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Studies have revealed a robust and independent correlation between chronic kidney
disease (CKD) and cardiovascular (CV) events, including death, heart failure, and
myocardial infarction. Recent clinical trials extend this range of adverse CV events,
including malignant ventricular arrhythmias and sudden cardiac death (SCD). Moreover,
other studies point out that cardiac structural and electrophysiological changes are a
common occurrence in this population. These processes are likely contributors to the
heightened hazard of arrhythmias in CKD population and may be useful indicators to
detect patients who are at a higher SCD risk. Sympathetic overactivity is associated
with increased CV risk, specifically in the population with CKD, and it is a central
feature of the hypertensive state, occurring early in its clinical course. Sympathetic
hyperactivity is already evident at the earliest clinical stage of CKD and is directly related
to the progression of renal failure, being most pronounced in those with end-stage renal
disease. Sympathetic efferent and afferent neural activity in kidney failure is a crucial
facilitator for the perpetuation and evolvement of the disease. Here, we will revisit the
role of the feedback loop of the sympathetic neural cycle in the context of CKD and
how it may aggravate several of the risk factors responsible for causing SCD. Targeting
the overactive sympathetic nervous system therapeutically, either pharmacologically or
with newly available device-based approaches, may prove to be a pivotal intervention to
curb the substantial burden of cardiac arrhythmias and SCD in the high-risk population
of patients with CKD.

Keywords: chronic kidney disease, sympathetic nervous system, hypertension, left ventricular hypertrophy,
sudden cardiac death, ventricular remodeling, renal denervation
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INTRODUCTION

The prevalence of chronic kidney disease (CKD) is ∼8–12% in
most countries becoming a significant public issue across the
globe, and it can progress to end-stage renal disease (ESRD) and
renal replacement therapy (RRT). In these patients, the most
typical cause of death is by far cardiovascular (CV) complications.
Congestive heart failure (HF) and cardiac arrhythmias, in
particular, are highly prevalent and a common reason for
hospitalization (Kiuchi and Mion, 2016; Kusumoto et al., 2018).
As the renal impairment has been considered an independent
hazard for sudden cardiac death (SCD), several cohort studies
and clinical trials have used it as a well-defined endpoint (Kiuchi
and Mion, 2016; Kusumoto et al., 2018).

SUDDEN CARDIAC DEATH, CHRONIC
KIDNEY DISEASE, AND EPIDEMIOLOGY

Chronic Kidney Disease
Clinical trials evaluating the effectiveness of automatic
implantable cardioverter-defibrillators (ICDs) have
demonstrated the high hazard of SCD in the CKD
population. These findings are supported by the 2018
United States Renal Data System (USRDS) (Table 1;
United States Renal Data System, 2018).

On optimized pharmacological therapy, every
10 mL/min/1.73 m2 glomerular filtration rate fall accounted
for an increase of SCD risk by 17% (Goldenberg et al., 2006).
Given the relevance and prognostic implications of HF in
this population, the existence or non-existence of LV systolic
dysfunction (i.e., “systolic” HF with reduced ejection fraction,
“diastolic” HF with preserved ejection fraction, or unspecified)
was meticulously examined (Figure 1). All types of HF were
more typical amongst CKD subjects in comparison to those
without CKD. The proportional ratio of individuals having CKD

TABLE 1 | Prevalence of HF, SCD, and VA and annual incidence of
cardiovascular procedures.

% Patients

#Patients Overall 66–69 70–74 75–84 ≥85

Heart failure

Non-CKD 1,086,232 6.1 3.1 4.3 7.2 13.3

Any CKD 175,840 25.9 18.3 20.1 25.7 36.1

SCD/VA

Non-CKD 1,086,232 1.4 1.0 1.4 1.8 1.8

Any CKD 175,840 4.1 3.4 3.9 4.4 4.3

ICD/CRT-D

Non-CKD 66,426 0.6 0.6 0.8 0.6 0.3

Any CKD 45,552 1.0 1.5 1.4 1.1 0.6

CKD, chronic kidney disease; CRT-D, cardiac resynchronization therapy with
defibrillator; HF, heart failure; ICD, implantable cardioverter-defibrillator; SCD,
sudden cardiac death, VA, ventricular arrhythmias. Adapted from 2018
United States Renal Data System annual data report (United States Renal Data
System, 2018).

and systolic HF concomitantly was demonstrated to be greater
than for diastolic HF; also, the prevalence increased with CKD
progression (United States Renal Data System, 2018).

