Mann–Whitney U test.
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nificantly correlated with cell proliferation-related pathways: E2F targets, the G2M check-
point, and Mitotic spindle, which were calculated by the GSVA algorithm (Figure 5C; E2F 
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Figure 4. Association of the ANXA1 expression and infiltrating immune cells in pancreatic cancer in the TCGA and
GSE57495 cohorts. Boxplots of the infiltrating fraction of CD8+ T cells, CD4+ T cells, T-helper types 1 and 2 (Th1 and Th2),
regulatory T cells (Tregs), M1 and M2 macrophages, and Mast cells by ANXA1 low and ANXA1 high groups. Median cut-off
within each cohort was used to divide into ANXA1 low and ANXA1 high groups (n = 88, respectively, in the TCGA and
n = 31 and 32, respectively, in the GSE57495 cohort). p-values were calculated by the Mann–Whitney U test.
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2.5. ANXA1 High PC Is Associated with Advanced Histological Grade and with Increased
Cell Proliferation

Given that ANXA1 high PC was associated with multiple malignant pathways, in-
cluding EMT, which, in turn, was related to metastasis, we expected ANXA1 high PC
to be associated with the clinical parameters of aggressiveness in PC. Although ANXA1
expression was not associated with the American Joint Committee on Cancer (AJCC)
Stage and lymph node metastasis (N-category) (Figure 5A; p = 0.73 and 0.582, respectively),
ANXA1 high PC was significantly associated with the advanced histologic grade (Figure 5A;
p < 0.001). We also investigated the association of the ANXA1 expression with the clini-
cal features (age at diagnosis, race, AJCC T- and M-categories, primary tumor site, and
histological diagnosis) in the TCGA cohort. There was no significant difference between
ANXA1 low and ANXA1 high PC (Supplemental Table S1). On the other hand, ANXA1
high PC was significantly associated with a high proliferation score and a high expression
of MKI67 (Figure 5B; both p < 0.001). Furthermore, ANXA1 expression was significantly
correlated with cell proliferation-related pathways: E2F targets, the G2M checkpoint, and
Mitotic spindle, which were calculated by the GSVA algorithm (Figure 5C; E2F targets;
Spearman’s rank correlation (r) = 0.457 and 0.392, G2M checkpoint; r = 0.502 and 0.391,
Mitotic spindle; r = 0.592 and 0.452, respectively, all p < 0.01). These findings suggest that
ANXA1 expression significantly correlates with aggressive cell proliferation in PC.
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Figure 5. Association of the ANXA1 expression and tumor aggressiveness in PC. Boxplots of (A) the clinical factors: AJCC
stage, N-category, and histological grade and (B) proliferation-related factors: proliferation score and MKI67 expression
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groups (n = 88, respectively). Spearman’s rank correlation was used for the analysis. AJCC: American Joint Committee
on Cancer.
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2.6. ANXA1 High PC Are Significantly Associated with Worse Survival

Given that ANXA1 expression is significantly correlated with cancer cell proliferation,
we predicted that ANXA1 high PC is associated with worse survival. To assess this, we
analyzed the disease-free survival (DFS), disease-specific survival (DSS), and progression-
free survival (PFS) in the TCGA cohort, as well as the overall survival (OS) in the TCGA
and GSE57495 cohorts. We found that ANXA1 high PC was significantly associated with
worse DFS, DSS, and PFS in the TCGA, as well as worse OS in both cohorts (Figure 6A;
all p < 0.05). We also analyzed whether the survival risk is the same by histological grade,
since the ANXA1 expression was higher in the advanced histological grade. We found
that ANXA1 high PC was significantly associated with a worse PFS regardless of grade 1,
grade 2, or grade 3 (Figure 6; p = 0.040 and 0.018, respectively). These results indicate that,
prognostically, an ANXA1 high expression is significantly associated with worse survival
in PC patients regardless of histological grade.
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cohorts. (A) Kaplan–Meier curve between low (blue line) and high (red line) with disease-free
survival (DFS), disease-specific survival (DSS), progression-free survival (PFS), and overall survival
(OS). The median cut-off within each cohort was used to divide them into the ANXA1 low and ANXA1
high groups (n = 88, respectively, in the TCGA and n = 31 and 32, respectively, in the GSE57495
cohort). (B) Kaplan–Meier curve between low and high with PFS in the pathological grades 1/2
(n = 62, respectively) and grade 3 groups (n = 24, respectively) in the TCGA cohort. p-values were
calculated by log-rank test.
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2.7. ANXA1 Expression Correlates with Drug Sensitivity in PC Cells

