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Abstract: In recent years, the treatment of textile waste has attracted more and more attention around
the world. The reuse of textile waste can contribute to the reduction of carbon emissions and the
sustainable development of the economy. Herein, we proposed a facile and cost-effective approach
to fabricating aerogel by using textile waste fibers as the matrix and polyvinyl alcohol (PVA) and
glutaraldehyde (GA) as crosslinking agents. After being modified with methyltrimethoxysilane
(MTMS) via chemical vapor deposition, both the interior and exterior of the textile waste aerogels
exhibit a hydrophobic property with a water contact angle of up to 136.9◦ ± 2.3◦. A comprehensive
investigation of the structure, thermal properties, mechanical properties and oil absorption capacity
of this aerogel shows its potential for building insulation and oil spill cleanup. The textile waste fibers
aerogels have low density and high porosity, good thermal stability and outstanding heat insulation
properties (Kavg. = 0.049–0.061 W/m·K). With a maximum oil absorption value of 26.9 ± 0.6 g/g
and rapid and effective oil/water mixture separation, the aerogel exhibits competitive commercial
application value.

Keywords: recycled textile waste; aerogels; oil spill cleaning; textile waste fibers

1. Introduction

The textile industry is still one of the largest and most vibrant industries in the world [1].
The consumption of textile products has increased tremendously from 78 million tons to
more than 103 million tons during the last decade. As the economic development, the trend
will increase while the pollution made from the waste textile will also increase [2–4]. The
average consumption of textiles per person has increased from 7 kg in 1992 to 13 kg in
2013. According to one forecast, about 148 million tons of waste textiles will be produced
in 2030, and more than 150 million tons of waste clothing will be incinerated or landfilled
in 2050 [5]. The main components of textile wastes are polyester and cotton, which mainly
include three categories, namely clothing, household materials and industrial textiles,
which are mainly prepared by polyester and cotton [6–8]. Due to space constraints and
leachate issues, the landfill method is banned in many regions and countries [9–12]. For
example, European Union (EU) legislation has forbidden the landfill disposal of organic
materials, including textile wastes, since 2016. Additionally, the member states of the EU
will be required to set up a separate collection for discarded textiles by 2025. Incineration
can reduce the number of textile wastes in a short period of time, while the combustion
process of synthetic textiles will produce toxic chemicals (such as benzene derivatives and
polycyclic aromatic hydrocarbons (PAHs)) and emit a large amount of greenhouse gas
carbon dioxide [13,14].

Therefore, an environmentally benign disposal process to upcycle and recycle textile
wastes is necessarily required to alleviate potential health, fossil energy and environmen-
tal issues. Textile waste materials have applications in the production of ethanol [15],
glucose [11], nanocellulose and cellulose nanocrystals, microcrystalline cellulose [16], bio-
gas [17], thermal and sound insulation materials [18], cement and bricks [3,19,20] and
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polymer composites [21], and so forth. The traditional treatment method of textile waste
has complicated procedures or low economic value. In order to change the situation, there
is an urgent need for more products with high economic value, such as aerogels, to enhance
the financial value of textile waste recycling.

Aerogel, as a new material composed of a solid framework structure and two differ-
ent phases of gaseous medium, has the characteristics of a typical nanoporous network
structure, high specific surface area, high porosity, low density, excellent thermal insulation,
outstanding acoustic insulation properties, low dielectric constant, high adsorption and so
on [22]. Moreover, due to the size effect, surface effect and macroscopic quantum tunneling
effect caused by the nanoscale of the skeleton and pores, they have been widely used in
many fields such as mechanics, thermal science and optics [23]. Aerogel made from cotton
fibers and polyester fiber, the two main components of textile waste, have been explored.
Through different preparation processes, cotton fiber or polyester fiber can be applied
to develop aerogels with various properties, such as oil absorption [24–27], solar steam
generation [28–30], sensor [31–33], electrochemical capacitors [34], catalysis [35], thermal
insulation [36–38], and so on.