The “Comparison of Medical Therapy, Pacing, and
Defibrillation in Heart Failure Trial” showed late stages HF
patients with intraventricular electrical conduction disorders
(e.g., bundle branch block) had significant reductions in death
and hospitalization rates after cardiac resynchronization therapy
(Bristow et al., 2004). In addition, existing renal dysfunction
raised the harm for SCD by 67% during the 16-months of
follow-up (Saxon et al., 2006). HF reduced survival rates
amongst CKD and non-CKD groups (Figure 2), although this
was more pronounced in the former (p-value for interaction
<0.0001) (United States Renal Data System, 2018). After 2 years,
the adjusted survival probability was 77.8% for patients with
concomitant HF and CKD, 84.6% for HF subjects without CKD,
90.2% for non-HF individuals with CKD, and 93.7% for those
without CKD and HF (United States Renal Data System, 2018).
Analyzing the 2-year survival of patients with HF according to
their CKD stages the survival rates fell with further progression
of renal disease (stages 1–2 = 70.2%, 3 = 65.8%, and 4–5 = 55.7%,
respectively). A similar 2-year survival trend was observed in
patients with CKD who presented with ventricular arrhythmias
(VAs). Survival rates of healthy individuals (86%) were higher
than those for patients with CKD (68.8%). Further deterioration
of kidney function was associated with lower survival rates
(Stage 1–2 = 75.4%, Stage 3 = 68.7%, and Stage 4–5 = 57.9%)
(United States Renal Data System, 2018). Furthermore, a
correlation between SCD and renal damage was shown in
non-HF individuals with moderate CAD (Deo et al., 2008;
Pun et al., 2009).

Several investigations have attempted to outline SCD hazard
amongst CKD subjects taking into account the influences
of confounding prevalent CV diseases. A community study,
including 4,465 participants without any previous history of
myocardial infarction (MI) or HF demonstrated that the SCD
incidence was 2.5 folds higher in those who had advanced CKD
(Saxon et al., 2006). The SCD hazard was doubled in participants
with “pre-clinical renal disease” (Deo et al., 2010) (defined as
estimated glomerular filtration rate: eGFR >60 mL/min/1.73 m2

and Cystatin C level≥1.0 mg/L) matched to those with unaltered
renal function (defined as eGFR >60 mL/min/1.73 m2 and
Cystatin C level <1.0 mg/L). This suggests that even minor
drops in the eGFR may raise SCD risk, particularly in the elderly
(Deo et al., 2010).

End-Stage Renal Disease
In the current context, most CV deaths reported in ESRD
are attributed to SCD (Levey et al., 1998). In this population,
arrhythmic deaths and MI represent 22% of all deaths
(Herzog et al., 2005). In a cohort of 1,041 hemodialysis
patients, 658 deaths were reported over an 8-year follow-
up period. Amongst them, 146 deaths were attributed to
SCD (rate of 1.8% per year) (Parekh et al., 2008). Similarly,
a significant frequency of SCD at 5 years of follow-up
(4.9% per year) was reported by a Chinese prospective trial
comprising 230 participants, in which reduced LVEF and
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FIGURE 1 | Heart failure in healthy and CKD subjects. CKD, chronic kidney disease; HF, heart failure. Adapted from 2018 United States Renal Data System annual
data report (United States Renal Data System, 2018). Reproduced with permission.

widened pulse pressure were considered predictors of SCD
(Wang et al., 2010).

Congestive HF is commonly characterized by sustained
renin-angiotensin-aldosterone system (RAAS) and sympathetic
nervous system (SNS) overactivation, promoting higher Na+
and water retention with increased vascular tone and structural
cardiac, renal and vascular remodeling. On the heart level,
this resulting increase in LV and atrial pressure stimulates
natriuretic peptide synthesis and secretion. Moreover, natriuretic
peptides exert a key function in regulating blood pressure and
extracellular fluid volume (Volpe et al., 2016). In non-adjusted
and completely adjusted analyses, N-terminal pro-hormone
of brain natriuretic peptide (NT-proBNP) correlated strongly
with SCD hazard (Kruzan et al., 2016). When assessed as a
continuous parameter, SCD hazard rose by 27% at every 2-fold
NT-proBNP growth. In categorical analyses, SCD hazard was
3-fold greater in the NT-proBNP top tertile (>7,350 pg/mL)

FIGURE 2 | Adjusted survival of subjects by CKD and heart failure status.
Survival was adjusted for age, sex, race, diabetic, and hypertension status.
CKD, chronic kidney disease; HF, heart failure. Adapted from 2018
United States Renal Data System annual data report (United States Renal
Data System, 2018). Reproduced with permission.

in comparison to its bottom tertile (<1,710 pg/mL). There
was a trend for an association of elevated troponin I (cTnI)
levels with a heightened risk of SCD in entirely adjusted
models. Sensitivity assessments by comparing hazard analyses
demonstrated analogous outcomes. Enhancement in hazard
prediction by cardiac biomarkers addition to typical hazard
factors seemed to be higher with NT-proBNP (concordance
statistic for 3-year hazard: 0.810; 95% confidence interval, 0.757–
0.864; and continuous net reclassification improvement: 0.270;
95% confidence interval, 0.046–0.495) compared to cTnI (Kruzan
et al., 2016). The presence of elevated levels of cardiac biomarkers
has not only been associated with higher SCD occurrence
but also with reversible myocardial stunning. An observational
cohort study of 70 prevalent hemodialysis patients found that
myocardial stunning was common during dialysis (64%) and was
related to increased relative mortality and development of low
LVEF after 1 year (Burton et al., 2009). Even though a reduced
LVEF in the non-dialysis population is a hazard element for SCD,
it does not appear to be as relevant as in the ESRD population.
In a review of 80 ESRD deaths that occurred secondary to SCD,
a LVEF ≤35% was only evident in one-fourth of the patients
(Bleyer et al., 2006).