Finally, we investigated the association of ANXA1 expression and drug response
in PC cells. The list of cells used for analyses is shown in Supplemental Table S3. We
found that ANXA1 expression was significantly correlated with the area under the curve
(AUC) of gemcitabine and doxorubicin in the primary PC cell lines (Figure 7; Spearman’s
rank correlate coefficient® = 0.587 (p = 0.03) and r = 0.535 (p = 0.03), respectively) and
negatively correlated with the AUC of 5-fluorouracil in the metastatic PC cell lines (Figure 7;
r = −0.553 (p = 0.01)). These results implicate that ANXA1 expression may be associated
with drug responses in PC that warrant further study.
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3. Discussion

Recent advances in sequencing technology and genetic analyses allow us to investigate
the functions of cancer from the transcriptome of a bulk tumor. Analyses using GSVA
scores allow investigators to explore the biologic activity of varying signaling pathways
and help identify the mechanisms involved. This approach is well-accepted in the field,
evident from numerous citations of the original paper. Our group previously reported
that the angiogenesis score was significantly associated with specific gene expressions
such as VEGF-related genes, endothelial cell marker genes, and vascular-stability-related
genes using this approach [24]. Cell proliferation-related pathways such as E2F targets [23],
G2M checkpoint [25], and MYC target [26] scores were significantly associated with the
pathological grade in breast cancer. The clinical relevance of angiogenesis [24], inflamma-
tion [27], cell proliferation-related pathways [5,23,25,28], KRAS signaling [29], and estrogen
response pathways [22] have been published using the same approach. Furthermore, the
xCell algorithm allows us to measure several types of cells, including immune cells and
stromal cells, in the tumor microenvironment (TME). Our group previously reported the
clinical relevance of CD8+ T cells [30], regulatory T cells [31], and dendritic cells (DC) [32],
as well as fibroblasts [8], in multiple types of cancer using the xCell algorithm. The link
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between ANXA1 expression and several signaling pathways and several cells in TME was
elucidated using these algorithms.

Specifically, in this study, we investigated the clinical relevance of ANXA1 expression
in pancreatic cancer (PC). ANXA1 expression correlated with EMT and its related gene
expressions but very weakly with angiogenesis and had no relationship with vascular cells
or mature blood vessels in PC. ANXA1 high PC was significantly associated with a high
fraction of fibroblasts and keratinocytes in the tumor microenvironment (TME). ANXA1
high PC enriched multiple malignant pathways, including hypoxia, TNF-α signaling via
NF-kB, and MTORC1, as well as the apoptosis, protein secretion, glycolysis, and androgen
response gene sets by GSEA. ANXA1 expression was associated with TP53 mutation
alone but was associated with all the KRAS, p53, E2F, and TGF-β signaling pathways.
ANXA1 high PC was associated with homologous recombination deficiency but not with
mutation load.

Additionally, ANXA1 high PC was associated with high infiltration of T-helper type 2
cells in TME. Furthermore, ANXA1 high PC was associated with the advanced histologic
grade, cell proliferation, and MKI67 expression. From a prognostic standpoint, ANXA1
high PC was significantly associated with worse patient survival regardless of the grade.
Finally, high ANXA1 expression correlated positively with the sensitivity to gemcitabine
and doxorubicin and negatively with the sensitivity to 5-fluorouracil in PC cell lines.

Although numerous publications demonstrate that ANXA1 plays multifaceted roles in
cancer development and progression, its expression and function appear to be “cancer type-
specific” [33]. ANXA1 activation was reported to play a critical role in the EMT pathway in
several types of cancer, including PC, consistent with our results. Interestingly, CDH1, an
epithelial marker that was shown to decrease with EMT, was elevated in ANXA1 high PC
in this current study, which coincides with the previous report that CDH1 correlates with
EMT [34]. Since almost all the genes in the EMT pathway gene set significantly correlated
with ANXA1 expression, we concluded the association. ANXA1 protein could regulate
metastasis by favoring cell migration/invasion intracellularly, as a cytoskeleton remodeling
factor, and extracellularly like the formyl peptide receptor (FPR) ligand [11,35]. We found
that not only EMT but also other signaling pathways such as protein secretion, glycolysis,
and the androgen response were enriched in ANXA1 high PC. Although ANXA1 was
initially found to inhibit the inflammatory response, that has not been shown in cancer
models [20]. However, our group previously reported that ANXA1 high breast cancer was
significantly associated with inflammation and angiogenesis signaling pathways [15]. The
fact that the association with inflammation or angiogenesis was not observed in PC indi-
cates that the relationship between ANXA1 expression and inflammation or angiogenesis
may differ by the cancer type.