The application prospect for aerogel is broad. With the rapidly developing new en-
ergy automobile industry around the world, the global market for automotive sound
insulation and heat insulation materials is expected to reach 3.2 billion USD by 2022.
Thermal insulation energy-saving buildings have become a new trend. In addition, the
market for absorbents used to absorb spilled oil is expected to reach 177.63 billion USD
by 2025 [39]. Driven by environmental issues and potential market application, we suc-
cessfully developed aerogels from textile wastes with a facile and cost-effective method.
The hydrophobicity, absorption capacity, mechanical property, oil/water separation and
thermal conductivity of textile waste aerogels have been comprehensively studied for the
application of oil spill cleaning and heat insulation.

2. Results and Discussion
2.1. Morphologies and Structures of Aerogels

Figure 1 shows the preparation process of textile waste fibers (TWF) aerogel and
the possible reactions between polyvinyl alcohol (PVA), TWF, glutaraldehyde (GA) and
methyltrimethoxysilane (MTMS). The three-dimensional porous network of TWF aerogel
was constructed through hydrogen and ester bonds formed between PVA and functional-
ized TWF and the use of GA as a cross-linker agent, which resulted in the generation of
acetal bridges [26,40,41]. Figure 2 shows SEM images of the TWF aerogels with different
magnifications. It can be observed that the internal structure of TWF aerogels has an open
porous network structure with the uniform distribution of TWF in the matrix, indicating
that TWF and PVA successfully self-assembled to form a three-dimensional porous network.
As can be seen in Figure 2b, the enlarged blue frame of Figure 2a, the surface of fibers is
rough and well bonded with PVA. In the TWF aerogel, the TWF and PVA networks are
interlocked to form macropores, while small pores formed by freeze-drying are distributed
in the PVA matrix gels-1974537-tracked; these tiny pores can be observed in Figure 2c,
which is an enlarged version of the blue frame in Figure 2b. To obtain a stable porous
structure, the fibers are stuck together through PVA and GA. The TWF aerogel have a BET
surface area in the 7.312.0 m2/g range, as shown in Table 1.



Gels 2022, 8, 684 3 of 15Gels 2022, 8, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. Schematic illustration of the preparation process of TWF aerogel and the possible reac-
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Figure 1. Schematic illustration of the preparation process of TWF aerogel and the possible reactions
between PVA, TWF, GA and MTMS.
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Figure 2. SEM images of TWF aerogels (a–c) TW01 with different magnifications; (d) TW02; (e) TW03;
(f) TW04.

The waste fabrics are composed of polyester and cotton, with the hydroxyl group
on the molecular chain [7,21,40]. TWF was pretreated with alkali can make its surface
damaged with hydroxyl [42–44]. In the process of preparing the TWF gel solution, PVA
can form hydrogen bonds with the hydroxyl groups on the surface-treated polymer fibers
in the TWF [39,45,46]. According to previous reports [39–46], the addition of GA may react
with hydroxyl groups of the various polymers in polyester, cotton and PVA chains to form
acetal bridges of different chains, the possible reaction shown in Figure 1, which further
enhances the interaction between TWF and PVA.
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Table 1. Chemical compositions of various textile waste fibers aerogels, density, porosity, thermal
conductivity and BET surface area.

Sample
Name Composition Fiber Conc.

(wt.%)
Density
(g/cm3)

Porosity
(%)

Thermal Conductivity
(W/m·K)

BET Surface Area
(m2/g)

TWF1a TWF:PVA = 1 2.0 0.067 ± 0.003 94.8 ± 0.2 0.057 ± 0.002 -
TWF1b TWF:PVA = 3 2.0 0.045 ± 0.002 96.6 ± 0.2 0.051 ± 0.001 -
TWF1c TWF:PVA = 4 2.0 0.040 ± 0.002 96.9 ± 0.3 0.049 ± 0.001 -
TW01 TWF:PVA = 2 2.0 0.044 ± 0.002 96.7 ± 0.2 0.052 ± 0.001 12.0
TW02 TWF:PVA = 2 3.0 0.060 ± 0.003 95.4 ± 0.3 0.058 ± 0.002 10.6
TW03 TWF:PVA = 2 4.0 0.068 ± 0.003 94.8 ± 0.2 0.059 ± 0.002 9.0
TW04 TWF:PVA = 2 5.0 0.096 ± 0.005 94.2 ± 0.4 0.061 ± 0.002 7.3

