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Recognizing locomotion modes is a crucial step in controlling lower-limb exoskeletons/orthoses. Our study proposed a fuzzy-logic-based
locomotion mode/transition recognition approach that uses the onrobot inertial sensors for a hip joint exoskeleton (active pelvic
orthosis). The method outputs the recognition decisions at each extreme point of the hip joint angles purely relying on the
integrated inertial sensors. Compared with the related studies, our approach enables calibrations and recognition without
additional sensors on the feet. We validated the method by measuring four locomotion modes and eight locomotion transitions on
three able-bodied subjects wearing an active pelvic orthosis (APO). The average recognition accuracy was 92.46% for intrasubject
crossvalidation and 93.16% for intersubject crossvalidation. The average time delay during the transitions was 1897.9ms (28.95%
one gait cycle). The results were at the same level as the related studies. On the other side, the study is limited in the small sample
size of the subjects, and the results are preliminary. Future efforts will be paid on more extensive evaluations in practical applications.

1. Introduction

Lower-limb exoskeletons/orthoses serve as important roles in
rehabilitation, industrial manufacture, and other human-
centered areas [1]. The specifically designed mechanical
structures and the control strategies can alleviate the loads
on the human body and thus increase the wearer’s absolute
strength in heavy load bearing or endurance in long-term
tasks. There are various types of exoskeletons according to
the active joints, such as whole-body exoskeletons (e.g.,
BLEEX [2] and HAL [3]) and single-joint ones [4] (e.g., hip
joint and ankle joint). The hip joint connects the lower
extremity and the trunk. The hip joint’s primary function is
to support the weight of the body in both static (e.g., stand-
ing) and dynamic (e.g., walking) postures [5]. The develop-
ment of the hip joint exoskeleton is a hot research topic in
this area. There are many groups developing hip joint
exoskeletons (or active pelvic orthoses) all over the world

[6–13]. The assistance on the hip joint helps to stabilize the
locomotion [6–9], optimize the metabolic cost [10, 11],
adjust the abnormal gait patterns [12], and reduce the extra
loads on the spine [13], according to the design of the
exoskeleton.

One primary step in exoskeleton control is to recognize
lower-limb motion intents accurately. It bridges the gap
between the human sensorimotor system and the external
robotic controllers, the performance of which determines the
safety and working efficiency of the whole system [4]. The
recognition tasks include gait phase estimation/detection,
locomotion mode recognition, and other joint motion param-
eter estimations. Locomotion mode recognition involves the
ambulation modes on different terrains (e.g., level ground
and stairs) and the nongait patterns (e.g., standing). The
recognition system should recognize the current modes and
mode transitions accurately on multiple subjects. The
recognition approach comprises the sensing system and the
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processing algorithms. The processing algorithms are usually
designed based on the signal features of the sensing system.
Previous studies on this area suggest that the neural-
mechanical signal fusion method can produce satisfactory rec-
ognition results (e.g., accuracies and time latency). The neural
signals are usually measured from the muscle signals (e.g.,
electric activities represented as surface EMG or shape changes
represented by the noncontact capacitive sensors). The
mechanical signals are measured from the inertial measure-
ment units (IMUs) and loadcell sensors. The sensor nodes
can be integrated into the mechanical structure of the
exoskeletons. The muscle signals respond faster than the
mechanical signals. However, they convey more noises, and
the mechanical signals can produce signals with high repeat-
ability due to the advancement of sensing technology. The
combination of the signals can compensate each other to get
better performance.

The target for locomotion mode recognition is to pro-
duce an accuracy as high as possible with the least interven-
tion on the human body. The muscle signals require
additional electrodes or front-ends on the human body,
which decreases the convenience and the potential willing-
ness of uses. Another limitation is that the recognition
parameters should be calibrated for each individual, increas-
ing the time needed before use. For hip joint exoskeleton con-
trol, many researchers purely used mechanical signals for
human locomotion mode recognition. For instance, the
study [14] combined the IMU sensors on an active pelvic
orthosis and the foot pressure sensors for gait mode recogni-
tion. The designed algorithm was an event-based fuzzy-logic
structure triggered by the foot pressure sensors. The study
[15] identified different gait modes with the hip joint angles
measured from the encoder of the hip joint exoskeleton.
The designed algorithm was a multilayer perceptron neural
network. The study [14] conducted a real-time locomotion
mode recognition with IMU signals when wearing the active
pelvic orthosis (APO [8]). The machine learning-based algo-
rithms were trained and tested onboard. The studies men-
tioned above produced accurate recognition results on
various locomotion mode tasks. However, for hip joint exo-
skeleton control, burdensome calibration for different indi-
viduals and additional sensor nodes on the human body
still limited practical applications. For instance, the study
overcame the subject-dependent problems with sEMG sig-
nals, but the system still required pressure insoles on feet to
provide gait event information. The study of our group vali-
dated the recognition method with the APO. However,
subject-dependent training and calibration were needed
before testing procedures.