The prevalence of HF, SCD and the occurrence of VAs and
ICD/CRT-D implantation were analyzed in ESRD patients on
RRT in the 2018 USRD annual report, and the findings are
summarized in Table 2 (United States Renal Data System, 2018).
The 2-year survival rates of ESRD adult patients with and
without HF were 66.0 and 93.4%, respectively. The respective
rates in the presence and absence of SCD and VAs were 55.3
and 77.2%. When ICD/CRT-D were implanted in these patients,
their 2-year survival rate was inferior (48.1%) compared to
subjects who did not undergo device implantation (62.9%)
(United States Renal Data System, 2018). This, however, could
perhaps be attributed to the severity of the underlying CV
disease, as ICD/CRT-D procedures are performed mostly in
late stages of HF.
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TABLE 2 | Prevalence of HF, SCD, and VA and annual incidence of cardiovascular
procedures in End-stage renal disease individuals.

% Patients

#Patients Overall 66–69 70–74 ≥75

Heart failure

Hemodialysis 218,720 40.4 28.3 38.5 44.7

Peritoneal dialysis 22,023 28.3 19.9 27.6 32.7

Transplant 75,313 14.4 6.0 12.4 19.5

SCD/VA

Hemodialysis 218,720 4.8 2.9 4.6 5.7

Peritoneal dialysis 22,023 4.6 2.1 4.4 5.8

Transplant 75,313 2.0 0.6 1.6 3.1

ICD/CRT-D

Hemodialysis 88,377 0.9 0.9 1.0 1.0

Peritoneal dialysis 6,181 1.1 0.6 1.2 1.3

Transplant 10,851 0.8 0.1 0.7 0.9

CRT-D, cardiac resynchronization therapy with defibrillator; HF, heart failure; ICD,
implantable cardioverter-defibrillator; SCD, sudden cardiac death; VA, ventricular
arrhythmias. Adapted from 2018 United States Renal Data System annual data
report. Adapted from 2018 United States Renal Data System annual data report
(Kusumoto et al., 2018).

Cardiac arrhythmia/arrest accounted for ≈40 and 17% of
identified causes of death amongst individuals on dialysis and
transplant recipients, respectively (Figure 3; United States Renal
Data System, 2018). The cause of death was not available or
unidentified for 27 and 74% of dialysis patients and transplant
participants recruited for the study, respectively. CV causes
(arrhythmias, cardiac arrest, congestive HF, acute MI, and
coronary atherosclerosis) were responsible for 48 and 28% of
deaths amongst subjects on dialysis or transplant receivers,
respectively (United States Renal Data System, 2018).

In the context of ESRD CV disease is known to contribute
to rising mortality rates in the short and long-term. USRDS
data (Herzog et al., 1998) demonstrated, after 1 year of follow-
up, a mortality rate of 60% in patients on long-term dialysis
post-acute MI (United States Renal Data System, 2018). In
general, the presence of CV disease in ESRD patients significantly
worsens their survival rates. Finally, the robust relationship
between SCD and ESRD also spreads to the pediatric population.
A retrospective assessment of USRDS data comprising ∼1,400
deaths amongst ESRD individuals aged up to 30 years showed
that cardiac arrest and arrhythmias accounted for most deaths
associated with cardiac causes (>2%/year) (Parekh et al., 2002).
These findings indicate that mechanisms other than those
associated with CAD and/or HF prompt fatal arrhythmias in
subjects with ESRD.

PATHOPHYSIOLOGIC MECHANISMS
CONTRIBUTING TO HIGH RISK FOR
ARRHYTHMIAS

Sudden cardiac death pathophysiology has been described
as multifaceted; combinations of various factors can result
in electrical conduction volatility and VAs, followed by
hemodynamic collapse. Understanding this mechanism may

FIGURE 3 | Unadjusted percentages of deaths by cause, modality amongst
dialysis patients and transplant recipients. Dialysis patients’ data exclude
missing/unknown causes of death (A). Transplant patients’ denominator
excludes missing/unknown causes of death (B). AMI, acute myocardial
infarction; ASHD, atherosclerotic heart disease; CHF, congestive heart failure;
CVA, cerebrovascular accident (United States Renal Data System, 2018).
Reproduced with permission.

assist in identifying the time point at which the interaction
between a prompting incident and a present source is risky.
Remodeling of the structure and electrophysiologic properties
of the heart, fibrosis, coronary artery calcification, autonomic
imbalance, and volume and electrolyte changes are all considered
contributors to this scenario.