2.2. Hydrophobic Properties

The TWF aerogels obtained after freeze-drying were hydrophilic due to a large num-
ber of hydroxyl groups on the PVA and functionalized TWF. Therefore, for cleaning oil
spill applications, it is necessary to modify the aerogel to transform its properties from
hydrophilic to hydrophobic. To achieve this, MTMS was modified on the surface of the
aerogel through a simple chemical vapor deposition process to generate hydrophobic silane
groups (Figure 1 shows the possible reaction). For investigating the hydrophobicity of
the coating aerogels effect, water contact angle measurement was performed on both the
external and internal surfaces of aerogels. The aerogels without MTMS modified could
immediately absorb water droplets during the test, resulting in no measurable contact
angle. As shown in Figure 3a, the large contact angle of 136.9 ± 2.3◦ was measured on the
external surface. To analyze the internal modified effect of aerogel, the sample was cut, and
the water contact angle of 123.0 ± 2.5◦ was measured on the cross-section of the sample
(Figure 3b), proving that the entire aerogel is hydrophobic. Therefore, it indicates that the
porous network was successfully chemically modified by MTMS to make the entire aerogel
hydrophobic. The water contact angle value of the external surface is higher than that of
the cross-section, which may contribute to more opportunities for the external surface to
contact MTMS and a higher degree of silanization. Figure 3c shows motor oil and blue
water droplets (dyed with methyl blue) on the surfaces of TWF aerogel. Compared to
the droplet of motor oil 5W-40, which quickly spreads and penetrates the TWF aerogel
completely, the blue water droplets remain spherical on its surface. Consequently, the
TWF aerogel exhibits oil/water separation capability due to its processing characteristics
of wetting selectivity.
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2.3. Thermal Properties of Aerogels
2.3.1. Thermal Conductivity of Aerogels

The thermal insulation properties of the TWF aerogels were characterized by thermal
conductivity measurement at a room temperature of 25 ◦C and demonstrated in Figure 4
and Table 1. The TWF aerogels present excellent thermal insulation owing to low thermal
conductivities (Kavg. = 0.049–0.062 W/m·K), which are comparable with conventional
thermal insulation materials in residential and industrial buildings such as foams and
wools (Kavg. = 0.030–0.055 W/m·K) [47]. The composition and morphology of the aerogel
play a direct role in influencing and controlling the thermal conductivity of the aerogel.
The air occupies most of the space in the porous structure of TWF aerogels, with a very low
thermal conductivity (0.026 W/m·K) at ambient pressure and temperature [47]. The textile
wastes used in this work mainly include polyester (PET) and cotton. PVA, PET and cotton
have higher thermal conductivity, as shown in Table 2, and combine to form a framework
that creates a complicated channel for heat to flow through. The thermal conductivity of
PVA composite, polyester composite, cotton composite aerogel and textile waste fibers
composite reported in recent years are displayed in Table 2. Although these values are
close to or slightly larger than TWF aerogel, the raw material of TWF aerogel is cheaper,
and the preparation procedure is more straightforward.
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Table 2. Thermal conductivity of PVA composite, polyester composite, Cotton composite aerogel and
textile waste fibers composite.

Materials Thermal Conductivity (W/m·k) Reference

TWF/PVA Aerogel 0.049–0.062 This work
Air 0.026 [47]

PVA plastic 0.200 [48]
Pristine PVA Aerogel 0.0408 [49]

PET Fiber 0.15 [41]
PET Plastic 0.20 [50]

Cotton 0.047 [51]
Cotton/Cellulose Aerogel 0.044–0.055 [52]

PVA/TA/SA Aerogel 0.043–0.060 [40]
PVA/GA/CNF Aerogel 0.044–0.067 [53]

Waste Tissue Paper/PVA Aerogel 0.098–0.120 [54]
Wool Waste Fibers Aerogel 0.049–0.060 [55]