In this study, we proposed a locomotion mode recogni-
tion method based on inertial measurement unit sensors on
the hip joint exoskeleton. The designed fuzzy-logic-based
algorithm can overcome the subject-dependent parameters
in data training, which does not require training for each sub-
ject before uses. Besides, no additional sensors are required
on the human body, increasing the convenience in practical
applications. We preliminarily evaluated the proposed
method with an APO on the locomotion mode and locomo-
tion transition recognition on multiple subjects.

2. Experimental Setups

2.1. Hip Joint Exoskeleton. In this study, we used an active
pelvic orthosis (APO) developed by the research group of
Scuola Superiore Sant’Anna (SSSA) [8]. The lightweight exo-
skeleton can provide assistive torque in the sagittal plane to
the hip joints (see Figure 1). The APO was designed with a
serial elastic structure based on torsional springs, and the tor-
que was transmitted to the joints with two lightweight carbon
fiber-made links (driving part in Figure 1). A C-shaped (in
the coronal plane) structure combined with the bandages
fixed the exoskeleton to the waist and pelvis of the user, keep-
ing it stable on the human body. Two orthotic shells were
connected to the carbon fiber-made links and fixed on the
thighs with bandages. The torque was applied to the human
body through the shells. There were 3 degree-of-freedoms
(DoFs) for each leg, two passive (hip adduction/abduction
and pelvic tilting), and one active (flexion/extension) [8].
The passive DoFs ensured the stability of the whole system
during ambulation. The core of the actuation system of
APO was the DC motors with gearboxes (80 : 1 reduction
ratio). The torsional spring was placed on the axis of the flex-
ion/extension of the exoskeleton, between the DC motor
(gearbox) and the carbon fiber-made link. The basic calcula-
tion of the interaction torque was achieved by the torsional
spring constant and the relative position of the encoders
[8]. The interaction torques between the human body and
the exoskeleton lead to the deformation of the spring. With
the integrated encoders and the stiffness of the torsional
spring, the control system of the APO can calculate the inter-
action torques between the human body and the DC motor.

The control strategy of APO was hierarchical control.
The low-level controller was the torque control. The interac-
tion torques calculated from the encoders served as the feed-
back of the control loop. The control output determined the
applied torque on the human body. There were zero-torque
mode and assistive-torque mode. For the zero-torque mode,
the desired interaction torques between the legs and the exo-
skeleton were zero. In the assistive-torque mode, the control-
ler’s commanded torque was a predefined curve (in one
stride). The high-level controller was an adaptive oscillator-
(AOs-) based controller, which used a set of adaptive oscilla-
tors to track the phase of one gait cycle continuously. The
input of the AO-based controller was the encoder signals
representing the hip joint angle information, and the output
of the controller was the gait phase at time t and the corre-
sponding anticipated torque. One merit of the AO-based
controller was the continuous estimation of gait phases with
robustness to different walking speeds [16].

2.2. Sensing System.We implemented an IMU board on each
leg (see Figure 1). The raw signals of the IMU board included
3-axis accelerations and 3-axis gyroscopes. There was a
microcontrol unit (MCU) on the board, i.e., ATMEGA328.
TheMCU calculated the pitch angle and the roll angle (global
frame of the Cartesian system) with the acceleration and
gyroscope signals. The board was fixed on the cuff of the exo-
skeleton through a connector (3D printed). The pitch angle
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of the IMU corresponded to the flexion/extension of the hip
joint. The update rate of the tilt angles was 100Hz.

The data of the IMU boards were transmitted to a control
circuit on the back of APO. The control circuit synchronized
the data of APO and the IMU boards via Universal Synchro-
nous Asynchronous Receiver Transmitter (USART). The
control circuit integrated a WIFI module. The data of the
IMU sensors and the states of APO were transmitted to a
host computer wirelessly in each 10ms. A graphic user inter-
face on the computer was designed with MATLAB R2016b to
control the data sequence and store the data.

2.3. Experimental Protocol. In this study, we recruited three
healthy subjects. They had an average age of 27.3 years, an
average height of 173.7 cm, and an average weight of
67.3 kg. Each subject wore the APO, as shown in Figure 1
in the experiment. In this experiment, we recorded 5 locomo-
tion modes and 8 locomotion transitions. The locomotion
modes included standing (St), level walking (LW), stairs
ascending (SA), and stairs descending (SD). The locomotion
transitions included St⟵⟶LW, LW⟵⟶SA, and
LW⟵⟶SD. Each subject performed 4 tasks of ambula-
tion to cover all the locomotion modes and transitions (see
Figure 2). For task 1, there were 2 stride cycles of LW and 7
stride cycles of SA (St⟶ LW⟶ SA⟶ St). For task 2,
there were 7 stride cycles of SD and 2 stride cycles of LW
(St⟶ SD⟶ LW⟶ St). For task 3, there were 3 stride
cycles of LW and 5 stride cycles of SD (St⟶ LW⟶ SD
⟶ St). For task 4, there were 5 stride cycles of SA and 3
stride cycles of LW (St⟶ SA⟶ LW⟶ St). The tasks
in the experiments were shown in Figure 2. The number of
stride cycles was shown in Table 1. In our study, to mimic
the locomotion in daily activities, we allowed the subjects to
perform the locomotion modes at their favorite paces. There-
fore, the number of gait cycles of the subjects was different.
Three subjects performed different task repetitions. Subject
1 performed 9 repetitions for each task, including LW with