Structural Remodeling
Renal impairment provokes cardiac remodeling including LV
hypertrophy (LVH) and its fibrosis. Clinical evidence revealed an
independent correlation between LVH and CKD in subjects with
mild to moderate reduction in eGFR (Levin et al., 1999; Paoletti
et al., 2005; Moran et al., 2008; Cerasola et al., 2010). Notably,
the frequency of LVH increases with worsening of renal function.
Furthermore, fibrosis and non-ischemic cardiomyopathy were
demonstrated by magnetic resonance imaging (MRI) in dialysis
patients (Mark et al., 2006). Hypertension, diabetes mellitus,
and anemia were common co-morbidities and may partially
explain the LV remodeling that occurs (Schroeder et al., 1997;
Hunter and Chien, 1999; Cioffi et al., 2011). Mechanistically,
activation of growth factors, proto-oncogenes, and cytokines,
together with increased norepinephrine and angiotensin II
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plasma concentrations are likely contributors through their well-
defined effects on cardiac structure, from hypertrophy to fibrosis
and apoptosis (Mall et al., 1990; Amann et al., 1998). A higher
hazard of sustained ventricular tachycardia (VT) and SCD
susceptibility has been associated with those structural changes
per se (Haider et al., 1998; Yan et al., 2006; Schmieder et al., 2007;
Roes et al., 2009; Reinier et al., 2011).

Chronic kidney disease is also linked to peripheral vascular
disease (Pai and Giachelli, 2010; Briet et al., 2011; Hu et al.,
2011; Shroff and Shanahan, 2011). The reduction of vascular
elasticity is correlated with worsening eGFR and endothelial
dysfunction. An inadequate endothelium-dependent vasodilator
response can already be detected in mild renal disease (Perticone
et al., 2004, 2010). As a consequence of vessel remodeling
and sclerosis, coronary perfusion reserve is affected and can
raise the risk of ischemic events (Kingwell et al., 2002) and
arrhythmias. In ESRD, vascular remodeling is more apparent
as calcium-phosphate accumulation, which may additionally
provoke vascular integrity impairment (Schlieper et al., 2010).
Excessive phosphate levels and enhanced calcium-phosphate
product have been demonstrated to raise, SCD risk from 20 to
30% (Ganesh et al., 2001).

Electrophysiological Alterations
Structural alterations can affect the myocardial electrophysiology.
Myocardial fibrosis changes the tissue structure slowing down
stimulus conduction through the fibers (Waldo et al., 1983),
which can sustain re-entrant arrhythmias (e.g., VT) (Yan et al.,
2006; Schmidt et al., 2007; Roes et al., 2009). Altered cardiac
conduction can retard the activation of the ventricles and
thereby, in the last segment of the QRS complex, produce
late action potentials. They are low amplitude signals and
were identified in 25% of patients on RRT (Morales et al.,
1998). Also, the non-homogeneous retrieval of the excitability
of the ventricles was reported by studies evaluating QT interval
dispersion; it is mainly increased in the post-dialysis period
(Lorincz et al., 1999; Morris et al., 1999; Patel et al., 2011) and
may reflect a higher vulnerability to VAs (Kiuchi and Mion,
2016). Post-evaluation by a 24-h Holter monitoring revealed
that >90% of RRT patients presented with abnormal T-wave
alternans (TWA) throughout 24 h (Secemsky et al., 2011)
and that dialysis sessions could provoke alterations in TWA
(Friedman et al., 2007; Green et al., 2012). A study comprising
48 participants demonstrated that TWA rose throughout dialysis
sessions returning to basal levels after dialysis. However, the
investigators did not find any correlation with electrolyte levels,
LV structure and function, major adverse CV events, or mortality
(Green et al., 2012).

Malignant arrhythmias and SCD may also be associated
with dialysis frequency in ESRD individuals. After a lengthy
interdialytic period, a failure to keep the desirable homeostasis
may occur predisposing patients to harmful events (Kiuchi
and Mion, 2016). Undeniably, VAs and SCD often occur on
Mondays and Tuesday’s after the long dialysis-free interval over
the weekend and within 12 h subsequent to the HD sessions
beginning (Bleyer et al., 1999, 2006; Perl and Chan, 2006; Foley
et al., 2011; Kumar et al., 2016) suggesting that BP changes

and variations of electrolyte- and volume- homeostasis can
provoke arrhythmias.