Wood Fibers/Textile Waste Fibers
Aerogel 0.078–0.089 [56]
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Figure 4 and Table 1 demonstrate that by keeping the amount of TWF constant, the
thermal conductivity decreases with the increases in the ratio of TWF and PVA. Keeping
the ratio of TWF and PVA unchanged, the thermal conductivity increases with the increase
of TWF’s weight. In summary, the thermal conductivity increases with the increase of
the total weight of the TWF and PVA. The thermal conductivity of TWF1c with the least
weight and TW04 with the most weight is 0.049 ± 0.001 W/m·K and 0.061 ± 0.002 W/m·K,
respectively. The changes in thermal conductivity follow the same trend as density, but
in the opposite direction as porosity. It can be explained by the increase in the volume
of the aerogel solid phase in the unit space, which leads to a decrease in the volume of
internal air, thus increasing the thermal conductivity [46]. In addition, the increase of fibers
in the TWF aerogel increases the heat transfer channels, which also causes an increase in
thermal conductivity. Generally, TWF aerogels own ultra-low thermal conductivity and are
prepared by textile wastes using environmentally friendly, low-cost and less toxic emissions
methods, which are promising candidates for practical thermal insulation applications.

2.3.2. Thermal Stability of Aerogels

In order to evaluate the thermal stability properties of TWF aerogels, TGA tests
were measured and shown in Figure 5 and Table S1 with different concentrations. It can
be observed that the mass change exhibit three phases by the temperature as follows:
(1) 50–125 ◦C, (2) 220–500 ◦C and (3) 500–700 ◦C. Between 50 ◦C and 125 ◦C, the unmodified
aerogel exhibits 4.5% weight loss, which likely is caused by the removal of the absorbed
atmospheric moisture. The reason for this phenomenon may be that the materials contain
many hydroxyl groups on PVA, which absorb water in the air after fabrication. On the
other hand, negligible weight loss was shown on the aerogels with modified MTMS. At
the next phase, between 220 and 450 ◦C, a weight loss of about 70 wt.% can be observed
for all samples, likely due to the oxidation decomposition of the TWF and PVA. At the
final thermal degradation between 500 ◦C and 700 ◦C, the weight of all samples decreases
slightly, which possibly be caused by the oxidation of the charred residue.
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2.4. Mechanical Properties of Aerogels

The mechanical property of the TWF aerogel is a basic feature for practical applications.
The mechanical strength property of the material and compression tests were performed.
The compressive strain-stress curve and Young’s modulus of the TWF aerogels are pre-
sented in Figure 6a and Table S2, respectively. Figure 6b shows the TW04 was loading a
200 g weight on the sample for seven days. It was seen that no obvious shape change of
the aerogel was found after the test durations. Additionally, there exists a noticeable trend:
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the compression resistance significantly increases when TWF concentration rises. With
increasing from 2.0 wt.% to 5.0 wt.% of the TWF, Young’s modulus of the TWF aerogels is
improved up 400% from 1.3 ± 0.16 kPa to 5.24 ± 0.22 kPa. It can be explained by a larger
amount and more crosslinking sites of the TWF and PVA in the aerogels.
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2.5. Absorption Capabilities of Aerogels

The oil absorption capabilities of the TWF aerogels were investigated through the
motor oil of 5W-30 and 5W-40. The process of motor oil absorption test with squeezing
is exhibited in Figure 7. Figure 8 and Table S3 and show the first round of oil adsorption
capacity. When the amount is kept to be TWF:PVA = 2 and increasing the fiber concentration
from 2 to 5 wt.% at 25 ◦C or 75 ◦C, the measured 5W-30 and 5W-40 absorption capacities
of the aerogels decreased, respectively. The maximum absorption capacity of 18.6 g/g
is achieved with the 2 wt.% fiber aerogel for 5W-30 due to it having higher porosity and
BET surface area. As exhibited in Table S3 and Figure 8, the maximum oil absorption
capacity of TWF aerogels diminishes, when the temperature increases from 25 ◦C or 75 ◦C.
This trend occurs in the absorption behavior of two oils on all aerogels. The absorption
process of oils on adsorbent material is affected by compatibility between the oils and
absorbents, capillary effect, van der Waals forces, pore morphology, diffusion effect and
oil viscosity [57,58]. Temperature is considered to be the significant factor involving the
viscosity and the diffusion rate of the oils penetrating into the interior of the aerogel. It can
be observed in Table S4 that the viscosity of the oil decreases with increasing temperature,
which facilitates oil penetration into the porous aerogel networks. On the other hand, the
low viscosity reduces the amounts of the oil anchored in the porous structure of aerogel for
the oils, having a negative effect on the total oil absorption of the aerogel. At 75 ◦C, the
adsorption capacity of aerogels to the two kinds of motor oil is similar, due to the viscosity
of the two oils being lower. At 25 ◦C, the amount of 5W-30 adsorbed is higher than 5W-40,
probably due to 5W-30 having a lower viscosity than 5W-40, which is beneficial to diffusion
into the porous structure. The amount of adsorption at 75 ◦C is lower than that at 25 ◦C
caused by the viscosity of the oil is too low at 75 ◦C, which is not conducive to the anchoring
of the oil inside the aerogel. The experimental results demonstrate that TWF aerogel with
excellent oil absorption capacity could be the candidate material for oil spill cleaning.
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Figure 7. Motor oil absorption test with squeezing: (a) Weighing the aerogel sample before the test.
(b) Absorption test with motor oil. (c) Draining sample after first absorption test. (d) Weighing
sample after first absorption test. (e) Squeezing sample after the first absorption. (f) Weighing the
sample after squeezing.
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Figure 8. The absorption capabilities of motor oil (a) 5-W30 and (b) 5W-40.