90 gait cycles, SA with 108 gait cycles, SD with 108 gait cycles,
and 9 repetitions for each locomotion transition (LW⟶ SA,
SA⟶ LW, gait initiation/termination). Subject 2 performed
5 repetitions for each task, including LW with 50 gait cycles,
SA with 60 gait cycles, SD with 60 gait cycles, and 5 repetitions
for each locomotion transition. Subject 3 performed 6 repeti-
tions for each task, including LW with 60 gait cycles, SA with
72 gait cycles, SD with 72 gait cycles, and 6 repetitions for each
locomotion transition.

3. Recognition Method

3.1. Cascaded Recognition Method. The locomotion recogni-
tion method was designed based on the signal features
acquired in the IMUs of both legs. The recognition method
is cascaded, which firstly (first layer) classifies the static
mode (St) and dynamic modes (LW, SA, SD) and secondly
(second layer) identifies the corresponding dynamic loco-
motion modes (see Figure 3). In the second layer, we
designed a fuzzy-logic-based algorithm. There were two
membership function sets in the fuzzy-logic-based algo-
rithms, one for each leg. The input of the membership
functions was the data pair of peak-valley values detected
from the thigh angles. Therefore, in the second layer, we
firstly identified the peaks and valleys and secondly calcu-
lated the fuzzy-logic membership functions. During the
locomotion transitions, there are different leading legs.
The procedures of two legs worked independently in the
recognition process.

In the cascaded recognition method, the first step is to
distinguish between the static locomotion mode and the
dynamic modes. As there were no gait patterns during stand-
ing, the signal profiles were much different from that of
ambulation modes. We extracted time-domain features to
represent the signal profiles of standing and other locomo-
tion modes. We firstly segmented the data (pitch angles and
accelerations) with a 100ms (10 samplings) sliding window.
We calculated the standard deviation on the windows of
the left leg’s pitch angles stdðθLÞ and the sum of absolute
values of 3-axis accelerations sumðaccÞ. Additionally, we
compared the angular difference of the two legs in the sagittal
plane, expressed as θrelative= jθL − θRj. θR is the right thigh’s
pitch angle, and θL is the left thigh’s pitch angle. θrelative is
the relative pitch angle between the left thigh and right thigh.

Control part

Control circuit

Orthotic shell

Driving part

IMU

Figure 1: The hardware of the system, including the active pelvic
orthosis (APO) and the IMU for measurement.

St LW

SA SD

St

Task 1

Task 2

St

SD

LW
Task 3

Task 4

SA

Figure 2: The tasks in the experiments. St denotes standing, LW is
short for level walking, SA is short for stair ascending, and SD is
short for stair descending. The arrows indicate ambulation
direction. The tasks are denoted with different colors.
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The first layer recognition was achieved by comparing the
threshold-based conditions. The logic was expressed as

std θLð Þ > Thstdor θL − θinitj j > Thθor θR − θinitj j
> Thθ or sum accð Þ > ThAcc and θrelative > θstatic:

ð1Þ

If the logic condition was satisfied, the mode would be
recognized as dynamic modes. Otherwise, it was classified
as the static mode (St). θinit is the initial pitch angle for both
thighs which is close to 0.

In the above logic condition, Thstd was the standard devi-
ation threshold for the sliding window which was selected as
0.5°. Thθ was the pitch angle threshold for both legs which
was selected as 8°. θstatic was the threshold for the static mode
which was selected as 10°. ThAcc was the threshold for accel-
eration which was chosen as 500.

3.2. Detecting the Extreme Values. The second layer was to
further separate the data into corresponding dynamic loco-
motion modes (i.e., LW, SA, and SD). We designed a fuzzy-
logic-based algorithm to classify the locomotion modes. Each
input was a 2 × 1 vector including the peak and valley of the
pitch angles. We designed an algorithm find_peak() to detect
the peaks and valleys of the IMU signals. The most recent
true peak and valley values found by find_peak() would be
put in a 2 × 1 buffer as the input of the subsequent fuzzy-
logic-based algorithms. Taking finding the left leg’s peak
values for example (diagram see Figure 4), we firstly prede-
fined thresholds for peak value Th_peak and time interval
Th_interval. θLðtÞ was the pitch angle of the left leg at time t.
We used PðiÞ to represent the ith peak value found in
(pseudo) real-time. Secondly, the past 21 samples before time
t were compared (i.e., θLðtÞ, θLðt − 1Þ,⋯, θLðt − 20Þ). If θLðt
− 10Þ is larger than all the 10 numbers backward
( θLðt − 20Þ, θLðt − 19Þ,⋯θLðt − 11Þ and all the 10 numbers
forward ( θLðtÞ, θLðt − 1Þ⋯ θLðt − 9Þ), we set PðiÞ = θLðt −
10Þ. If the absolute value of peak value PðiÞ minus the initial
value of pitch angle θLð0Þ was larger than Th_peak, we would
consider the peak value PðiÞ as an outlier which would be dis-
carded. Otherwise, the PðiÞ would be treated as a peak candi-
date. Because of the existence of false peak values created by
the noise, we compared peak candidate’s location location_
P(i) with that of the latest candidate location_P(i-1). We set
the time interval threshold Th_interval for two adjacent peak
values. If the time interval between these two peak values
was smaller than Th_interval, we would assume that one of
the two candidate peak values was false. The candidate with
the smaller value was aborted. We set a decision flag for the
algorithm. The decision flag would be activated if a true peak
and a true valley were detected. The peak-valley pair was then

