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Abstract. Several network growth models have been proposed in the
literature that attempt to incorporate properties of citation networks.
Generally, these models aim at retaining the degree distribution observed
in real-world networks. In this work, we explore whether existing net-
work growth models can realize the diversity in citation growth exhibited
by individual papers – a new node-centric property observed recently in
citation networks across multiple domains of research. We theoretically
and empirically show that the network growth models which are solely
based on degree and/or intrinsic fitness cannot realize certain temporal
growth behaviors that are observed in real-world citation networks. To
this end, we propose two new growth models that localize the influence
of papers through an appropriate attachment mechanism. Experimen-
tal results on the real-world citation networks of Computer Science and
Physics domains show that our proposed models can better explain the
temporal behavior of citation networks than existing models.

Keywords: Citation network · Growth model · Fitness · Preferential
attachment · Location-based model

1 Introduction

Over the past two decades, study of citation networks has drawn tremendous
attention for various reasons [1], such as for finding useful academic papers,
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understanding success of authors, papers and institutes, and decision making
processes like promotion and fund disbursement.

The study of complex networks has emerged as a field to explain nontriv-
ial topological features that occur in a wide range of large networked systems.
Citation network is one such example of a complex network, which captures
citation relationships between paper sources or documents. A citation network
is a directed and acyclic information network, with the documents being the
nodes, and directed edges representing citations of one document by another,
thereby capturing the flow of information or knowledge in a particular field. An
important property of citation networks is the “in-degree distribution” of nodes.
Several models have been proposed to illustrate this distribution [15] – but while
these models aim at retaining the power-law degree distribution in synthetic net-
works, they fail to reproduce other important properties that real-world citation
networks might possess. For instance, Ren et al. [16] pointed out that existing
models underestimate the number of triangles and thus fail to model the high
clustering in citation networks, which is closely related to network transitivity
and the formation of communities. In a series of papers [5,6], Chakraborty et
al. showed that the temporal growth of the in-degree of nodes (aka, citation
trajectory) in citation networks can be grouped into five major patterns, and
such patterns are prevalent across citation networks of different domains, e.g.,
Computer Science, Physics.

Building on our previous work [14], we first demonstrate that none of
the established growth models can adequately realize citation trajectories as
observed in the data. This immediately calls for the need to investigate more
involved growth models. We address this issue by accounting for local and global
influences exerted by individual nodes in a network. We introduce the concept of
a ‘location space’ associated with the nodes in the network [3], and propose two
new preferential-attachment growth models based on this concept - Location-
Based Model (LBM) and Location-Based Model with Gaussian active subspaces
(LBM-G). LBM models both the local and global influences, with new nodes con-
necting preferentially based on the combined influence. LBM-G is an extension
of LBM, which models regions of high activity that can be shifted periodically.
We evaluate the proposed models on both the Computer Science and Physics
citation networks. Experimental results show that LBM and LBM-G are indeed
more accurate at realizing the citation trajectories of nodes compared to other
network models.1

2 Related Work

Citation networks are growing networks that exhibit certain nontrivial statistical
properties. In particular, they have been shown to possess a heavy-tailed power-
law in-degree distribution [9,15]. This was later incorporated by Barabasi and
Albert [2] and others [10] in their growth models, that shed light on the concept
1 Reproducibility: The codes and the datasets are available at https://github.com/

dattatreya303/modeling-citation-trajectories.
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of preferential attachment. The evolution of citation networks was also modeled
by preferential attachment with a time dependent initial attractiveness [8].

Another class of growth models employ decay factors to model the temporal
nature of certain node properties [7]. There was also a need to explore the effect
of the aging factor on other global properties of the network, as exhibited by
Zhu et al. [20] and Medo et al. [12].

Another growing body of research focused on the temporal growth of the in-
degree of nodes (citation trajectory) in citation networks. Motivated by Xie et al.
[19], Chakraborty et al. [5] studied a large citation network to identify various kinds
of citation trajectories and unfolded many interesting causes responsible for these
patterns [6]. We posit that a new network growth model is needed to explain these
patterns, and our propositions in this work are a means to that end.