Myocardial scars create areas of heterogeneous electricity
conveyance predisposing to re-entrant arrhythmias, specifically
in the context of renal dysfunction initiated either automatically
or elicited by different regions within the myocardium (Brotman
et al., 2010). The association of ESRD with increased sympathetic
nerve discharge rates and the susceptibility of abnormal rhythms
to adrenergic activity have been shown in some human studies.
These are mediated partially by afferent discharges arising
from the kidney (Converse et al., 1992; Svarstad et al., 2001;
Hausberg and Grassi, 2007) providing a potential basis for a
high incidence of ventricular ectopic beats (VEBs) in >75%
of patients with ESRD for the period of and post to dialysis
sessions (Gruppo Emodialisi E Patologie Cardiovascolari, 1988).
Sympathetic activity in these subjects is perhaps more likely
than in other patient cohorts to results in adverse consequences
(Zoccali et al., 2002).

SYMPATHETIC OVERACTIVITY IN
HYPERTENSION AND CKD

In patients with CKD, sympathetic hyperactivity raises the CV
risk and exerts a critical role in increasing blood pressure.
Also, sympathetic overdrive can already be found in the earliest
phases of CKD (Grassi, 2009, 2010; Paton and Raizada, 2010).
In both hypertension and CKD, several mechanisms contribute
to sympathetic excitation, including reflex and neuro-humoral
pathways (McGrath et al., 1978; Grassi, 2009, 2010). Sympathetic
overactivity has been correlated to CKD evolvement and can be
triggered by several types of renal damage (McGrath et al., 1978;
Neumann et al., 2004; Schlaich et al., 2009a; Grassi et al., 2012).
Afferent and efferent nerves surrounding renal vessels, tubules,
the pelvis, and glomeruli supply renal innervation. It facilitates
the interconnection within the neuro-cardio-renal axis (Drukker
et al., 1987; Barajas et al., 1992; Kumagai et al., 2012; Mahmoodi
et al., 2012; Mulder et al., 2013) through a two-way neural
path to convey afferent and efferent sympathetic impulses to
and from the brain, respectively (Guertzenstein and Silver, 1974;
Campese and Kogosov, 1995; Garthwaite and Boulton, 1995;
Ye et al., 1997; Zanzinger, 2002; Kimura et al., 2005; Kumagai
et al., 2012). Increased sympathetic tone, via renal efferent
nerves, modifies tubular reabsorption of Na+ and H2O with
subsequent fluid retention, renal blood flow decrease, and RAAS
stimulation (DiBona and Kopp, 1997; Krum et al., 2009; Schlaich
et al., 2009a,b; Grassi et al., 2012). The central integration of
afferent renal stimulus to regulate primary sympathetic discharge
completes the feedback loop (Campese and Kogosov, 1995;
DiBona and Kopp, 1997; Ye et al., 1997; Kumagai et al., 2012).

Hypertensive states, other CV diseases, CKD and ESRD,
are often characterized by augmented renal sympathetic nerve
activity (RSNA) (Lundin et al., 1984; Grassi et al., 1998; Esler
et al., 2003; Campese et al., 2006) as demonstrated by high levels
of muscle sympathetic nerve activity (MSNA) documented in
every stage of human hypertension (Grassi et al., 1998). High
levels of renal norepinephrine spillover have been described in
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human hypertension (Esler et al., 2003) and increased renal
sympathetic nerve firing rates in preclinical models (Lundin et al.,
1984). Meta-analyses have revealed that worsening in eGFR is
an independent CV hazard (Mahmoodi et al., 2012) and that
sympathetic activation is linked to poorer CV outcomes (Zoccali
et al., 2002; Grassi, 2009, 2010; Grassi et al., 2012). There is
clear data that hypertensive patients with mild renal damage
have significant elevated MSNA in comparison to hypertensive
individuals with normal renal function and to normotensive
populations (Figure 4; Tinucci et al., 2001). A close relation
between sympathetic activation and gradual renal function
decline is evident.

Afferent sensory renal nerves are crucial to modulate
SNS activity, as has been elegantly shown in studies
conducted in ESRD and post-renal transplant patients.
Increased SNS activity persists in ESRD patients despite
hemodialysis and even after renal transplantation due
to the remaining native kidneys (Converse et al., 1992).
Indeed, BP and MSNA can be normalized by removal
of the native kidneys. Consequently, focusing on the
renal sympathetic nerves as a therapeutic target is a
reasonable approach to treat hypertension and states of
renal damage to prevent the progression of renal impairment
(Barnett et al., 2014).

