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Abstract

A central feature of pathogen genomics is that different infectious particles (virions and bacterial cells) within an infected
individual may be genetically distinct, with patterns of relatedness among infectious particles being the result of both
within-host evolution and transmission from one host to the next. Here, we present a new software tool, phyloscanner,
which analyses pathogen diversity from multiple infected hosts. phyloscanner provides unprecedented resolution into
the transmission process, allowing inference of the direction of transmission from sequence data alone. Multiply infected
individuals are also identified, as they harbor subpopulations of infectious particles that are not connected by within-host
evolution, except where recombinant types emerge. Low-level contamination is flagged and removed. We illustrate
phyloscanner on both viral and bacterial pathogens, namely HIV-1 sequenced on Illumina and Roche 454 platforms,
HCV sequenced with the Oxford Nanopore MinION platform, and Streptococcus pneumoniae with sequences from
multiple colonies per individual. phyloscanner is available from https://github.com/BDI-pathogens/phyloscanner.

Key words: molecular epidemiology, pathogen transmission, multiple infection, pathogen genomics, phylogenetics,
pathogen diversity.

Introduction
The infectious transmission process imposes a hierarchical
structure of relatedness on pathogen genomes. The genotype
of an individual infectious particle is the result of both within-
host evolution and transmission between hosts; a population
sample collected from multiple hosts, with multiple genotypes
for each host, therefore simultaneously encodes the history of
both processes. Despite the existence of many tools for analyzing
pathogen genomes, none, to our knowledge, are specifically
adapted to exploiting this hierarchical genealogical structure.

A central aim of infectious disease epidemiology is the
identification of risk factors for transmission. The develop-
ment of methods that use pathogen genomes to infer trans-
mission events, along with their direction, is therefore a
priority. A critical recent insight is that including multiple

pathogen genomes per infected individual in such methods
makes this inference easier: It is equivalent to the simpler
process of inferring ancestry (Romero-Severson et al. 2016).
Specifically, if a pathogen has passed from individual X to
individual Y (either directly, or indirectly via unsampled in-
termediate individuals) then all the pathogen particles sam-
pled from individual Y must be descended from the
population of pathogen particles from individual X.
Inferring ancestral states is a standard problem in population
genetics for which many methods exist; the novel insight is
that this standard approach may be used to infer the direc-
tion of transmission. We illustrate this in figure 1.

A frequently used approach in molecular epidemiology is
to describe patterns of genetic clustering—who is close to
whom. However, identifying transmission pairs or clusters
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without the ability to infer transmission direction—who
infected whom—limits our ability to distinguish risk factors
for transmission from those for simply acquiring the pathogen.
One approach for inferring direction is to augment the se-
quence data with epidemiological data, and to couple phylo-
genetic inference with mathematical models of transmission,
for example, references Volz and Frost (2013); Jombart et al.
(2014); Hall et al. (2015); Didelot et al. (2017). However, this
requires strong assumptions from the model. In addition, epi-
demiological data, such as dates and location of sampling and
reported contacts, are not always available, are subject to their
own set of uncertainties and errors, or are sometimes regarded
as too sensitive to link to pathogen genetic data.

Using multiple genotypes per host, and exploiting the link
between transmission and ancestral reconstruction, therefore
promises an alternative and potentially powerful approach to
molecular epidemiology. Although several studies have used
this idea to great effect on an ad hoc basis (Numminen et al.
2014; Worby et al. 2016), no systematic or automatic tool has
been developed for this task.

Once multiple genotypes per host are included in a study,
other questions present themselves naturally, for example,
identifying multiply infected individuals. These may be de-
fined as individuals harboring pathogen subpopulations
resulting from distinct founder pathogen particles. Multiple
infections may be clinically relevant, for example, in the case
of Human Immunodeficiency Virus 1 (HIV-1), dual infection
is associated with accelerated disease progression
(Cornelissen et al. 2012). Multiple infections also represent
unique opportunities for pathogen evolution, especially for
pathogens that recombine. Recombination between diver-
gent strains accelerates the generation of novel genotypes,
and so potentially novel phenotypes. The distinct pathogen
strains in a multiple infection could have been transmitted

simultaneously from the same individual (if that individual
harbored sufficient within-host diversity), or sequentially—
“super-infection”—with each strain perhaps originating
from a different transmitter. For HIV-1, mathematical model-
ing has suggested that recombinants can reach high preva-
lence even when the possibility of super-infection is restricted
to a short window after initial infection, and even when
recombinants have no fitness advantage, if the epidemic is
fuelled by a high-risk core group (Gross et al. 2004).

Molecular epidemiology is being transformed by the ad-
vent of next-generation sequencing (NGS; also called high-
throughput) technologies (Goodwin et al. 2016). For many
sequencing protocols applied to pathogens with extensive
within-host diversity, such as HIV-1 and Hepatitis C Virus
(HCV), the NGS output from a single sample can capture
extensive within-host diversity. Zanini et al. (2015) inferred
phylogenies from NGS reads—fragments of DNA—in win-
dows along the genome for longitudinally sampled individu-
als infected with HIV-1, to quantify patterns of within-host
evolution over time. Here, our focus will be on cross-sectional
data sets: By constructing phylogenies from NGS reads from
multiple infected individuals at once, within-host and
between-host evolution can be resolved.