inputted to the subsequent fuzzy-logic-based algorithm, and
then the flag would be deactivated. The procedure of detecting
valleys and the values of the other leg was the same.

3.3. Fuzzy-Logic-Based Recognition Method. We designed a
fuzzy-logic-based method to separate between the locomo-
tion modes of LW, SA, and SD. As mentioned above, the
input of the fuzzy-logic algorithm was a 2-dimensional
(2D) vector containing the latest detected peak and valley
(one leg), represented as θp and θv, respectively. The maxi-
mum/minimum values revealed the characteristics of differ-
ent locomotion modes. For instance, the θp values of SA
were larger than that of LW and SD, as the hip joint angles
were larger in flexion when ambulating upward. The valleys
of the thigh pitch angles also demonstrated similar features.
During the LW and SD mode, θv values were at the same
level, while they would decrease during the SA mode because
the stair-ascending locomotion contains a kicking-back
movement in which the hanging leg could reach the lowest
pitch angle without the constraint of the stairs. During LW
and SD, θv would be limited by the ground and the stairs.
We visualized the characteristics in Figure 5. The distribution
of maximum-minimum of different locomotion modes could
be separated apart.

We designed multivariate membership functions to clas-
sify the three locomotion modes. The membership function
calculates the membership value of the event-based feature
belonging to the target mode. The output range of member-
ship is (0,1], where 1 is the maximum membership of the
model. The membership functions were calculated in parallel
with the signals of two legs. For the signals of each leg, we
defined three membership functions, one for each locomo-
tion mode. The function was expressed as

f i =
ki

2π Σij j1/2 e
− 1

2 Ci−�Xið ÞTΣ−1
i Ci−�Xið Þ

� �
, i = 1, 2, 3, ð2Þ

where i denoted the mode’s number, ki was the scale factor,
Ci = ðθpi, θviÞT was the input vector including the detected

peak and valley, and �Xi = ðμpi, μviÞT was the central point of
the membership function. In our study, the point was repre-
sented as the mean value of the training data sets. Σi was the
covariance matrix representing the data distribution. After
calculating three membership functions of LW, SA, and SD,
respectively, the algorithm proceeded to calculate the maxi-
mal membership of the target mode:

Targetmode = arg max
i

f ið Þ: ð3Þ

Figure 5 shows that 2-dimensional space three member-
ship functions created three oval shape regions, whose center
coordinates were the mean value of three membership func-
tions (�Xi). In our study, the parameters �Xi and Σi were fitted
with the training data set (described in detail below).

3.4. Synchronization of the Recognition Decisions. There were
inertial sensors on both thighs. The fuzzy-logic-based recog-
nition method worked in parallel for the left leg and the right

Table 1: The stride cycle number in each task.

Task 1 Task 2 Task 3 Task 4

LW (stride) 2 2 3 3

SA (stride) 7 0 0 5

SD (stride) 0 7 5 0

4 Applied Bionics and Biomechanics



leg. The recognition decisions were then synchronized to
minimize the errors in locomotion transitions. In our cas-
caded recognition method, the first layer was to distinguish
between St and dynamic modes. The transitions were gait
initiation and gait termination. For gait initiation recognition

(St⟶ othermodes), the first recognized transition was
deemed to be the results, which were expressed as

ti =min right legs′s transition time point tR
� �

,
h

� left leg′s transition time tL
� �i

,
ð4Þ

where ti was the timing point of the detected transition. For
gait termination recognition, the last recognized transition
was deemed to the recognition results. The timing point tt
was expressed as

tt =max right leg′s transition time point tR
� �

,
h

� left leg′s transition time tL
� �i

:
ð5Þ

For the second layer recognition, the transition timing
points (t0d) were the first recognized timing points between
the left leg’s and right leg’s results.

4. Evaluation Method

4.1. Crossvalidation. We used the crossvalidation method to
evaluate the performances. We evaluated the performance
with 1 : 2 intersubject crossvalidation and 1 : 1 intrasubject
crossvalidation. In the 1 : 1 intrasubject crossvalidation, each
subject’s data were divided into two sets with the same sizes.
The first data were used for training, and the second set for
testing. The procedure was repeated with the second data
set for training and the first set for testing. The results of
the two tests were averaged as the result of the subject. In
the 1 : 2 intersubject crossvalidation, we used the data of
one subject for training and the data of the other subjects
for testing. In the training procedure, the parameters of the
fuzzy-logic-based algorithms were fitted.