3 Dataset

Publication datasets of two domains (Computer Science and Physics) are used
in this paper.

Table 1. Statistics of the datasets.

MAS APS

# of nodes # of edges # of nodes # of edges

Complete network (1960–2010)

711,810 1,231,266 463,347 4,710,547

Network under examination (1960–2000)

282,919 589,201 277,999 2,474,076

Seed network

4,134 4,872 3,569 4,108

Microsoft Academic Search (MAS):
We used the publication dataset of
Computer Science domain released by
Microsoft Academic Search (MAS) [18].
We further filtered a subset of this dataset
for experimental purposes, considering
only papers published till the year 2000
because all the papers under examination
require at least 10 years of citation history as suggested in [5,6] to obtain the
citation growth trajectory.

APS Journal Data: The American Physical Society (APS) journal dataset2

contains articles published in journals like Physical Review Letters, Physical
Review and Reviews of Modern Physics publications. Similar to MAS, we only
considered articles published between 1960 and 2000.

All the models used in this papers start with a seed network, consisting of
papers published in 1960–1975. Table 1 summarizes these datasets.

4 Preliminaries

4.1 Categorization of Citation Trajectories

Chakraborty et al. [5,6] defined ‘citation trajectory of a paper’ as the (non-
cumulative) number of citations (normalized by maximum citation count at any
year) per year the paper receives till the time of analysis. One can consider a
citation trajectory as a time-ordered set of data points (integers). They observed

2 https://journals.aps.org/datasets.

https://journals.aps.org/datasets
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Fig. 1. (a) Toy example of citation trajectories. The ‘Others’ category does not follow
any consistent pattern and is therefore not shown here. (b) Important notations.

that contrary to the general consensus that the shape of the citation trajectory of
papers are the same [2,9], there are five different shapes of citation trajectories
prevalent across different domains of citation network (see Fig. 1 for the toy
examples of trajectories): (i) Early Risers (ER) with a single peak in citation
count within the first five years (known as activation period) after publication;
(ii) Frequent Risers (FR) with distinct multiple peaks; (iii) Late Risers
(LR) with a single peak after five years of publication (but not in the last year);
(iv) Steady Risers (SR) with monotonically increasing citation count; and (v)
Others (OT) whose average numbers of citations per year are less than 1.

4.2 Citation Networks as Random Growth Models

The class of random growth models is a natural choice for analyzing citation net-
works owing to their growing nature. Network growth models define a sequence
of random graphs {Gt, t = 0, 1, . . .}, where Gt = (Vt,Et), with Vt and Et being
the set of nodes and edges in Gt, respectively. In a network growth model, we
have Vt−1 ⊂ Vt and Et−1 ⊆ Et for every t = 0, 1, . . .. The degree of node i in
graph Gt is denoted by Dt(i). Figure 1(b) defines some additional notations used
in this paper.

4.3 Popular Classes of Network Growth Models

We want to investigate whether some popular classes of network growth models
can exhibit the different citation trajectories mentioned in Sect. 4.1. To this end,
we first look at three popular classes of network growth models.

Barabási-Albert (BA) Model: The BA model [2] is based on the principle
of “preferential attachment”, where new nodes connect preferentially to existing
nodes with higher degree. The probability that a new node at time t+1 connects
to node i ∈ Vt is given by,

pBA
i (t + 1) =

Dt(i)∑
j∈Vt

Dt(j)
. (1)
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Table 2. Percentage of papers in different categories present in two real datasets – (a)
MAS and (b) APS, and that generated by the existing models (BA: Barabási-Albert
model, Add: Additive-fitness model, Mult: Multiplicative-fitness model) as well as our
models (LBM: Location-based model, LBM-G: Location-based model with Gaussian
active subspace) with best parameter setting. We also measure the (square of) Jensen-
Shannon distance (JSD) [11] of the results for each model w.r.t. the percentage obtained
in real datasets (see Sect. 7 for more details).