We present phyloscanner: A set of methods implemented
as a software package, with two central aims. The first is
efficient computation of phylogenies with multiple genotypes
per infected host, and the second is analysis of such phylog-
enies and inference of biologically and epidemiologically rel-
evant properties from a set of related phylogenies. Multiple
related phylogenies arise naturally, either by sampling differ-
ent portions of a genome, or in representing uncertainty in
phylogenetic inference (though bootstrapping, or sampling
phylogenies from a posterior distribution, for example). phy-
loscanner automatically performs the following steps:

(1) Inference of between-host and within-host phyloge-
nies from NGS data in multiple windows along the
pathogen genome (optionally skipped, if the user has
such phylogenies already);

(2) Identification and removal of likely contaminant
sequences;

(3) Quantification of within-host diversity;
(4) Identification of multiple infections;
(5) Identification of crossover recombination breakpoints

in NGS genotypes;
(6) Ancestral reconstruction of the pathogen’s host

state;
(7) Identification of transmission events from ancestral

host-state reconstructions.

phyloscanner was intended for analysis of two distinct types
of sequence data. Firstly, for deep sequencing data, in which
NGS has produced reads from the population of diverse
pathogens represented in the sample. Secondly, for single-
genome amplification (SGA), clonal sequencing, or bacterial
colony picks, whereby laboratory methods are employed to
separate the genomes of individual pathogen particles prior
to amplification and sequencing. Sequencing with primer IDs

FIG. 1. Pathogen transmission direction via ancestral state reconstruc-
tion. In the left-hand phylogeny, tips are labeled red or blue according
to their state: In our case, the state of interest is “in which individual
was this pathogen found?”. This state is known for the tips, but can
only be inferred for the internal nodes of the phylogeny: These rep-
resent coalescence events, ancestors of the pathogens we have sam-
pled. A change in state corresponds to a change in the pathogen’s
host, i.e. to transmission, be it direct or indirect. The central phylog-
eny shows one possible ancestral state reconstruction for which the
root of the tree is blue, meaning blue is ancestral to red. This requires
at least four changes of state (shown with black branches)—four
sampled lineages transmitted from blue to red. The right-hand phy-
logeny shows one possible ancestral state reconstruction for which
the root of the tree is red, meaning red is ancestral to blue. This
requires only one change of state—one sampled lineage transmitted
from red to blue. Based on parsimony, we would consider the right-
hand scenario more likely.
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(Jabara et al. 2011) may in some cases produce similar results
at reduced costs. We also considered haplotype reconstruc-
tion (Zagordi et al. 2011; Prabhakaran et al. 2014; Töpfer et al.
2014), that is, bioinformatically inferring different haplotypes
represented in the short reads of a mixed sample, but in our
hands this approach did not yield satisfactory results (analysis
not shown).

With SGA-style data, within- and between-host phyloge-
nies can be directly inferred using standard methods, and
therefore phyloscanner is not necessary for step 1 in the pro-
cess described earlier. With deep sequencing data, reads for
each sample must first be mapped (placed at the correct lo-
cation in the genome); thereafter phyloscanner begins by
aligning reads in windows of the genome that are matched
across infected individuals, and inferring a phylogeny for each
window (fig. 2).

Results
The best way to illustrate phyloscanner is through examples.
We chose five data sets illustrating different uses, pathogens,
and sequencing platforms. We describe four in the main text,
and one in the Supplementary Material online. These are far
from systematic samples or population surveys; they are small
selections of infected individuals chosen to illustrate the dif-
ferent conclusions that can be drawn using phyloscanner. We
leave the application of phyloscanner to large systematic pop-
ulation samples to future work.

Before presenting phylogenies for these data, we introduce
the term host subgraph. Host subgraphs result from ancestral
host-state reconstruction: They are defined as connected
regions of the phylogeny (tips and internal nodes, with the
branches joining them) that have been assigned the same

host state (i.e., the host that pathogen was in). See supple
mentary section SI 1, Supplementary Material online, for an
explanation of the ancestral state reconstruction algorithm.
Each subgraph can be shown with a solid block of color
corresponding to that host, uninterrupted by coloring asso-
ciated with any other host. Figure 3 shows an example.

Six Illustrative HIV-1 Infections, Sequenced with
Illumina MiSeq
We used phyloscanner to analyze data from the BEEHIVE
project (Bridging the Evolution and Epidemiology of HIV in

FIG. 2. phyloscanner schematic for whole-genome deep sequence data. In this schematic, pathogens are sampled from the population infecting
three hosts. NGS deep sequencing produces reads, which are fragments of the genome sequence of one pathogen particle (after amplification if
necessary). Mapping to a reference means aligning each read to the appropriate location in the genome; this must be done beforehand, as mapped
reads are the inputs to phyloscanner. phyloscanner produces alignments of reads in sliding windows along the genome, automatically adjusting for
the fact that the reference may be different for each sample. Phylogenies are inferred for each alignment. These phylogenies are analyzed separately
using ancestral host-state reconstruction (i.e., assigning hosts to internal nodes), and their information is combined to give biologically and
epidemiologically meaningful summaries. For example, here, we infer that the red individual infected the blue individual directly or indirectly, and
the green individual has two distinct pathogen strains.

FIG. 3. Subgraphs defined by a given ancestral state reconstruction.
Here, we show again the two different ancestral state reconstructions
on the same phylogeny from figure 1, this time illustrating the host
subgraphs that these reconstructions define: connected regions of
the phylogeny that have been assigned the same state (blue host or
red host). Note that the set of tips in a subgraph may or may not form
a clade. In both of the above reconstructions, the blue tips are con-
tained in one subgraph and form a monophyletic group (one clade),
whereas the red tips form a polyphyletic group. The minimum num-
ber of clades needed to encompass all and only the red tips is four,
coinciding with the four red subgraphs in the left-hand
reconstruction.
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Europe), in which whole-genome samples from individuals
with well-characterized dates of HIV-1 infection are being
sequenced, primarily to investigate the viral-molecular basis
of virulence (Fraser et al. 2014). We chose two groups of
patients for detailed investigation (presented in this subsec-
tion and the next), that together demonstrate interesting
features revealed by phyloscanner.

For the BEEHIVE samples, viral RNA was extracted manu-
ally from blood samples following the procedure of
Cornelissen et al. (2016). The RNA was reverse transcribed
and amplified using universal HIV-1 primers that define four
overlapping amplicons spanning the whole genome, then
sequenced using the Illumina MiSeq platform, following the
procedure of Gall et al. (2012, 2014). The resulting reads were
mapped to a reference constructed for each sample using IVA
(Hunt et al. 2015) and shiver (Wymant et al. 2016), producing

input analogous to the illustration in figure 2. See Materials
and Methods for more detail.