4.2. Recognition Accuracy. The first metric for evaluating the
performance was the recognition accuracy.

In the first layer, the recognition decisions (St and other
dynamic modes) were continuously calculated in each
sample. The recognition accuracy (recognition accuracy 1)
was defined as

recognition accuracy1 ið Þ = Ncorrect1 ið Þ
Ntotal1 ið Þ , ð6Þ

First-layer classifier

Sliding windows
Threshold-based Second layer 

classifier
Fuzzy-logic-based

algorithm

Standing

Dynamic
modes

Level walking

Stair ascending

Stair descending

Detecting the 
maximum/mini
mum hip angles

Figure 3: The diagram of the recognition method. The first layer was to distinguish dynamic modes from standing (St). The second layer was
designed to classify the dynamic modes, and there were three dynamic modes (LW, SA, and SD).
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Figure 4: The flow chart of finding a peak value from the thigh pitch
angles.
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where i was the subject’s number, Ncorrect1 was the number
of correctly recognized decisions, and Ntotal1 was the total
number of decisions.

In the second layer, the recognition decisions were calcu-
lated in each extreme point being detected (peak and valley).
The recognition accuracy of the second layer was defined as

recognition accuracy ið Þ = Ncorrect ið Þ
Ntotal ið Þ , ð7Þ

where iwas the number of subjects,Ncorrectwas the number
of correctly recognized gait cycles, and Ntotal was the total
number of gait cycles.

4.3. Confusion Matrix.We used the confusion matrix to illus-
trate the recognition performance of each locomotion mode.
The details of the definition can be found in [17].

4.4. Time Delay of the Locomotion Transitions. Another met-
ric for evaluating the performance was the time delay. There
were three critical timing points in each transition period, i.e.,
the timing point when the data changed from St to dynamic
modes (gait initiation, t0i), the timing point when the data
changed from dynamic modes to St (gait termination, t0t),
and the timing point when the data changed from one
dynamic mode to another (t0d).

The reference transition time was determined by labels.
In our cascaded recognition method, the first layer was to
separate between standing and dynamic modes. We manu-
ally labeled the data as standing and dynamic modes by
IMU signals. If the pitch angles exceeded a threshold com-
pared with that of standing, the data would be labeled as
dynamic modes, and t0i was defined as the reference of the
gait initiation transition time between standing and dynamic
modes, while t0t was defined as the reference of the gait ter-
mination transition time between dynamic and standing
modes. For the second layer recognition, the reference transi-
tion time was labeled based on the gait events detected by the
foot pressure insoles. t0d was defined as the reference of the
transition time between two dynamic modes. t0d would be

labeled as the middle point of the swing phase. The labeling
method motion transitions were the same as that of
existing-related studies [18, 19].

The time delay (Td_init) of gait initiations was defined as
the difference between the recognized timing point ti and the
reference transition time of gait initiation t0i, expressing as

Td_init = ti − t0i: ð8Þ

Similarly, the timed delay (Td_terminal) of gait termina-
tions was expressed as

Td_terminal = tt − t0t , ð9Þ

where tt was the recognition transition time of gait termina-
tion, and t0t was the reference transition time of gait
termination.

The time delay (Td_dynamic) of the dynamic modes was
expressed as

Td_dynamic = td − t0d , ð10Þ

where td was the recognition transition time of dynamic
modes, and t0d was the reference transition time of dynamic
modes. The positive value presented the delay of recognition,
and the negative value represented the advance of recogni-
tion, shown in Figure 6.

5. Results

5.1. Recognition Accuracy. In this section, we showed the rec-
ognition accuracy for both the first and second layer classi-
fiers. The first layer recognition was designed to distinguish
dynamic modes from standing (St). The second layer recog-
nition was designed to classify three dynamic modes (LW,
SA, and SD).

As for the first layer (classification between dynamic
modes and St), the recognition accuracy for each subject
was 92.18%, 93.00%, and 90.45%, respectively. The average
recognition accuracy was 91.88%. As for the second layer
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Figure 5: The distribution of the data of LW, SA, and SD (denoted by the dots) and the calculated membership function (represented by the
ellipses). The data of LW, SA, and SD were represented as the yellow dots, the red dots, and the blue dots, respectively. The data were collected
from subject 1.
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(classification between LW, SA, and SD), the fuzzy-logic-
based method produced accurate recognition decisions in
locomotionmode tasks (the case result see Figure 6). The rec-
ognition accuracy was higher than 0.89 for most of the eval-
uations (intersubject shown in Table 2 and intrasubject
shown in Table 3). In Tables 2 and 3, each row represented
the subject number used for training, and each column repre-
sented the testing data (the subject used for testing). The off-
diagonal results in Table 2 were the intersubject recognition
accuracies, while the diagonal results in Table 3 denoted the
accuracies of the intrasubject crossvalidation.

In the 1 : 2 intersubject validation (see in Table 2), the
membership functions trained with subject3’s dataset had
the best performance, with the highest accuracy, 95.51%.
The average recognition accuracy for each subject trained
with different datasets was 91.54%, 92.80%, and 95.14% for
subject 1, subject 2, and subject 3, respectively. The lowest
accuracy (89.84%) occurred in subject 1 trained with subject
2’s dataset. Subject 3’s average recognition accuracy showed
the best performance, 95.14%.