Since new nodes have low initial degrees, owing to initial in-degree being zero,
subsequent nodes that join the network will attach to older nodes with higher
probability. Hence, it is evident that the BA model cannot simulate the initial
growth in citations after publication, i.e., Early Risers, which is often observed
in citation networks (See Table 2). This motivates us to incorporate the intrinsic
‘attractiveness potential’, or ‘fitness’, of a paper in the model. Section 5 gives
theoretical justifications for the same.

Fitness-Based Models: As argued previously, to model initial peak in the
citation trajectory of papers, we associate a fitness value [4,13,17] with each
node. We assume an independently and identically distributed (iid) sequence of
random variables (rvs) {ξ, ξi, i = 1, 2, . . .} randomly drawn from a power law
distribution ξ, e.g., Pareto distribution, with ξi denoting the fitness of node i. In
the additive model the attachment probability of a node is directly proportional
to the sum of its degree and fitness; while in the multiplicative model it is
directly proportional to their product. The attachment probabilities that new
nodes connect to node i ∈ Vt at time t + 1 are given by

Additive: pAF
i (t + 1) =

Dt(i) + ξi∑
j∈Vt

(Dt(j) + ξj)
,

Multiplicative: pMF
i (t + 1) =

Dt(i) · ξi∑
j∈Vt

Dt(j) · ξj
.

As expected, the fitness-based models are able to achieve some amount of
initial citation growth after the publication of a paper (See Table 2). Further-
more, the multiplicative model can achieve a non-zero fraction of Steady Risers
category in the APS citation network, which is realized to a lesser extent in the
BA model or the additive model. Section 5 presents theoretical justifications.
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5 Theoretical Analysis

The following theorem describes the change in attachment probabilities of nodes
over time for the three growth models described in Sect. 4.3. We define Ξt =∑

i∈Vt
ξi and ψt =

∑
i∈Vt

ξiDt(i), for t = 0, 1, . . .. For clarity in presentation, we
assume that a single node enters at any time step t, and forms a connection with
one node in the existing graph Gt−1. We label the incoming node by the time
index of its entry to the network, i.e., Vt = {0, 1, . . . , t} for t = 0, 1, . . .. All our
results can be easily extended to more general scenarios where multiple nodes
enter the network, and incoming nodes form multiple connections.

Theorem 1. For every t = 0, 1, . . . , and i in Vt−1: Let Gt−1 be the graph at
time t − 1. Then the expected changes in attachment probabilities of node i are
given below.

(i) Barabási-Albert (BA) model:

E
[
pBA

i (t + 1) − pBA
i (t)|Gt−1

]
= − Dt−1(i)

4t(t − 1)
(2)

(ii) Additive fitness (AF) model:

E
[
pAF

i (t + 1) − pAF
i (t)|Gt−1, ξt

]
= − (ξi + Dt−1(i)) (ξt + 1)

(Ξt−1 + 2(t − 1)) (Ξt + 2t)
(3)

(iii) Multiplicative fitness (MF) model:

E
[
pMF

i (t + 1) − pMF
i (t)|Gt−1

]
� ξiDt−1(i)

∑
j∈Vt

ξjDt(j) [ξi − ξt − ξj ]
ψ2

t−1(ψt−1 + ξi + ξt)
(4)

Proof. Fix t = 0, 1, . . ., and i in Vt.