The absorbed motor oil can be re-collected through extruding oil containing aerogel.
Figure 9a and Table S5 show the effect of cycles of sorption on the oil absorption capacity
of the TW01 aerogel on 5W-30 at 25 ◦C. The sample achieved a high absorption capacity of
18.6 ± 1.2 g/g in cycle 1. However, the absorption capacity obviously dropped to 3.2 ± 0.3,
2.8 ± 0.2, 2.7 ± 0.2 and 2.8 ± 0.2 g/g in cycles 2, 3, 4 and 5, respectively. Figure 9b and
Table S5 exhibit the squeezed ratio of the absorbed oil. 77.9 ± 3.0, 97.3 ± 1.3, 98.5 ± 1.0,
99.3 ± 0.4 and 99.4 ± 0.3% of the absorbed motor oil was re-collect after cycles 1, 2, 3, 4
and 5, respectively, by simple squeezing. This phenomenon can be explained based on the
change in the aerogel volume and weight. The sample used in cycle 2 was squeezed while
collecting the oil absorbed in cycle 1, causing a partial collapse of the porous structure
of the aerogel, which could not be completely recovered in a later cycle. In addition, the
adsorbed oil could not be completely removed, and the initial weight of the sample in
cycle 2 increased, which sharply reduced the oil absorption values. In later cycles, the oil
absorption values and the squeezed ratio are similar to the value after the first cycle, which
may be due to the sample structure having not changed anymore and the weight of the
remaining oil in the squeezed aerogel being close in each cycle.
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Figure 9. Effect of cycles of sorption on (a) oil absorption capacity and (b) squeezed ratio of ab-
sorbed oil.

TW01 was selected to evaluate the absorption capability of aerogels for various or-
ganic solvents, which are frequent pollutants and leaks in ordinary routine or in industrial
applications. The absorption capacity of TW01 varies from 14.2 ± 0.3 to 26.9 ± 0.6 times
its own weight, as illustrated in Figure 10 and Table S6, depending on the physical charac-
teristics of the absorbed organic solvents. The adsorption capability of various previously
reported materials for oil and organic solvents is displayed in Table 3. As expressed, the
adsorption capability of TWF aerogel is comparable to that of many previously reported
adsorbent materials. Even though the sample has a lower absorption capacity than some of
the reported materials, the raw material is cheaper and the preparation procedure is more
straightforward.
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Table 3. Performance comparison of the reported sorbent materials.

Sorbent Material Absorbed Substances Sorption Capacity (g/g) Reference

TWF/PVA Aerogel oils and organic solvents 14–27 This work
BN/PVA Aerogel CCl4 and n-hexane 12–38 [59]

Chitosan/Silica Composite Aerogel oils and organic solvents 13–30 [60]
carbon nanotubes/PVA Aerogels oils and organic solvents 17–39 [61]

MOF/Carbon Nanotubes/Cotton Aerogels oils and organic solvents 48–84 [62]
MOF-Coated Cotton Fiber Composite oils and organic solvents 25–48 [63]

Wood /PVA Sponge oils and organic solvents 4–27 [64]
Cellulose-Based Aerogel oils and organic solvents 42–99 [65]