The gold standard to analyze the tumor microenvironment (TME), which plays a
crucial role in cancer progression and treatment response, is flow cytometry or immuno-
histochemistry. Although these approaches are well-established, they are expensive and
labor-intensive, particularly when analyzing large patient cohorts. By comparison, bioin-
formatic approaches can estimate the quantity and function of cells in tens of thousands
of samples with less cost and time [4,36,37]. We previously reported the clinical relevance
of immune cells, including CD8+ T cells [30], regulatory T cells [31], and dendritic cells
(DC) [32], as well as stromal cells such as fibroblasts [8], in the TME using the xCell algo-
rithm, which allows us to estimate the fraction of 64 cells in the TME with the transcriptome
of a bulk tumor. Cancer of the breast, colorectal, lung, and kidney with a low expression
of ANXA1 is scarcely infiltrated by DC and cytotoxic T lymphocytes, supporting the idea
that ANXA1 deficiency facilitates immune escape [38]. The association between ANXA1
and the tumor immune microenvironment in PC has not been fully studied. In this study,
ANXA1 high PC was found to be associated with a high infiltration of Th2 cells. Since Th2
cells are known as pro-cancer immune cells [39], high Th2 cell infiltration may explain
the association between ANXA1 high and poor prognosis in PC patients. We previously
reported that ANXA1 high breast cancer was significantly associated with high infiltration
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of mast cells [15]. Since the functions of ANXA1 and mast cells vary in different cancer
types, the association between ANXA1 expression and mast cells may differ between breast
cancer and PC. Several studies, including one using ANXA1 knockout mice, showed that
stroma-derived ANXA1 expression promotes tumor growth, angiogenesis, and metasta-
sis [16,17]. The relationship between ANXA1 and fibroblasts that we showed is in line with
that report. It is possible that ANXA1 generated by fibroblasts contributes to its expression
in bulk tumors and is one of the reasons why ANXA1 expression was highly associated
with poor prognosis.

Drug resistance is one of the major obstacles that contribute to PC mortality in clinics.
Whether it is de novo or acquired, drug resistance involves numerous genetic and epigenetic
alterations in PC. Numerous studies have attempted to identify the mechanisms and
molecular markers involved in either de novo or acquired drug resistance processes [40,41].
Zhang et al. reported that the overexpression of ANXA1 induced by low-concentration
arsenic trioxide (ATO), an antitumor agent, makes cancer cells more resistant to the agent
via activated ERK MAPKs [42]. Belvedere et al. reported that ANXA1 expression maintains
an overall aggressive phenotype and chemotherapy resistance using ANXA1 knockout
MIA PaCa-2 cells [11]. We showed results similar to this report with human patient data.
We also showed the association of ANXA1 expression with proliferation-related factors,
such as MKI67 expression, as well as gene sets of the E2F targets, mitotic spindle, and G2M
checkpoints. This finding is in the setting of previous reports that high G2M checkpoint
activity is significantly associated with a worse prognosis in PC [5].

Interestingly, we found that ANXA1 is positively correlated to the apoptosis pathway,
where evading apoptosis is one of the original hallmarks of cancer [43]. We believe this is
because we analyzed the involvement of ANXA1 in cancer progression—the worsening of
existing cancer. This is different from the hallmarks of cancer, which are mechanisms in
carcinogenesis, the development of cancer from normal cells. Further, our findings suggest
that ANXA1 high PC is associated with overwhelming cell proliferation that overrides
elevated apoptosis, which may be, in part, due to activation of the p53 pathway. In the
current study, we demonstrated that ANXA1 expression is associated with poor survival,
which coincides with Shang et al., who analyzed 39 pancreatic ductal adenocarcinoma
patients [44], where we analyzed 239 PC patients. These results suggest that future studies
investigating the relationship between ANXA1 expression and drug response using large
clinical cohorts are warranted.