These mapped reads were analyzed with phyloscanner
using 54 overlapping windows, each 320 base pairs (bp)
wide, covering the whole HIV-1 genome (�9,200 bp long;
the window entirely overlapping the variable V1–V2 loop
in the envelope gene was not included due to the richness
of insertions and deletions, which leads to poor alignment).
To increase phylogenetic resolution and accuracy, we used
the phyloscanner options to merge overlapping paired-end
reads into single, longer reads, and to delete drug resistance
sites (Gatanaga et al. 2002; Johnson et al. 2011; Wensing et al.
2015) which are known to be under convergent evolution.

Figure 4 shows the resulting phylogenies for four windows,
chosen for clarity when visually inspected. The phylogenies
illustrate single infection (patient A), dual infection (patient

FIG. 4. phyloscanner analysis of four illustrative windows of the HIV-1 genome. A map of the HIV-1 genome is shown at the bottom with the nine genes in
the three reading frames. Phylogenies are shown for the four windows highlighted in gray, with scale bars measured in substitutions per site. Tip labels are
colored by patient, as are all nodes assigned to that patient by ancestral reconstruction, and the branches connecting these tips and nodes; a solid block of
color therefore defines a single subgraph for one patient (see main text). The number labeling each tip is the number of times that read was found in the
sample, and the size of the circle at each tip is proportional to this count. The count is after merging all identical reads and reads differing by a single base
pair (merging similar reads can be done for computational efficiency, or as here, for presentational clarity). External references included for comparison are
shown with black squares. One is HXB2; the other, labeled R, is a subtype C reference used to root each phylogeny. The six patients are labeled A through F.
Single infection: patient A is a singly infected—all reads from this patient form a single subgraph. Dual infection: patient B is inferred to be dually infected, as
is apparent by the fact that ancestral reconstruction produces two subgraphs in each window. Contamination: patients C and D are both singly infected,
but we infer that some contamination has occurred from C to D. Patient D’s sample has a small number of reads that are identical to reads from patient C,
but much less numerous. Such reads are removed, but are shown here as crosses in the clade of patient C, for illustrative purposes. Transmission: in all four
windows shown here, the reads of patient F are seen to be wholly descended from within the subgraph of reads of patient E. We infer that patient E infected
patient F, either directly, or indirectly via an unsampled intermediate. Patient F having a single subgraph, which is linked to patient E by a single branch,
suggests that the viral population was bottlenecked down to a single sampled ancestor during transmission (subject to adequate sampling of both hosts).

Wymant et al. . doi:10.1093/molbev/msx304 MBE

722



B), contamination (from the sample of patient C to the sam-
ple of patient D), and transmission (from patient E to patient
F, possibly via an unsampled intermediate individual).
Coloring on each phylogeny illustrates host subgraphs.

Contamination
Filtering for contamination is an important part of analysis of
NGS data. Contamination may be physical contamination of
one sample into another, or low-level barcode switching
which occurs during the multiplexing and demultiplexing
steps which are central to the high throughput of NGS. phy-
loscanner uses two criteria to identify reads as likely contam-
inants (either criterion is sufficient). The first is that they are
exact duplicates of reads from another patient, but much less
numerous; the second is that they form an additional host
subgraph separated from the primary subgraph, but with too
few reads to call of multiple infection. The second criterion
means that the source of the contaminant reads need not
be present in the analyzed data set to infer contamina-
tion. These reads are flagged according to tuneable
parameters (which will depend on the data set), and
blacklisted from further analysis (marked by pink crosses
in fig. 4). We note that in general, phylogenetic patterns
associated with transmission are distinct from those as-
sociated with contamination: The process of transmission
is accompanied by within-host evolution in the recipient,
whereas contamination is not.

Multiple Infections
If the phylogeny and host-state reconstruction are correct,
the number of subgraphs a patient has equals the number of
founder pathogen particles with sampled descendants (e.g., if
this is 2, a dual infection is inferred). Sampling effects mean
that representatives of these multiple infections may not be
present in all windows.

Transmission
Nodes of the phylogeny not in any patient’s subgraph are
colored black in our figures, as are branches connecting nodes
not part of the same subgraph. These black regions connect
the different host subgraphs to each other, and so correspond
to the pathogen jumping between hosts; each region must
contain one or more transmission events. They may, or may
not, correspond to the passage of the pathogen lineage
through one or more unsampled hosts. The probability of
an indirect transmission will increase with the size of the black
region and may be best investigated by examining the sub-
graph relationships and branch lengths together.

Genome-Wide Summary Statistics
In general, a phyloscanner analysis may produce a large num-
ber of phylogenies and associated ancestral reconstructions.
These can be output both as annotated NEXUS format files,
and as PDF files created with ggtree (Yu et al. 2017) for rapid
visual inspection. Statistics are calculated to summarize the
wealth of information in the phylogenies; these are shown for
the six patients and 54 genomic windows in figure 5.

They include measures of within-host diversity, measures
that allow rapid identification of multiply infected individuals,
and a basic metric of recombination (defined in the supple
mentary section S3, Supplementary Material online).

In a single window, phyloscanner classifies two patients to
be related if they are adjacent (see supplementary section SI,
Supplementary Material online) and optionally, also “close,”
that is, that their subgraphs are within a prespecified patristic
distance of each other. Relationships are further categorized
by the ancestry, or lack of it, that is suggested by the tree
topology. To summarize transmission across all windows,
phyloscanner output summarizes the number of windows
in which each pair of patients are related, and the topological
nature of that relationship. This allows the complete set of
relationships between all patients in the data set to be visu-
alized in graph form. For example, in this data set, only two of
the six patients, E and F, are related in at least half of the
windows. In figure 6A, the counts of the different topological
relationships between these two patients are displayed. With
many links between many patients these graphs become dif-
ficult to interpret visually; a threshold on the number of
windows for links to be displayed is therefore helpful. phylo-
scanner also produces a second version of the graph simpli-
fied further, shown in figure 6B. Here, a single link appears if
relatedness of any topological type is present in at least 50% of
windows, and that link is an arrow if transmission in that
direction is inferred in at least 33% of windows. (The 50%
and 33% thresholds are defaults that can be changed.) These
relationship diagrams were plotted using Cytoscape 3.5.1
(Shannon et al. 2003).