In Table 3 (intrasubject crossvalidation), recognition
accuracies showed a similar pattern but slightly decreased
compared with intersubject validation. The lowest accuracy,
86.80%, occurred in subject 1 trained with subject3’s dataset.
The average testing set recognition accuracy of three subjects
trained with the same training dataset was 92.98%, 93.26%,
and 91.16%, respectively, with subject 1, subject 2, and sub-
ject3’s training dataset. The average testing set recognition
accuracy for each subject trained with different training data-
sets was 87.62%, 94.27%, and 95.51%, respectively.

In Tables 4 and 5, we presented the recognition accuracy
for each task. From the experiment results, the lowest recog-
nition accuracy for each subject’s results usually occurred in
task 2 (St⟶ SD⟶ LW⟶ St), while the recognition
algorithm usually performed better in task 1 and task 4.

5.2. Time Delay of Locomotion Transitions. We investigated
the time delay during locomotion transitions trained/tested
with half the data of a subject. We calculated the time differ-
ence between the recognized locomotion transitions and the
referenced ones. We defined the time latency of gait initia-
tions as Td_init, gait terminations as Td_terminal, and the
dynamic transition as Td_dynamic. The unit of the results
was ms.

From Table 6, we can see that the average time delay of
gait initiations for each subject was 1077.3ms, 812.8ms,
and 268.2ms and the average time delay of gait terminations
was 787.5ms, 315.5ms, and 29.2ms. The average time delay
for all the subjects was 554.4ms. Subject 3 has the lowest time
delay for both gait initiations and gait terminations (268.2ms
and 29.2ms). Also, we can find that large time delays
occurred in task 2 and task 3 frequently.

Table 2: Training/testing with whole data of a subject (1 : 2
intersubject validation).

Subject 1 Subject 2 Subject 3

Subject 1 — 90.39% 94.76%

Subject 2 89.84% — 95.51%

Subject 3 93.23% 95.20% —

Table 3: Training/testing with half data of a subject (1 : 1
intrasubject validation).

Subject 1 Subject 2 Subject 3

Subject 1 88.29% 95.42% 95.22%

Subject 2 87.76% 95.31% 96.70%

Subject 3 86.80% 92.07% 94.60%
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Figure 6: The pseudo real-time recognition decisions. The upper subplot is the raw pitch angles and the detected extreme points. The bottom
subplot shows the recognition decisions and the reference labels.
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For Table 7, we can see that the average Td_dynamic for
each subject was 685.1ms, 541.8ms, and 394.0ms. The low-
est average Td_dynamic also occurred in subject 3. Also, we
can see that the large Td_dynamic usually occurred in task 3.

The average gait cycle was 1897.9ms, for which the aver-
age time delay of average Td_init, average Td_terminal, and
average Td_dynamic was 549.5ms accounted for 28.95% of
a gait cycle.

6. Discussion

6.1. Recognition Performances. In this study, we designed and
evaluated the fuzzy-logic-based method for locomotion
mode/transition recognition with a hip joint exoskeleton.
The method only relied on the inertial sensors integrated into
the exoskeleton, and no additional sensors were required on
the human body. Compared with the previous works using
the same exoskeleton [14, 20], one improvement of our cur-

rent study was that we simplified the setups of the sensing
approaches in both training and testing procedures. The sim-
plification in sensors can reduce the time needed to calibrate
the recognition procedure in practical applications.

There are many studies on IMU-based locomotion mode
recognition. The performances are determined by the factors,
including the sensor setups (sensors’ number, sensing posi-
tions), the robotic devices (exoskeletons, prostheses), and the
processing algorithms. The evaluation method also influenced
the numeric recognition results. For instance, the recent stud-
ies on IMU-based locomotion mode recognition achieved
>95% average recognition accuracies with intrasubject cross-
validation [21, 22]. The sensor setups are quite different from
ours. The study mounted an IMU board on the amputated
foot for terrain identification [21], while the study fixed the
IMU boards on the shanks, the waist, and wrists [22].

In our study, the IMU boards were fixed on the thighs of
the subjects. The target robot platform is the hip exoskeleton.

Table 4: Recognition accuracy of 1 : 2 intersubject validation.

Subject 1 Subject 2 Subject 3
Number of
error steps

Number of
total steps

Accuracy
rate

Number of
error steps

Number of
total steps

Accuracy
rate

Number of
error steps

Number of
total steps

Accuracy
rate

Subject 1

Task 1 — — — 2 95 98.48% 1 109 99.08%

Task 2 — — — 20 85 76.47% 12 102 88.24%

Task 3 — — — 10 74 86.49% 7 93 92.47%

Task 4 — — — 0 82 100.00% 1 97 98.97%

Subject 2

Task 1 15 174 91.38% — — — 1 109 99.08%

Task 2 21 176 88.07% — — — 10 102 90.20%

Task 3 18 175 89.71% — — — 6 93 93.55%

Task 4 15 154 90.26% — — — 1 97 98.97%

Subject 3

Task 1 18 174 89.66% 3 132 97.73% — — —

Task 2 19 176 89.20% 8 85 90.59% — — —

Task 3 12 175 93.14% 3 74 95.95% — — —

Task 4 18 154 88.31% 2 82 97.56% — — —

Table 5: Recognition accuracy of 1 : 1 intrasubject crossvalidation.