Polyimide/MXene Aerogels oils and organic solvents 18–58 [66]
PLA/ lignocellulosic Aerogels oils and organic solvents 28–70 [67]

Aramid Nanofibers/PVA aerogel oils and organic solvents 32–65 [68]
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To evaluate the oil–water separation performance of the TWF aerogel, light oils and
dense oils are prepared to imitate oil/water mixtures. Figure 11 shows the application of
TWF aerogel for the removal of oil from water. As shown in Figure 11a hydrophobic TWF
aerogel floats on mixtures and rapidly and completely absorbs motor oil 5W-40 within
30 s, which leaves clean water with no visible oil drops. Figure 11b displays the successful
removal of trichloromethane (dyed with rhodamine B) from water. Once TWF aerogel
contacted the trichloromethane sinking under the water, it absorbed quickly and perfectly
as well; these results suggest that this material has excellent oleophilic and hydrophobic
properties. Thus, the TWF aerogel can efficiently separate both light oils and dense oils
from water. Furthermore, the collection of the absorbed oil is very simple through the
crimping of the aerogel.
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Figure 11. The oil–water separation with TW03 after modified MTMS. (a) Sorption process of motor
oil 5W-40. (b) Sorption process of trichloromethane (dyed by rhodamine B).

3. Conclusions

In conclusion, a facile and cost-effective method of the textile waste fibers aerogels
from textile waste has been successfully developed. After being modified with MTMS, the
developed aerogels exhibit excellent hydrophobicity with a water contact angle of up to
136.9◦ ± 2.3◦and oil–water separation performance. Textile waste fibers aerogels can be
used as heat insulation materials for buildings with excellent heat insulation properties and
thermal stability. It is found that the initial fiber concentration, the temperature and the
oil viscosity significantly affect the oil absorption. Due to the TWF aerogel’s low density
and high porosity, its maximum absorption value reaches 26.9 ± 0.6 g/g, whereas the
absorption capacity decreases obviously after the compression cycle, limiting its reuse
of oil absorption. The formation of waste textiles into aerogel is expected to increase the
commercial value of textile waste in the future. The application prospects of TWF aerogels
may be further expanded if effective strategies are executed to modify TWF aerogels to
obtain interactive response characteristics such as temperature, pH, light, electric field,
magnetic field, and so on.

4. Materials and Methods
4.1. Materials

The textile waste fibers (TWF, supplied by Shangyu Textile Co., Ltd., Suzhou, China)
have a length of approximately 2–20 mm from crushed waste clothing and are made up of
nearly 90% polyester and 10% cotton, two major fiber types on the international market.
Polyvinyl alcohol (PVA, degree of polymerization: 1799 ± 50, content ≥ 90.5%), glutaralde-
hyde (GA, 25% in water), sodium hydroxide (NaOH, 96.0 wt.%) and methyltrimethoxysi-
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lane (MTMS, 98 wt.%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shang-
hai, China). Sodium chloride (NaCl, 99 wt.%) and Trichloromethane (CHCl3, 99 wt.%) were
obtained from Macklin Biochemical Corporation (Shanghai, China). Motor oils of 5w-30
and 5w-40 were purchased from Exxon Mobil Corporation. All the above reagents were
used without any purification steps.

4.2. Methods
4.2.1. Fabrication of Textile Waste Fibers Aerogels

The textile waste fibers aerogels were developed through using textile waste as the
matrix and polyvinyl alcohol (PVA) and glutaraldehyde (GA) as crosslinking agents. The
specific processes are as follows and shown in Figure 1. In the initial stages of the process,
the TWF were pretreated with alkali NaOH (40 g/L) at 80 ◦C for 30 min with a 1:100
material-to-liquor ratio before being used as the matrix [11,44]. Second, the different
volumes of TWF were immersed in the PVA/GA/H2O mixed solution and next sonicated
at 400 W, 80 ◦C for 20 min. The TWF concentrations were changed from 2 to 5 wt.%, The
specific ratio of the TWF and the PVA is shown in Table 1. 50 µL the GA solution was
added to each sample. Then the mixture was cured at 80 ◦C for 3 h in the oven. Lastly, the
mixture was put in the refrigerator at −18 ◦C to gel for 12 h and then freeze-dry at −60 ◦C
for 48 h.