Diagrams such as those in figure 6, when extended to
greater numbers patients, will not always represent a single,
coherent transmission tree among all the patients in the data
set (as can be seen in figs. 7 and 9). Instead, they simply
summarize each pairwise relationship. As a result, we refer
to them as “relationship graphs.” The inference of a single,
most probable transmission tree over all windows is compli-
cated by the presence of multiple infections, incomplete
transmission bottlenecks, and missing data for some patients
in some windows. To our knowledge, no method yet exists to
produce a consensus transmission history that takes into ac-
count all these possibilities.

Resolving the Transmission Pathway within an HIV-1
Phylogenetic Cluster
To illustrate the resolution into the transmission process that
can be obtained by phyloscanner, we chose a set of seven
patients from the BEEHIVE study that were found to be
closely connected in the chain of transmission (fig. 7).
Three of the patients’ samples were sequenced with
Illumina MiSeq and four with Illumina HiSeq; the resulting
reads were processed and mapped using IVA and shiver as
previously, with the mapped reads given as input to phylo-
scanner. phyloscanner summarizes all the pairwise relation-
ships between individuals in each window (fig. 7A), suggesting
a complex network. However, we find that when we focus on
the most likely inferences of source attribution (fig. 7B), phy-
loscanner largely resolves a complex set of pairwise
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FIG. 5. Summary statistics for six illustrative HIV-1 infected patients. Each column shows data from a single patient; each row is one or two statistics,
plotted along the genome. Top row: number of reads, and number of unique reads (corresponding to tips in the phylogeny). Second row: the
number of clades required to encompass all and only the reads from that patient, and the number of subgraphs (see fig. 3 for clarification of these
quantities). In many windows, though not all, the reads of patient B form two subgraphs: evidence of dual infection. For patients C and E, we see a
single subgraph but many clades. This is because of the presence of reads from other patients (D and F, respectively, as seen in fig. 4) inside what
would otherwise be a single clade, turning a monophyletic group into polyphyletic group (which requires splitting in order to form clades). Third
row: within-host divergence, quantified by mean root-to-tip distance. Defining a patient’s subtree as the tree obtained by removing all tips not
from this patient, we calculate root-to-tip distances both in the whole subtree and in just the largest subgraph. For patient B, this distinction is
substantial due to the very large distance (�0.1 substitutions/site) between the two subgraphs of this dually infected patient. For singly infected
patients, divergence may correlate with time since infection. Fourth row: for each window, a stacked histogram of the proportion of reads in each
subgraph. For patient B, when two subgraphs are present, an appreciable proportion of reads are in the second one (mean 12%). The histogram is
absent in the window that was excluded by choice. Bottom row: a score based on Hamming distance (between 0 and 1) of the extent of
recombination in that window. The highest score across all six patients and all windows is indicated with an orange diamond; the reads giving rise
to this score are shown in supplementary figure S6, Supplementary Material online.

Wymant et al. . doi:10.1093/molbev/msx304 MBE

724

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx304#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx304#supplementary-data


relationships into a coherent transmission network that is
consistent with the years of seroconversion. However, this is
not guaranteed to be the case: An exception is the triangle
connecting Patients J, L, and M, where there is too much
uncertainty in the relationships among the triplet to resolve
their ancestry.

HIV-1 Sequenced with Roche 454
A subset of patients from the BEEHIVE study were also se-
quenced using the Roche 454 platform; results from their
analysis with phyloscanner are in supplementary section SI
2, Supplementary Material online.

HCV Sequenced with Oxford Nanopore MinION
To further illustrate phyloscanner’s applicability to different
sequencing platforms and also different pathogens, we used it
to analyze HCV viral data sequenced using the Oxford
Nanopore MinION device. Plasma samples were obtained
from four patients in the BOSON study (Foster et al. 2015),
a phase 3 randomized trial of antiviral therapy with sofosbuvir
(trial registration NCT01962441). Sequencing was performed

using RNAseq-based methods previously described for
Illumina (Bonsall et al. 2015) and adapted for the MinION
device. Briefly, plasma-derived RNA was reverse transcribed,
then sequencing libraries were prepared for each sample us-
ing Oxford Nanopore adapters and customized barcoded
primers. These were pooled and enriched using HCV-
specific nucleotide baits before sequencing on a MinION
R9.0 flow cell. Viral sequences were identified and mapped
using BLASTN (Altschul et al. 1990), standard reference
sequences, and BWA (Li and Durbin 2009). See Materials
and Methods for more details. The resulting BAM files were
used as input for phyloscanner, with a window size of 600 bp
and no overlap between windows. Nanopore sequencing
platforms are capable of producing longer inserts than those
of Illumina, at the cost of a higher error rate (�10% erroneous
base calls). Despite this error, phyloscanner could phylogenet-
ically resolve the within- and between-host evolution, shown
in figure 8.

Multiple Colony Picks per Carrier of S. pneumoniae
phyloscanner’s analysis of phylogenies need not be restricted
to those derived from deep sequencing data in different win-
dows of the genome: It can also be applied to data sets where
within-host diversity is captured by SGA or sequences from
multiple colony picks per individual. We illustrate this

A

B

FIG. 6. Relationship graphs: visual representations of the relationship
between two connected patients infected with HIV-1. The power of
phyloscanner in studying transmission events comes from aggregat-
ing information over many within- and between-host phylogenies, in
this case obtained from different windows of the whole HIV-1 ge-
nome. Part A, top diagram: the outcomes from all 54 windows are
shown. The top blue arrow shows that in 41 windows, patient E was
inferred to be ancestral to patient F, with a single bottleneck. The
bottom blue arrow shows that in two windows the reverse was true—
F was ancestral to E. The undirected red line shows that in two
windows, the patients were linked by “complex” ancestry, with the
direction unclear. The undirected green line shows that in nine win-
dows the patient subgraphs were adjacent and close, but no ancestry
was implied by the topology. In no window was transmission of more
than one lineage inferred, and in no window were the patients distant
and unlinked. (See supplementary section SI 1, Supplementary
Material online, for more details on these categories.) A simplification
of these relational data is shown in part B, with a single directed arrow.
The first number indicates the proportion of windows supporting
transmission in the direction of the arrow, and the second number
indicates the proportion of windows supporting transmission in ei-
ther direction.