Subject 1 Subject 2 Subject 3
Number of
error steps

Number of
total steps

Accuracy
rate

Number of
error steps

Number of
total steps

Accuracy
rate

Number of
error steps

Number of
total steps

Accuracy
rate

Subject 1

Task 1 1 79 98.73% 1 37 97.30% 0 54 100.00%

Task 2 15 83 81.93% 5 32 84.38% 6 56 89.29%

Task 3 18 78 76.92% 0 28 100.00% 3 47 93.62%

Task 4 3 68 95.59% 0 33 100.00% 1 49 97.96%

Subject 2

Task 1 9 79 88.61% 1 37 97.30% 0 54 100.00%

Task 2 12 83 85.54% 4 32 87.50% 5 56 91.07%

Task 3 10 78 87.18% 1 28 96.43% 2 47 95.74%

Task 4 7 68 89.71% 0 33 100.00% 0 49 100.00%

Subject 3

Task 1 10 79 87.34% 1 37 97.30% 0 54 100.00%

Task 2 10 83 87.95% 7 32 78.13% 4 56 92.86%

Task 3 7 78 91.03% 2 28 92.86% 2 47 95.74%

Task 4 13 68 80.88% 0 33 100.00% 5 49 89.80%
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The recognition performances of our study were at the same
level as that of the previous studies with similar sensor/robot
setups [14, 20]. In the previous work with the active pelvic
orthosis [14], the authors used inertial sensors on the thigh
and the foot pressure insoles for seven locomotion mode
recognitions. The average accuracies on six healthy subjects
achieved over 99% with locomotion transition tasks. The
average time delay during the locomotion transitions was
fixed to one step. On the other hand, the authors also claimed
the limitations of using additional foot insoles which was not
integrated on the exoskeleton. The accuracies decreased to
65.7%-91.2% in different testing data sets if the centre-of-
pressure (CoP) information was removed [14]. In our
previous works [20], the authors designed machine-
learning-based algorithms for locomotion mode recognition.
In the study of [23], the authors designed an artificial neural
network- (ANN-) based recognition algorithm with the
inertial signals (thigh) and the foot pressure signals. The

average recognition accuracies were over 98% with subject-
dependent training and testing processes. The calculation
time of each recognition decision was less than 1ms, but
the time delay of locomotion transitions was not reported.
By comparison, in our study, we produced an average recog-
nition accuracy of 93.16% with 1 vs. 2 intersubject crossvali-
dations and 92.46% with 1 vs. 1 intrasubject crossvalidation.

6.2. Confounding Factors. One key factor that influenced the
recognition accuracies was the detection of the peaks and val-
leys from the inertial signals. As shown in Figure 6, the loco-
motion modes and transitions were successfully recognized;
although, there were misdetections in the extreme values.
The output value of the membership functions was deter-
mined by the detected values of the extreme points. In the
calculated recognition results, the fuzzy-logic-based method
could successfully tell apart the locomotion modes as long
as the distribution of the extreme points was distinguishable
(as shown in Figure 5). In our study, although no signals
from the feet were measured, the maximum/minimum
angles still showed gait information. The maximum value
of the thigh tilt angle usually occurred at the swing phase,
which was used to distinguish between the LW and SA.
While the minimum angle occurred near the foot-off of one
gait cycle, the values were informative to distinguish between
LW and SD. The maximum hip flexion/extension angles are
highly correlated to the locomotion modes. For instance, the
maximum flexion angles of SA were significantly larger than
that of LW and SD. The subjects can adjust the patterns intu-
itively to control the exoskeletons in locomotion transition
tasks. The physical significance of the features in our fuzzy-
logic-based algorithm can accelerate the training/calibration
procedure for a novice subject. Another point worth being
noted is the intersubject variability in signal profiles and rec-
ognition performances. In addition to the difference in
motion patterns, the difference in relative positions of the
IMU boards on the thigh was another important reason.
During the experiments, the IMU boards were fixed on the
same positions at the exoskeleton. Due to the different

Table 6: The initial and terminal transition time latency.

Subject 1 Subject 2 Subject 3
Td_init Td_teminal Td_init Td_teminal Td_init Td_teminal

Subject 1

Task 1 — — 836.0 376.0 -300.0 161.7

Task 2 — — 1126.0 -354.0 1145.0 -443.3

Task 3 — — 390.0 1626.0 -145.0 -556.0

Task 4 — — 376.0 -184.0 -156.0 -527.5

Subject 2

Task 1 2270.0 192.2 — — -320.0 235.0

Task 2 1207.8 -1266.7 — — 1805.0 -436.7

Task 3 414.4 2652.2 — — -185.0 1768.3

Task 4 1241.1 641.1 — — 301.7 31.7

Subject 3

Task 1 567.8 305.6 840.0 334.0 — —

Task 2 904.4 764.4 1630.0 110.0 — —

Task 3 705.6 2198.9 964.0 452.0 — —

Task 4 1307.8 812.2 340.0 452.0 — —

Table 7: The dynamic transition time latency.