4.2.2. Development of the Hydrophobic TWF Aerogels

The developed hydrophilic TWF aerogels were modified with MTMS on their highly
porous network surface to form the hydrophobic aerogels materials [45,57,69]. The TWF
aerogels and a small beaker containing MTMS were placed in a large closed container.
Then, the container was heated in the oven at 70 ◦C for 3 h. After the TWF aerogel surface
was completely silanized, the excessive MTMS was removed by placing the aerogel sample
in a vacuum oven.

4.2.3. Characterization

The structure and morphology of the TWF aerogels were examined using a scanning
electron microscope (SEM, Merlin Compact, Carl Zeiss AG, Oberkochen, Germany). The
samples were modified with an ultra-thin layer of gold for the 90 s at 20 mA using a sputter
coater (SD-900, Vision Precision Instruments, Dongguan, China).

The hydrophobicity of the MTMS-modified aerogels was investigated by the water
contact angle, which was carried out on an OCA25 goniometer (Dataphysics Products Inc.,
Filderstadt, Germany). During the test, 10 µL water drops were dripped onto the surface
of the aerogels and controlled by the syringe system of the tester. The contact angle was
calculated according to the acquired photographic image with the angle between the drop
and surface measurement on the software system.

Nitrogen sorption isotherms with standard Brunauer-Emmett-Teller (BET) analy-
sis were used to calculate specific surface areas. Through the adsorption branch of the
isotherms, the pore size (Figure S1) was determined using the Barrett-Joyner-Halenda (BJH)
method (Micromeritics ASAP 2460, Micromeritics Instrument Corporation, Norcross, GA,
USA). All samples were degassed at 50 ◦C for 24 h under a vacuum before analysis.

The thermal conductivity was analyzed using the TPS2500S Hot Disk (Hot Disk AB,
Uppsala, Sweden) and the transient plane source method. The samples were tested at a
room temperature of 25 ◦C.

The thermal gravimetric analysis (TGA) was carried out using HCT-3 Thermogravi-
metric Analyzer (Henven Corporation, Beijing, China) to evaluate the thermal stability of
the specimens by heating them from room temperature to 800 ◦C at 10 ◦C min−1 under air.

A universal testing machine (6800, Instron Corporation, Boston, MA, USA) was ap-
plied to the compression test, with a constant loading rate of 1 mm/min. The compressive
Young’s modulus was elected as the initial (0–10%) linear portion of the stress-strain
curve slope.
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Every prepared sample is measured and weighted in order to determine its density.
The porosity (ϕ) is calculated using the following formula dependent on the density (ρg) of
aerogel and the average density of components (ρc) as indicated by the following.

ϕ =

(
1 −

ρg

ρc

)
∗ 100% (1)

The aerogel was put into a beaker with motor oil or organic solvents to study the
absorptivity, the process displayed on Figure 7. Two motor oil used for the absorption tests
were 5W-30 and 5W-40. The motor oil specifications are displayed in Table S4. The sample
was weighed and placed in motor oil for 1 h to ensure a swelling equilibrium. Then the
wet sample was lifted from the oil container, drained for 30 s in air and weighed again. The
motor oil absorption capacity was calculated using Equation (2). The adsorption process of
organic reagents is the same as that of motor oil adsorption. The wet sample was squeezed
by hand, and it was weighed again. The test was repeated several times. The squeezed
ratio of crude oil (Qs) was calculated using Equation (3).

Qt =
Mw − Md

Md
(2)

Qt is the crude oil absorption capacity of the aerogel, Mw (g) is the weight of the
aerogel after absorption, and Md (g) is the weight of the aerogel before absorption.

Qs =
Mw − Ms

Mw − Md
∗ 100% (3)

Ms (g) is the weight of the aerogel after squeezing.
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//www.mdpi.com/article/10.3390/gels8100684/s1, Table S1: Thermal stability of aerogels; Table S2:
The mechanical property of the TWF aerogels; Table S3:The motor oil absorption capabilities of TWF
aerogels; Table S4: Specification of motor oil; Table S5: Effect of cycles of sorption on oil absorption
capacity and squeezed ratio of absorbed oil; Table S6: Absorption capacity of TW01 for various
solvents; Figure S1: Pore size distribution: (a) TW01, (b) TW02, (c) TW03 and (d) TW04.
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