A

B

FIG. 7. The relationship between seven patients infected with HIV-1.
The coloring and numbers on the arrows connecting patients are as in
parts A and B of figure 6; in addition, part B here contains undirected
green lines as well directed blue lines. These green lines suggest that the
pair are close in the transmission network but with unknown trans-
mission direction; the single number on the line indicates the propor-
tion of windows supporting this. The known or estimated year of
infection is shown in parentheses after each patient’s label.
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approach with the S. pneumoniae data of Croucher et al.
(2016), specifically the BC1-19 F cluster. This data set consists
of 286 sequences from 92 individuals carrying the bacterium
(with multiple colonies per carrier). These were sequenced
with Illumina HiSeq, though for SGA data the sequencing
platform is largely irrelevant to interpretation, since each se-
quenced sample should not contain any real within-sample
diversity by design. Genomes were processed with Gubbins
(Croucher et al. 2015) to remove substitutions likely to have
been introduced by recombination. As each of these sequen-
ces is a whole genome (unlike the short reads produced by
NGS), we did not split the genome into windows to be an-
alyzed separately. Instead, we represented phylogenetic un-
certainty by generating a posterior set of 100 phylogenies
using MrBayes 3.2.6 (Ronquist et al. 2012) and analyzed these
with phyloscanner. Ancestral state reconstruction was per-
formed on each posterior phylogeny independently,

relationships between carriers identified, and the results sum-
marized over the entire set. In each phylogeny, carriers were
inferred as being related if the minimum patristic distance
between two nodes from the subgraphs associated with each
was less than seven substitutions and they were categorized
as adjacent (explained in supplementary section SI 1.5,
Supplementary Material online). This distance threshold
was selected to demonstrate the method as it picked out
obvious clades in the phylogeny as groups, and was not cho-
sen to imply direct transmission. Retaining such relationships
where they existed in at least 50% of posterior phylogenies
revealed 18 separate groups of carriers whose bacterial strains
were closely related (see fig. 9).

Note that if some residual signals of recombination remain
after processing with Gubbins, analyzing the full-length
genomes in windows by choice (rather than by necessity, as
with short-read NGS data) could mitigate this effect at the

FIG. 8. phyloscanner analysis of two illustrative windows of the HCV genome. Sequence data from four individuals were obtained with the Oxford
Nanopore MinION device. A continuous region of the phylogeny with the same color shows a subgraph for one patient (see main text). Black tips
were flagged as contamination and excluded. Patient-derived sequences clustered with respective genotype 2 and genotype 3 references (G2R,
G3R) as expected from the virus genotypes known from the clinical information available for participants. Two windows, 600 bp in length, are
shown for the E2 and NS4B genes at positions given by the genome map (bottom panel).
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FIG. 9. Phylogeny and relationships between S. pneumoniae carriers. The phylogeny shown is the MrBayes consensus tree. Tip shapes are colored by
carrier, with mother and infant pairs sharing the same color; diamonds represent infants and circles mothers. All nodes assigned to a carrier by
ancestral reconstruction, and the branches connecting these tips and nodes, are given the same color as that carrier’s tips; a solid block of color
therefore defines a single subgraph for one carrier (see main text). Regions of the phylogeny not in any carrier’s subgraph are gray. These regions
connect carriers’ subgraphs to each other, and so each must contain one or more transmission events. The carrier relationship diagram (inset)
displays the relationships between the carriers in 18 identified groups, in the same fashion as in figures 6 and 7, except that here the numbers
represent the proportion of phylogenies from the posterior set, rather than the proportion of genomic windows in which both patients have
sequence data. The clades representing these 18 groups are labeled in the phylogeny.
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cost of reduced phylogenetic resolution in each window. The
merits of this could be explored in a dedicated analysis of such
a data set; here, we simply illustrate application of phyloscan-
ner to full-length sequences as opposed to genomic windows.

Discussion
Improving our understanding of the transmission of patho-
gens is valuable for identifying epidemiological risk factors—
the first step for targeting public health interventions for ef-
ficient impact. Phylogenetic analysis of one pathogen se-
quence per infected individual may identify clusters of
similar sequences that are expected to be close in a transmis-
sion network. However, nothing is learned about the direc-
tion of transmission within the network. Indeed it may be
that none of the individuals transmitted the pathogen to
anyone else, and they were all infected by a common indi-
vidual who was not sampled. Through automatic fitting of
maximum-likelihood evolutionary models to within- and
between-host genetic sequence data, phyloscanner enhances
resolution into the pathogen transmission process. An evi-
dence base is built up by analyzing many phylogenies, notably
through consideration of NGS reads in windows along the
pathogen’s genome. The relationship between infected indi-
viduals is no longer quantified by a single number summariz-
ing closeness, but by a rich set of data resulting from ancestral
host-state reconstruction for each phylogeny.

Romero-Severson et al. (2016) demonstrated the utility of
parsimony for the assignment of ancestral hosts to internal
nodes in a phylogeny containing many tips from two infected
individuals, for simulated HIV-1 data. We have continued
with this approach, developing it for suitability for real se-
quence data from many infected individuals. In particular, we
allow for 1) contamination, 2) multiple infections, and 3) the
possible presence of unsampled hosts in the tree. Details of
two such parsimony algorithms, available for use in phylo-
scanner, are presented in the supplementary section SI 1,
Supplementary Material online. Parsimony has the advantage
that a reconstruction can be completed in reasonable com-
putational time even for phylogenies with tens of thousands
of tips. Other methods of reconstructing the host state of
internal nodes could also be suitable and may be added to the
package in future. Our identification of contamination and
multiple infections is highly valuable in its own right: The
former because this is critical for any empirical study of
within-host diversity, and the latter because such individuals
may be special cases clinically and for pathogen evolution.
Transmission of multiple distinct pathogen strains may occur
simultaneously, or sequentially (super-infection). phyloscan-
ner can detect both cases, though distinguishing them is
difficult without longitudinal sampling (it could be possible
through inference of timed trees, or using the diversity of each
separate infection as a proxy for its age).