Td_dynamic
Subject 1 Subject 2 Subject 3

Subject 1

LW⟶ SA — 444.0 230.0

SD⟶ LW — 136.0 -405.0

LW⟶ SD — 1696.0 1815.0

Sa⟶LW — -154.0 -1.7

Subject 2

LW⟶ SA 235.6 — 230.0

SD⟶ LW 5.6 — -405.0

LW⟶ SD 235.6 — 1690.0

Sa⟶ LW 687.8 — -1.7

Subject 3

LW⟶ SA 365.6 444.0 —

SD⟶ LW 921.1 136.0 —

LW⟶ SD 2198.9 1526.0 —

Sa⟶ LW 814.4 106.0 —
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anthropometries of the subjects, the relative positions on the
thigh were different. In practical applications, the sensors
usually are fixed on the exoskeleton. Adjusting the sensor
position to keep the same signal profiles across subjects is
also impractical. In future real-time control, we will improve
the recognition algorithms with the ability of fast calibration
to make the trained model quickly update with the new user.

6.3. Influence of the Recognition Performances on Robotic
Control. In real-time control of the APO, the hierarchical
control framework is usually designed. The high-level con-
troller recognizes the locomotion modes and determines
the assistive torque curve of the recognized terrain. The
middle-level controller uses adaptive oscillators (AOs) to
track the desired torque curve. The low-level controller
drives the motors to achieve the force feedback loop.

If there are recognition errors, the desired torque curve
for the controller will be different from that needed for the
current terrain. The user will move with an inappropriate
assistive torque curve. The APO applies assistive torque on
the hip joint angle in the sagittal plane. Due to the mechani-
cal design of the APO (2 passive DoFs in the coronal plane
and passive compliance), it is less likely that the user will fall
caused by the wrong recognition of the locomotion modes.
However, in the long-time use, the mismatching between
the assistive torque curve and the terrains can increase the
metabolic cost (decrease the efficacy of the exoskeleton) and
the risks of the fall. If the transition time delay exceeds the
starting timing point of the applied assistive torque of one
stride, there will be a mismatch between the assistance and
the actual locomotion mode. Otherwise, the time delay is
acceptable. In our study, the average time delay during the
transitions ranges from 300ms to 1000ms, which can cause
a mismatch between the assistive torques and current loco-
motion modes. The impacts on the user are the same as that
of the recognition errors.

To quantitatively evaluate the recognition errors, further
extensive experiments combing the real-time recognition
and exoskeleton controller are needed. In future studies, we
will investigate the effects of the errors and time delay with
real-time recognition and control.

6.4. Limitations and Future Works. Our current study has
some limitations, and the following issues will be addressed
in future works. Firstly, the sample size of the subjects was
small (N = 3). The results were calculated with an offline
evaluation. The generalization ability of the fuzzy-logic-
based algorithm cannot be extensively evaluated with the
small sample size. Due to the individual difference in loco-
motion patterns and sensor placements, the signal profiles
can vary across the subjects. The onboard training and real-
time exoskeleton control have yet to be studied. In future
works, we will carry out an extensive study on real-time con-
trol with onboard training. We will investigate the effects of
false detections on control performances. We will also carry
out experiments on more subjects to evaluate the generaliza-
tion performances. Postprocessing approaches will also be
designed to remove the recognition errors further. Secondly,
the recognition tasks in our study only involved structured

terrains in the laboratory environment. In future works,
more complicated tasks, including various walking speeds,
jogging, and other locomotion modes in daily life, will be
investigated. Thirdly, the recognition decisions in our study
were discrete in one gait cycle. In future works, we will inves-
tigate continuous parameter changes in the locomotion tasks,
such as different heights of stairs and different upward loco-
motion modes (ramps and stairs). The processing algorithm
will also be studied to cope with more complicated problems.

7. Conclusions

In this study, we designed and preliminarily validated the fea-
sibility of a fuzzy-logic-based algorithm for the locomotion
mode and locomotion transition recognition with an active
pelvic orthosis. The method purely relied on the inertial sig-
nals measured from the thigh, and the sensors were fixed on
the exoskeleton. With a proper training process, the fuzzy-
based algorithm produced comparable recognition accuracies
to the existing studies on the same robotic platform. The supe-
riority of themethod was that it required no additional sensors
on the human body, increasing the convenience in practical
applications. The inputs of the fuzzy-logic-based method were
the detected peaks and valleys of the pitch angles of the thigh.
Combined with the cascaded recognition method, it produced
reliable recognition results as long as the detected extreme
points were distinguishable between the dynamic locomotion
modes. Future works will be focused on onboard training
and real-time control of the exoskeleton, investigation of the
complicated unstructured terrains, and adaptation to continu-
ous ambulation parameters.
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