Accumulating evidence suggests a potential role of gut
dysbiosis in the pathophysiological mechanisms involved in
hypertension and CKD via the neuroendocrine regulation
of immunity. The gut microbiome sustains intricate
communication with vital organs (e.g., immune system,
bone marrow, blood vessels, kidneys, and central and autonomic
nervous system: ANS) to control cardiometabolic homeostasis
(Bercik et al., 2011; Bravo et al., 2011; Karbach et al., 2016; Rooks
and Garrett, 2016; Dinan and Cryan, 2017; Evenepoel et al.,
2017; Josefsdottir et al., 2017). In addition to the endocrine

FIGURE 4 | MSNA recordings in individuals with mild CKD, and hypertensive
and normotensive individuals. BP, blood pressure; CKD, chronic kidney
disease; MSNA, muscle sympathetic nerve activity (Tinucci et al., 2001).
Reproduced with permission.

effect, the gut microbiome also exerts a paracrine influence via its
metabolites (Akchurin and Kaskel, 2015; Santisteban et al., 2015;
Shankland and Jefferson, 2017; Carnagarin et al., 2019). Gut
dysbiosis may play an important role in the onset and advance
of CKD. Gut dysbiosis elicits immune-mediated inflammatory
responses affecting regulatory brain nuclei and its relations
to the SNS and thereby the kidneys (Carnagarin et al., 2019).
This provokes a positive feedback loop where the resulting
sympathoexcitation further promotes gut dysbiosis and increases
gut permeability allowing the escape of toxic metabolites
in the circulation as seen in CKD (Vanholder et al., 2003;
Martinez et al., 2005; Jourde-Chiche et al., 2009; Vaziri, 2012;
Sabatino et al., 2015).

THERAPEUTIC TARGETING OF SNS
ACTIVATION

Given the great importance of SNS activation in hypertension
and CKD and its close association with adverse CV consequences,
including SCD, therapeutic targeting of the SNS at various levels
is expected to confer clinical benefit. A conventional approach is
the blockade of peripheral β-receptors, and more recently, direct
interference with renal afferent and efferent nerves through RDN
has shown promising results.

β-Blockers
The anti-arrhythmic effectiveness of β-blockers is based on
the competitive β-adrenoreceptor block of pro-arrhythmic
properties mediated by the SNS, including decelerating of
sinus frequency and probably the inhibition of additional
Ca2+ discharge via the RyR2 channels. VEBs and VAs
suppression, as well as SCD rate reduction, have been
demonstrated with β-blockers particularly in HF (Krittayaphong
et al., 2002; Prystowsky et al., 2012; Shinohara et al., 2017).
β-blockers are considered efficient and safe anti-arrhythmic
drugs and represent an established pharmacological anti-
arrhythmic therapy. Generally, VAs management and SCD
prevention utilise β-blockers as the pillar for their treatment
(Priori et al., 2016).

Renal Denervation
Renal denervation is a device-based technique to directly
modulate efferent and afferent nerves connecting both kidneys
and central integrative structures in the brain. In resistant
hypertensive patients, a marked BP-lowering effect and a fast
decrease in the activity of single fibre sympathetic nerve
units were noticed post-RDN (Hering et al., 2013). Moreover,
sympathetic overactivity and RAAS disruption are likely to
benefit this population. RDN has been proved to be safe in all
studies carried out thus far, and may be of specific benefit in
hypertensive CKD subjects (Hering et al., 2012; Kiuchi et al.,
2013; Luo et al., 2013; Schlaich et al., 2013). Similarly, ESRD
subjects with poorly controlled hypertension had a continuous
systolic office BP-lowering effect and an important fall in
MSNA over 12-months post-RDN, without safety concerns
(Schlaich et al., 2013).

Frontiers in Physiology | www.frontiersin.org 6 January 2020 | Volume 10 | Article 1546

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01546 January 14, 2020 Time: 12:52 # 7

Kiuchi et al. Sympathetic Activation: Triggering Malignant Arrhythmias

Aside from the improved BP control, the regression of
hypertensive target organ damage is considered a good indicator
of therapeutic efficiency. Indeed, structural and functional
changes were noticed as assessed by echocardiography post-
RDN. This effect was also observed in 83% of the participants who
were classified as “non-responders,” as their BP-lowering effect
was less than 10 mmHg (Brandt et al., 2012). Direct modulation
of SNS activity may have benefits beyond its impact on BP
with implications for high-risk populations (Brandt et al., 2012;
Kiuchi and Mion, 2016).

In another study (Mahfoud et al., 2014) 72 subjects with
resistant hypertension underwent cardiac-MRI (55 of them
underwent RDN, and 17 were controls) prior to and 6 months
after RDN. A remarkable BP-lowering effect in both systolic and
diastolic BP (∼22/8 mmHg), as well as a reversal of the left
ventricular remodeling (LV mass index regression of 7.1%), were
reported post-RDN. On the other hand, control subjects did not
present any variation. After RDN, average LVEF significantly
improved by ≈7%. In this study, LV circumferential strain
substituted diastolic function. Patients who were subjected to
RDN had their circumferential strain significantly improved by
21%, while control subjects did not experience this effect.