Great care must be taken to correctly interpret the ances-
try of pathogens infecting individuals. Even if ancestry were
established beyond any doubt, individual X’s pathogen being
ancestral to individual Y’s pathogen does not imply that X
infected Y: The pathogen could have passed through

unsampled intermediate hosts. Nevertheless the ancestry
does provide valuable epidemiological information, as X has
been identified as a transmitter (and Y a recipient not far
down the same transmission chain). Finding likely transmit-
ters in a large population cohort would allow risk factors for
transmission to be identified and quantified.

Furthermore, inference of ancestry is itself subject to un-
certainty. The inference of ancestry depends on the correct
rooting of the phylogeny, in order that the direction in which
evolution proceeded over time is known. Molecular clock
analyses (such as implemented in TempEst; Rambaut et al.
2016) can aid correct rooting when the sampling dates of the
tips of the phylogeny are known.

The relationships between infected individuals are inferred
by phyloscanner across many phylogenies, for example, those
constructed from NGS reads in windows along the pathogen
genome. By analyzing many phylogenies, phyloscanner miti-
gates the effect of random error—any error that is indepen-
dent in each phylogeny. We therefore give greater credibility
to those relationships observed many times than to those
observed only once. However, systematic error may arise, for
example, due to different patients being sampled at different
stages of infection, with different amounts of within-host di-
versity to analyze (Romero-Severson et al. 2016). Given uncer-
tainties in any individual assignment, we recommend
phyloscanner for population-level analyses, rather than focus-
ing on isolated transmission events (as we have done here, for
simplicity in explaining the method).

The fraction of genomic windows in which a given rela-
tionship is inferred between individuals (e.g., A infecting B
directly or indirectly), is not equal to the probability of that
relationship being true. However it provides a measure of the
robustness with which the available data support that con-
clusion. This is analogous to bootstrapping—sampling with
replacement from the same sequence alignment, to create a
set of similar phylogenies. Here, however, different windows
of the genome make use of different sequence data. Given the
potential for disagreement between different windows due to
genuine biological variation, imperfect sequencing proce-
dures, and so forth, agreement between a fraction x of (non-
overlapping) windows is a stronger statement of robustness
than agreement between a fraction x of bootstraps.
Identification of transmission events with phyloscanner will
involve false positives and false negatives; these will be context
dependent, depending on how strictly transmission thresh-
olds are defined (which balance sensitivity and specificity) and
on the inclusion of sequences similar to those being investi-
gated. We will illustrate this in two works in preparation ex-
amining large population studies.

Although our emphasis has been on extracting broad-
brush information from the rich within- and between-host
phylogenies, these phylogenies contain more information
that could be used in future research. A specific example is
that by resolving the transmission event at a finer level of
genetic detail, it is possible to identify which pathogen gen-
otypes are typically transmitted and which ones are not, with
potential relevance for vaccine design.
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By providing a tool for automatic phylogenetic analysis of
NGS deep sequencing data, or multiple genotypes per host
generated by other means, we aim to simplify identification of
transmission, multiple infection, recombination, and contam-
ination across pathogen genomics.

Materials and Methods

Generation and Assembly of the BEEHIVE Illumina
Data
Viral RNA was extracted manually from blood samples fol-
lowing the procedure of Cornelissen et al. (2016). RNA was
amplified and sequenced according to the protocol of Gall
et al. (2012, 2014). Briefly, universal HIV-1 primers define four
amplicons spanning the whole genome. 5ml of amplicon I
was pooled with 10ml each of amplicons II–IV. Libraries were
prepared from 50 to 1,000 ng DNA as described in Quail et al.
(2008, 2011), using one of 192 multiplex adaptors for each
sample. Paired-end sequencing was performed using an
Illumina MiSeq instrument with read lengths of length 250
or 300 bp, or in the “rapid run mode” on both lanes of a HiSeq
2500 instrument with a read length of 250 bp.

For each sample, the reads were assembled into contigs us-
ing the de novo assembler IVA. The reads and contigs were
processed using shiver as described previously (Wymant et al.
2016). In summary: non-HIV contigs were removed based on a
BLASTN search against a set of standard whole-genome refer-
ences (Kuiken et al. 2012). Remaining contigs were corrected for
assembly error then aligned to the standard reference set using
MAFFT (Katoh et al. 2002). A tailored reference for mapping
was then constructed for each sample using the contigs, with
any gaps between contigs filled by the corresponding part of the
closest standard reference. The reads were trimmed for adapt-
ers, PCR primers, and low-quality bases using Trimmomatic
(Bolger et al. 2014) and fastaq (https://github.com/sanger-
pathogens/Fastaq). Contaminant reads were removed based
on a BLASTN search against the non-HIV contigs and the tai-
lored reference. The remaining reads were mapped to the tai-
lored reference using SMALT (http://www.sanger.ac.uk/
science/tools/smalt-0), the most common base was called at
each position to define the consensus sequence, then the reads
were re-mapped to the consensus sequence.