Preferential Attachment Model: The difference in the attachment probabil-
ity of node i in the BA model between time t + 1 and t is given as

pBA
i (t + 1) − pBA

i (t) =
Dt(i)

2t
− Dt−1(i)

2(t − 1)
=

Dt−1(i) + 1 [St = i]
2t

− Dt−1(i)
2(t − 1)

(5)

Furthermore, by noting that when looking at the expected difference in attach-
ment probability conditioned on the graph at time t − 1, St is the only random
variable in (5), we obtain

E
[
pBA

i (t + 1) − pBA
i (t) | Gt−1

]
=

Dt−1(i) + Pr[St = i | Gt−1]
2t

− Dt−1(i)
2(t − 1)

=
Dt−1(i) + Dt−1(i)

2(t−1)

2t
− Dt−1(i)

2(t − 1)

and (2) follows.
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Additive Fitness Model: Similarly in the additive fitness model, the difference
in the attachment probability of node i can be written as

pAF
i (t + 1) − pAF

i (t) =
ξi + Dt(i)∑

j∈Vt
(ξj + Dt(j))

− ξi + Dt−1(i)∑
j∈Vt−1

(ξj + Dt−1(j))

=
ξi + Dt−1(i) + 1 [St = i]

Ξt−1 + ξt + 2t
− ξi + Dt−1(i)

Ξt−1 + 2(t − 1)
. (6)

Taking expectation on both sides conditioned on Gt−1 and ξt leads to (3).

Multiplicative Fitness Model: The difference in the attachment probability
of node i can be written for the multiplicative model as follows

pMF
i (t + 1) − pMF

i (t) =
ξiDt(i)∑

j∈Vt
ξjDt(j)

− ξiDt−1(i)∑
j∈Vt−1

ξjDt−1(j)

=
ξi [Dt−1(i) + 1 [St = i]]

ψt−1 + ξSt
+ ξt

− ξiDt−1(i)
ψt−1

, (7)

where (7) follows by noting that ψt = ψt−1 + ξSt
+ ξt, because only node St gets

a new edge from ξt and its fitness degree product therefore only increases by its
own fitness ξSt

.
Furthermore, we lower bound the expected change in visibility as follows

E

[
pMF

i (t + 1) − pMF
i (t)|Gt−1, ξt

]

= ξi

⎡
⎣ψt−1P [St = i|Gt−1, ξt]

ψt−1 (ψt−1 + ξi + ξt)
− Dt−1(i)

ψt−1(j)

⎡
⎣ ∑

�∈Vt−1

P [St = �|Gt−1, ξt] · ξ� + ξt

ψt−1 + ξ� + ξt

⎤
⎦

⎤
⎦

≥ ξi

[
ξiDt−1(i)

ψt−1 (ψt−1 + ξi + ξt)
− Dt−1(i)

ψt−1
·

∑
�∈Vt−1

ξ�Dt−1(�)(ξ� + ξt)

ψ2
t−1

]

=
ξiDt−1(i)

ψt−1

[
ξiψ

2
t−1 − ∑

�∈Vt−1
ξ�Dt−1(�)(ξ� + ξt)[ψt−1 + ξi + ξt]

ψ2
t−1(ψt−1 + ξi + ξt)

]

� ξiDt−1(i)

[
ξiψt−1 − ∑

�∈Vt−1
ξ�Dt−1(�)(ξ� + ξt)

ψ2
t−1(ψt−1 + ξi + ξt)

]

and the result follows. �
Theorem 1 indicates that for both the BA model and the additive fitness

model, the probability of attachment will reduce over time in expectation for all
the nodes. However, for the multiplicative model the probability of attachment
could increase over time if the node has sufficiently high initial fitness ξi. This
gives a strong theoretical justification for using multiplicative model for realizing
Steady Risers, in that nodes with high initial fitness could possibly maintain or
increase their attachment probability over time. However in Table 2, we observe
that the proportion of Steady Risers is negligible in comparison to the MAS
data. This is probably because only a few nodes get the opportunity to be
Steady Risers in the multiplicative model.
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6 Proposed Models

We propose two models which introduce the concept of a ‘location space’ to
model the local visibility of nodes in a network and capture different citation
growth patterns, while keeping the global influence due to degree and fitness in a
multiplicative fashion. This allows us to overcome the limitation of low number
of Steady Risers in the multiplicative model by restricting the influence of nodes
to their locality.