Doltra et al. (2014) prospectively assessed 23 resistant
hypertensive patients who had undergone cardiac-MRI and
RDN. RDN led to a decrease in LVMI regardless of the BP-
lowering effect, suggesting that RDN may additionally reduce
interstitial fibrotic tissue in the myocardium, regarding absolute
collagen matter, because if the observed LVMI regression
was exclusively owing to a reversal of myocyte hypertrophy,

extracellular volume fraction would be expected to increase
(Doltra et al., 2014). Whether this has a potential effect on the
prognosis and the event reduction remains unknown. Besides,
Perlini et al. (2005) did previously demonstrate in rodents that
interstitial fibrosis in the myocardium provoked by hypertension
improved after α-adrenergic block or sympathectomy.

More recently, McLellan et al. (2015) collected 24-h
ambulatory-blood-pressure (ABPM), echocardiograms, cardiac-
MRI and electrophysiological studies in 14 subjects presenting
with resistant hypertension prior to and 6 months post-
RDN. After RDN, the average ABPM was reduced, while
overall conduction velocity rose considerably, and conduction
interval was reduced. Also, changes in conduction velocity
and variations in average ABPM correlated positively. In
an ovine model, those with chronic hypertension had left
atrial remodeling on diverse time-domains and a strong
association between electrophysiology properties and structure
involved in the remodeling flow. These successive morphological
modifications were linked to conduction abnormalities and
resulted in greater atrial fibrillation inducibility and duration.
Immediate antihypertensive therapy commencement may avoid
the development of substrates able to maintain atrial fibrillation
(Lau et al., 2010). A marked reduction in MRI derived LV mass
and diffuse ventricular fibrosis was also observed (McLellan et al.,
2015), in keeping with studies discussed above.

Likewise, one hundred consecutive resistant hypertensive
subjects who were subjected to RDN and experienced an average
office systolic BP fall >10 mmHg at 6 month post-RDN were
studied by Dorr et al. (2015). Cardiac extracellular matrix and CV

FIGURE 5 | Numerous types of renal injury can trigger increased afferent signaling, which is centrally integrated leading to increased sympathetic discharges to
various organs, including the kidneys, and thereby stimulating renin secretion, Na+ retention, and vasoconstriction. The increased sympathetic output is also pointed
toward other relevant organs (e.g., the heart and peripheral vessels), which can result in adverse outcomes. RAAS, renin-angiotensin-aldosterone system; Na+,
sodium; O2, oxygen. Adapted from Schlaich et al. (2009c). Reproduced with permission.
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fibrotic tissue reabsorption were assessed by different pro-peptide
types before RDN and at 6 month follow-up through blood
samples. A substantial office systolic BP drop was reported
6 months post-RDN. At this stage, the serum levels of pro-
peptides were remarkably reduced compared to baseline in
participants with an intensified collagen turnover. These results
point to possible beneficial RDN effects on CV fibrosis in cohorts
who have hypertensive heart disease and cardiac fibrosis.

Animal studies found sympathetic activation mitigation by
RDN as assessed by renal catecholaminergic content reduction
(Mahfoud et al., 2015). Moreover, RDN importantly improved
LV longitudinal strain, reduced end-systolic volume and
cardiac fibrosis, enhancing cardiac performance. Remarkably,
neprilysin activity reduction and brain natriuretic peptide
(BNP) level increases were shown after RDN (Ceia et al.,
2002). In congestive HF, the excessive cardiac volume provokes
BNP and atrial natriuretic peptide release, both of which
have diuretic and cardioprotective effects (Stevens et al.,
1996; da Silva and Aguiar, 2017). Heightened neprilysin
activity was uncovered to worsen LV dysfunction, as it
enzymatically degrades natriuretic and other bioactive peptides;
and it is related to unfavorable outcomes. Therapeutically,

HF populations have enormously benefited from neprilysin
inhibition by sacubitril/valsartan (McMurray et al., 2014). RDN
induced neprilysin inhibition may, therefore, contribute to its
apparent cardioprotective effects.

While these findings are promising and suggest that
sympatho-inhibitory therapeutic approaches may have
substantial therapeutic benefit, further in-depth investigation of
how RDN may reduce the burden of HF and SCD in CKD is
warranted as are larger-scale studies to confirm results obtained
predominantly in selected cohorts without appropriate controls.

It is recognized that CKD progression can be slowed
by a moderate control of BP. While RDN has been used
predominantly to treat resistant hypertensive patients (Figure 5;
Symplicity et al., 2010; Krum et al., 2014), it is likely of beneficial
value in CKD. Indeed, RDN has demonstrated GFR improvement
(Kiuchi et al., 2013, 2014; Delacroix et al., 2014) and reduction of
albuminuria (Kiuchi et al., 2013, 2014; Ott et al., 2014; Schmieder
et al., 2014), although these studies are limited by a short
follow up period.