Generation and Assembly of the HCV Oxford
Nanopore MinION Data
Viral RNA was extracted from plasma using the NucliSENS
easyMAG total nucleic acid extraction system (Biomerieux)
and sequencing libraries were prepared using a modified ver-
sion of an RNA-seq based protocol with a virus enrichment
step. Briefly, the NEBNext Ultra Directional RNA Library Kit
(New England Biolabs, Ipswich, MA) was used to generate
cDNA from 5 ml of total RNA. The NEBNext Ultra II End
Repair/dA-Tailing Module and Blunt/TA Ligase (New
England Biolabs, Ipswich, MA) were used for end repair of
dsDNA and ligation of PCR adapters (Oxford Nanopore
Technologies) to allow for 18 cycles of PCR using custom
barcoded primers with a post-PCR clean-up with 1�
Ampure XP (Beckman Coulter, Pasadena, CA). Each library

was quantified by Quant-iT Qubit dsDNA HS Assay Kit and
the size distribution was analyzed using Agilent Tapestation
High Sensitivity D5000 ScreenTape System. Approximately
equimolar quantities of each library were pooled to a total
of 500 ng mass and processed for probe enrichment using
customized xGen Lockdown 120mer probes specific to HCV
(Integrated DNA Technologies, Inc., Coralville, Iowa) and a
modified Roche NimbleGen protocol for hybridization of am-
plified sample libraries with a shorter 4-h hybridization time
and on-bead post-enrichment PCR (12 cycles). The enriched
pool was prepared for sequencing on a MinION R9.0 flow cell
using the SQK-NSK007 2d ligation kit. Raw fasta5 sequence
files were base called and demultiplexed using Metrichor soft-
ware. Viral sequences were identified and trimmed using a
BLASTN search of the Los Alamos database of HCV genotype
references (Kuiken et al. 2005), then mapped to the closest
matching reference using BWA (with the command bwa mem
–x ont2d). Consensus sequences were called from the BAM
files and used as references for a second iteration of read
mapping.

The phyloscanner Method
For application of phyloscanner to deep sequence NGS data,
the required input is a set of files in BAM format (Li et al.
2009) each containing the reads from one sample that have
been mapped to a reference, and a choice of genomic win-
dows to examine. A sensible choice of windows would nor-
mally tile the whole genome, perhaps skipping regions that
are rich in insertions and deletions (leading to poor sequence
alignment). Windows should be wide enough to capture ap-
preciable within-host diversity, but short enough for some
reads to fully span them; options in the code help to inform
the user’s choice. There is no lower limit to the length of reads
given as input, however as read length decreases, phyloge-
netic resolution will suffer. phyloscanner determines the cor-
respondence between windows in different BAM files by
aligning the mapping references in the BAM files. Using the
same reference for mapping all samples would negate the
need for this step, but it is of paramount importance to tailor
the reference to each sample before mapping to minimize
biased loss of information (Wymant et al. 2016). For each
window in each BAM file, all reads (or inserts, if reads are
paired and overlapping) fully spanning the window are
extracted using pysam (https://github.com/pysam-develop
ers/pysam) and trimmed to the window edges, then identical
reads are collapsed to a single read, giving a set of unique
reads each with an associated count (i.e., the number of reads
with identical sequence). Optionally, A basic metric of recom-
bination is calculated by maximizing, over all possible sets of
three sequences and all possible recombination crossover
points, the extent to which one of the three sequences resem-
bles one of the other two sequences more closely on the left
and resembles the other sequence more closely on the right.
Further detail is provided in the supplementary section SI 3,
Supplementary Material online. In each window, each
sample’s set of unique reads is checked against every other
sample’s set, with exact matches flagged to warn of between-
sample contamination in the analyzed data set; all unique
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reads are then aligned with MAFFT, and a phylogeny is in-
ferred with RAxML (Stamatakis 2014).

phyloscanner contains many options to customize process-
ing and maximize the information extracted from reads and
phylogenies. Standard reference genomes can be included
with the reads for comparison. User-specified sites can be ex-
cised to mitigate the effect of known sites under selection on
phylogenetic inference. Greater faith can be placed in the reads
by trimming low-quality ends and wholly discarding reads that
are low-quality, improperly paired, or rare. Reads in the same
sample that differ from each other by less than a specified
threshold can be merged into a single read to increase the
speed of downstream processing. Overlapping paired reads
can be merged into a single longer read for greater phyloge-
netic resolution. Every option of RAxML can be passed as an
option to phyloscanner, for example, specifying the evolution-
ary model to be fitted, or multithreading.

Optionally, the user may skip inference of phylogenies
from files of mapped reads, and instead directly provide as
input a phylogeny or a set of phylogenies generated by any
other method.

To analyze phylogenies, phyloscanner requires that they
are rooted. This can be done manually, or if the phylogenies
were constructed by phyloscanner from mapped reads, root-
ing can be achieved by providing one or more additional
reference sequences with the mapped reads, and choosing
one of these to use as an outgroup. The outgroup should be
sufficiently distant from all sampled isolates that we can as-
sume the most recent common ancestor of it and every iso-
late (i.e., the root of the whole tree) was not present in any of
the sampled individuals.

Each phylogeny analyzed is annotated with a recon-
struction of the transition process using a modified
maximum-parsimony approach to assign internal nodes
to hosts or to an extra “unassigned” state. The latter is
given to lineages that either must have infected a host
outside the data set, or to those where the situation is
sufficiently ambiguous that this cannot be ruled out. An
important parameter of the reconstruction, designated k,
is used to help identify dual infections and contaminants.
It acts as a penalty, in the parsimony algorithm, for the
reconstruction of single infections showing unrealistic
within-host diversity. A suitable value of k will depend
on the pathogen under study, but as a rule of thumb,
we suggest estimating a level of pairwise genetic diversity
that it would be implausible to see in an infection from a
single source, and using the reciprocal of this for k. In
situations where the phyloscanner user is confident that
dual infections and contaminants are not present, k can
be set to zero, in which case no penalty for within-host
diversity is applied.

The results of the reconstruction can be represented as a
visualization of the partial pathogen transmission tree by the
process of “collapsing” each subgraph (i.e., each set of adja-
cent nodes with the same reconstructed host; see supplemen
tary fig. S3, Supplementary Material online) into a single node
of a new tree structure. This “collapsed tree” is then analyzed

to identify relationships between each pair of infected indi-
viduals, according to the following categories:

(1) Minimum distance: What is the smallest patristic dis-
tance between a phylogeny node assigned to one host
and a node assigned to the other?

(2) Adjacency: Is there a path on the phylogeny that con-
nects the two individuals’ subgraphs without passing
through a third individual? (“Unassigned” nodes do
not interrupt adjacency.)

(3) Topology: How are the regions from each individual
arranged with respect to each other? (See supplemen
tary fig. S4, Supplementary Material online.)