We successfully demonstrated the clinical relevance of ANXA1 in PC; however, this
study still had certain limitations. This study was prone to selection bias, given it was
a retrospective design using previously published cohorts. Additionally, we were able
to use these cohorts to evaluate the gene expression at a single time point, at the time
of surgical removal of PC, but not evaluate the change in gene expression and signaling
pathways in these tumors over time. The relationship between ANXA1 expression and
the drug response was assessed using data from the cell line encyclopedia, since we did
not have access to any PC patient cohorts with comprehensive transcriptomes that were
associated with clinical drug response data. A prospective study will be required to prove
the utility of ANXA1 expression as a prognostic and predictive biomarker. In particular,
ANXA1 expression is expected to be a useful tool to identify which chemotherapy may
respond to which patient and when by obtaining tumor samples longitudinally, including
metastatic tumors.

4. Materials and Methods
4.1. Clinical and Transcriptomic Data of TCGA and GEO Cohorts in Pancreatic Cancer Patients

Transcriptomic data and mutation data of The Cancer Genome Atlas of pancreatic
adenocarcinoma (TCGA-PAAD; n = 176) were obtained through the cBio Cancer Genomic
Portal [45]. Survival data of pancreatic cancer patients were obtained from the Pan-Cancer
Clinical Data Resource [46]. Clinical and transcriptomic data of the GSE57495 cohort
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studied by Chen et al. (n = 63) [47] were obtained through the Gene Expression Omnibus
(GEO) repository. Log2-transformed gene expression data were used for all analyses.

4.2. Drug Sensitivity and Transcriptomic Data of Pancreatic Cancer Cell Lines

Thirty-five pancreatic cancer cell lines with both comprehensive gene expression and
drug response (area under the curve (AUC)) data from the cancer cell line encyclopedia
(CCLE) [48] through the Depmap portal (https://depmap.org/portal/, accessed on 1
February 2021) were used to assess the correlation between ANXA1 expression and the
drug response. The AUCs were adjusted for the range of tested drug concentrations
that allowed the integration of heterogeneous drug sensitivity data from the CCLE, the
Genomics of Drug sensitivity in cancer (GDSC), and the Cancer Therapeutics Response
Portal (CTRP) [49]. The list of cell lines is shown in Table S3.

4.3. Scores

We used several scores in this study. Homologous recombinant deficiency and
mutation-related, including altered fraction, single nucleotide variant (SNV) and indel
neoantigens, and silent and non-silent mutations, were calculated by Thorsson et al. in the
TCGA cohort [50]. Gene set scores, including angiogenesis, E2F, G2M, and EMT, were cal-
culated by the gene set variation analysis (GSVA) with hallmark gene sets of the Molecular
Signatures Database (MSigDB) collection, as we previously reported [5,23,24,51]. We used
the xCell score as the infiltrating fraction of the immune and stromal cells in the tumor
microenvironment, which was calculated by the xCell algorithm [4], as we previously
reported [52–55].

4.4. Statistical Analysis

R software (v 4.0.1, R project for Statistical Computing) and Microsoft Excel (v 16 for
Windows, Redmond, WA, USA) were to analyze and generate the graphs in the study.
We divided them into ANXA1 low and ANXA1 high groups by the median cut-off within
each cohort. p-values were calculated by Fisher’s exact test. The Kruskal–Wallis and
Mann–Whitney U test were used for group comparisons, as described in their respective
figure legends. The Log-rank test was used for the survival analysis. p-values < 0.05 were
used to determine the statistical significance.

5. Conclusions

Annexin A1 (ANXA1) expression is associated with EMT; multiple malignant path-
ways; and the infiltration of fibroblasts, keratinocytes, and T-helper type 2 cells in the
tumor microenvironment. Furthermore, ANXA1 high PC expression is associated with cell
proliferation and worse patient survival and drug response.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/3/653/s1: Table S1: Correlation between ANXA1 expression and EMT-associated genes in the
hallmark EMT gene sets in the TCGA cohort. Table S2: Clinical and pathological features between
ANXA1 low and ANXA1 high pancreatic cancer in the TCGA cohort. Table S3: Pancreatic cancer cell
lines. Figure S1: Histogram of ANXA1 expression in the TCGA and GSE57495 cohorts. Figure S2:
Association of ANXA1 with epithelial–mesenchymal transition (EMT)-associated genes in the TCGA
and GSE57495 cohorts.
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