Kiuchi et al. (2016a) reported cardiac structural and functional
enhancement, which were associated with eGFR improvement in
a resistant hypertensive cohort with CKD at follow-up 6 month

FIGURE 6 | Sympathetic and parasympathetic nervous system cardiac arrhythmogenic effects. Blue = parasympathetic nervous system. Red = sympathetic
nervous system. Black = Connections between the brain and the parasympathetic and sympathetic nervous systems. Up arrows = increase. Down
arrows = decrease. Redline and + = provoke these events. Blue line and − = inhibit these events (Franciosi et al., 2017). Reproduced with permission.
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post-RDN. In this study, RDN improved echocardiographic
parameters in patients with or without LVH (Kiuchi et al., 2016b).
RDN was crucial in a series of cases comprising patients who
had dilated cardiomyopathy and continuous episodes of VAs, as
it impressively reduced the number of these arrhythmias and
therefore the ICD shocks (Ukena et al., 2012). Growing data
both from different case series (Remo et al., 2014; Armaganijan
et al., 2015) and from a multicentre registry have shown
favorable outcomes for anti-arrhythmic effects associated with
RDN (Ukena et al., 2016). The limited data currently available
suggest that RDN could be especially beneficial for HF subjects
with VAs who are unresponsive to maximum β-blocker therapy
and unsuitable for VT catheter-ablation. Alternatively, RDN may
have an adjuvant role for those who will be subjected to catheter-
ablation for refractory VAs.

In a cohort of HF subjects, NT-proBNP levels were reduced
by RDN, which was well tolerated and did not worsen the
function of the heart and the kidneys (Hopper et al., 2017).
Also, the proportion of refractory VAs and ICD shocks plunged
post-RDN in another cohort with late stages of HF and CKD
(Kiuchi et al., 2017).

The ANS imbalance plays a crucial role in advanced HF
setting, which per se triggers and maintains VAs (Fukuda
et al., 2015; Zipes, 2015). The hypersympathetic drive directed
toward the heart can worsen other pre-existing conditions that
contribute to VAs (e.g., ischemia, underlying rhythm and dilated
cardiomyopathy) (Shen and Zipes, 2014; Fukuda et al., 2015).
Unraveling the exact role of the ANS in the pathogenesis of VA
will be rlevant for prevention and treatment of those arrhythmias
(Ng, 2016; Franciosi et al., 2017; Figure 6).

Renal denervation may blunt sympathetic overactivity
and arrhythmogenic foci, thereby potentially reducing
arrhythmogenic activity. Preclinical data have shown remodeling
of the stellate ganglion (SG) and the brain stem ∼2 months
post-RDN, likely medaited by afferent renal nerve signaling
interruption (Tsai et al., 2017). Also, a reduction of 18FDG-
uptake, SG sympathetic traffic and atrial tachyarrhythmias
were correlated to neural modifications of these structures.
Therefore, such remodeling could at least in part explain the
antiarrhythmic effects of RDN (Tsai et al., 2017). Even 1 year
following a trauma, the central and peripheral nervous system
may continue to impact on the damaged site and in distant
zones of the brain (Bramlett and Dietrich, 2007). These gradual
changes possibly underpin specific lasting effects following the
primary damage, such as those provoked by RDN. In cats,
roughly 10% of neurons located in renal sympathetic fibers

arise from the ganglia composing the thoracic chain (Meckler
and Weaver, 1984). Due to these interconnections, SG cell
death may occur retrogradely by RDN. This is supported by
data showing that certain colorants applied to renal nerves
resulted in bright labeling of the sympathetic cells located in
the para- and pre-vertebral ganglionic chains (Ferguson et al.,
1986; Gattone et al., 1986; Sripairojthikoon and Wyss, 1987).
Usually, sympathetic preganglionic fibers reaching both SG run
through the cervicothoracic spinal cord (Pilowsky et al., 1992),
which hugely increases interconnection possibilities between
these fibers and those arising from the kidneys. It is also possible
that several different routes (i.e. carotid sinus) contribute with
collapse between synapses (Tsai et al., 2017), as afferent renal
nerve ganglionic cells situated in lumbar and thoracic dorsal root
ganglia of the spinal cord also connect to hypothalamic nuclei–
specifically the posterior and lateral areas, and the locus ceruleus
(Campese and Kogosov, 1995; Jansen et al., 1995). Together these
data suggest that long-term RDN results may possibly occur due
to remodeling of crucial brainstem sites and both SG.

CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

Sympathetic nervous system activation is a key feature of CKD
and ESRD and causally linked to adverse cardiac consequences.
The renal nerves, in particular, appear to be essential mediators
and can now be targeted selectively. Data from small and mostly
uncontrolled studies in relevant cohorts support the concept
that targeting the renal nerves directly may confer benefit
beyond blood pressure lowering. This therapeutic approach may
beneficially impact on the CV sequelae commonly encountered
in CKD and ESRD such as SCD and VAs. Clearly, appropriately
designed larger-scale studies in both CKD and ESRD cohorts
are necessary to substantiate these preliminary findings and to
demonstrate the potential clinical utility of targeting sympathetic
overactivity to decrease the high morbidity and mortality related
to HF and cardiac arrhythmias in this high-risk population.
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