Combinations of these properties can be used to develop
criteria which identify individuals who are closely linked in the
transmission chain. For example, two individuals that are ad-
jacent and within a suitable distance threshold are likely to be
either a transmission pair, or infected via a small number of
unsampled intermediaries. If the distance between subgraphs
is large, on the other hand, separation by unsampled hosts in
the chain of transmission is likely even if they are adjacent.
The nature of the topological relationship between them may
suggest a direction of transmission, or be equivocal.

An individual having multiple subgraphs suggests multiple
infection, with the ancestor node of each subgraph inferred to
be a distinct founder pathogen particle (the ancestor of that
sampled subpopulation). It can be difficult to distinguish a dual
infection from a sample that has been contaminated by an-
other sample not present in the current data set (i.e., where
contamination is not visible as exact duplication of another
individual’s read). For NGS data, we make the distinction in
each phylogeny based on thresholds on read counts: Outside
of the subgraph containing the greatest number of reads, any
additional (“minor”) subgraph is designated as contamination
and ignored if the number of reads it contains is below an
absolute threshold, or below a threshold relative to the read
count in the largest subgraph. By default, minor subgraphs
with read counts exceeding both thresholds are kept, provid-
ing evidence for the presence of multiple distinct subpopula-
tions in that genomic window. (Alternatively, a phyloscanner
option allows all minor subgraphs to be entirely removed from
consideration). Zanini et al. (2015) discarded reads suspected
of being contamination by calculating each read’s Hamming
distance from the consensus, plotting the distribution of these
distances, and discarding reads giving rise either to a second
peak or to a “fat tail” (taken to be recombinant reads). This
approach is not appropriate when the data set may contain
multiply infected individuals, for example for a dual infection,
we wish to keep the reads from each of two distinct groups
that may be separated by a large distance.

The phyloscanner Code
phyloscanner is freely available at https://github.com/BDI-
pathogens/phyloscanner. It is written in Python and R, but
can be run from the command line so that no knowledge of
either language is required. Inference of within- and between-
host phylogenies from BAM-format mapped reads is achieved
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with a single command of the form
phyloscanner_make_trees.py ListOfBams
AndRefs.csv –windows 1, 300, 301, 600,. . .
where ListOfBamsAndRefs.csv lists the BAM files to be ana-
lyzed and the fasta-format references to which the reads were
mapped, and the –windows flag above specifies analysis of the
genomic windows with coordinates 1–300, 301–600, . . .

Analysis of those trees is achieved with a single command
of the form
phyloscanner_analyse_trees.R TreeFiles
OutputLabel (choice of ancestral state
reconstruction).

Included with the code is simple simulated HIV-1 data for
ease of immediate exploration of phyloscanner. Within-host
evolution was simulated using SeqGen (Rambaut and Grassly
1997); resulting sequences were then converted into error-
free fragments that were mapped back to the founding se-
quence, giving BAM-format files suitable as input for phylo-
scanner. We also created BAM-format files by using shiver to
process publicly available HIV-1 reads sequenced with
Illumina MiSeq. A tutorial walking the user through a simple
application of phyloscanner to the simulated data, and a
more sophisticated application to this real public data, is
available from the GitHub repository with the code itself.

Running phyloscanner on the six HIV-1 samples presented
in the first results section took 18 min on one core of a stan-
dard laptop, 10 min of which was running RAxML. A number
of options allow the user to speed up phyloscanner. Firstly, it is
“embarrassingly” parallelizable, in that each window of the
genome can be processed separately (e.g., the 54 windows
used for the HIV data could have been processed via 54 jobs
run in parallel). Secondly, all options of RAxML can be passed
as options to phyloscanner, including multithreading. Thirdly,
the number of unique sequences kept for phylogenetic infer-
ence can be controlled through various options, notably merg-
ing of similar reads and/or a minimum read count. Fourthly,
the user can easily use a different tool for phylogenetic infer-
ence instead of RAxML by using the –no-trees option of phy-
loscanner_make_trees.py, and running the desired tool on the
fasta file of processed reads that is output for each window. (As
an example, running FastTree [Price et al. 2009] on the same
data took 28 s instead of the 10 min needed by RAxML.)

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Töpfer A, Marschall T, Bull RA, Luciani F, Schönhuth A, Beerenwinkel N,
Carolyn McHardy A. 2014. Viral quasispecies assembly via maximal
clique enumeration. PLoS Comput Biol. 10(3):1–10.

Volz EM, Frost SDW. 2013. Inferring the source of transmission with
phylogenetic data. PLoS Comput Biol. 9(12):e1003397.

Wensing AM, Calvez V, Günthard HF, Johnson VA, Paredes R, Pillay D,
Shafer RW, Richman DD. 2015. 2015 Update of the drug resistance
mutations in HIV-1. Top Antivir Med. 23(4):132–141.

Worby CJ, O’Neill PD, Kypraios T, Robotham JV, De Angelis D,
Cartwright EJP, Peacock SJ, Cooper BS. 2016. Reconstructing trans-
mission trees for communicable diseases using densely sampled ge-
netic data. Ann Appl Stat. 10(1):395–417.

Wymant C, Blanquart F, Gall A, Bakker M, Bezemer D, Croucher NJ,
Golubchik T, Hall M, Hillebregt M, Ong SH, et al. 2016. Easy and

Wymant et al. . doi:10.1093/molbev/msx304 MBE

732



accurate reconstruction of whole HIV genomes from short-read
sequence data. biorxiv.

Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y, McInerny G. 2017. ggtree: an
r package for visualization and annotation of phylogenetic trees with
their covariates and other associated data. Methods Ecol Evol.
8(1):28–36.

Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N. 2011. ShoRAH:
estimating the genetic diversity of a mixed sample from next-
generation sequencing data. BMC Bioinformatics 12:119.

Zanini F, Brodin J, Thebo L, Lanz C, Bratt G, Albert J, Neher RA. 2015.
Population genomics of intrapatient HIV-1 evolution. eLife
4:e11282.

PHYLOSCANNER . doi:10.1093/molbev/msx304 MBE

733