6.1 Location-Based Model (LBM)

Popular articles in scientific networks are prominent in their subfield of interest
(say, Machine Learning in Computer Science domain), and do not exert the same
amount of influence across other subfields. We overcome this limitation in the
fitness models by restricting the region of influence for incoming nodes.

The location-based growth model (LBM) proposed here captures the notion
of ‘local influence’ of a node in the network. Each node is assigned a location
vector drawn from a distribution over the location space L. This location vector
serves as a representation of the subfield to which a research article belongs.
Given a sequence of iid location vectors {χ, χt, t = 0, 1, ...} and fitness vectors
{ξ, ξt, t = 0, 1, ...}, with the location vectors being uniformly distributed over the
location space L, and the fitness vectors being Pareto distributed, the attachment
rule is given as,

pLBM
i (t + 1) = e−γd(χi,χt+1) · ξi · Dt(i) (8)

where, d(·, ·) can be any distance metric, and γ is a decay factor governing how
fast the attachment probability decays with distance in the location space. We
use Euclidean distance metric d(·, ·) and report results for different values of γ.
Algorithm 2 describes the exact formulation of the network growth using LBM.
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6.2 LBM Using Gaussian Active Subspaces (LBM-G)

In LBM, sampling a node location over the entire space L implies a faulty sce-
nario where new papers entering the network at the same time step seemingly
belong to widely different subfields – whereas we generally observe heightened
research activity in only a handful of subfields at a time. The growth model
should take these regional spikes into account while assigning node locations
and also incorporate their shifting nature.

We introduce the concept of active subspaces which generates the locations
for new papers entering the network. We realize these active subspaces through
multi-dimensional Gaussian distributions over the location space L. For simplic-
ity, in this paper we only assume one active subspace at every time step. The
location vector of node t, χt, is chosen as χt ∼ N (μt, σ

2), where μt and σ2 are
the mean and variance of the Gaussian at time t.

The Gaussian distribution is then updated either after entry of fixed number
of nodes, or after certain number of times steps. For ease of exposition, we
assume that single node enters at every time step. Under this assumption, both
the update techniques are identical, which is afterwards relaxed in Sect. 7. After
entry of S nodes or S time steps, the mean of the Gaussian distribution is
updated as follows

μ�+1 ∼ N (μ�, ρ
2), 	 = kS and k = 1, 2, . . . (9)

where, ρ2 captures the variance in the shift of the active subspace. Once the
location vectors are drawn, the attachment rule is identical to the LBM model.
The pseudo-code of LBM-G is shown in Algorithm 4.

Table 3. Percentage of papers in different categories obtained from the simulated
network of LBM for (a) MAS and (b) APS. We also vary γ and report the result as
well as the similarity with the real data in terms of JSD.

7 Experimental Results

We adopt the experimental setup proposed by Chakraborty et al. [5] to identify
the proportion of nodes belonging to each citation trajectory.

We use (the square of) the Jensen-Shannon distance (JSD) [11] to measure
the similarity between two distributions. Please refer to the full version of the
paper where we discuss the reasons for choosing this metric as well. We report
the values of JSD2 with the results as it makes differentiating the effect of two
sets of parameters easier.

https://arxiv.org/abs/2002.06628
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7.1 Results of LBM

We analyze the network obtained from the LBM model and measure the pro-
portion of papers in each category of citation trajectory. We also observe the
effect of the scalar factor γ. The following regimes of γ are considered, given the
number of nodes n: (a) constant scalar factor γ; (b) linear, γ = n; (c) sub-linear,
γ = n0.5; (d) logarithmic, γ = log n. Table 3 reports JSD between the paper
category distribution of the LBM model and the real network. We notice that
for both MAS and APS datasets, the best result (minimum JSD) is obtained
with γ = log n. Therefore, we choose γ = log n as default for LBM.

7.2 Results of LBM-G

Along with S indicating the frequency at which LBM-G model shifts the active
subspace, we have another hyper-parameter, σ, the standard deviation of each
Gaussian distribution representing a subspace. We consider two different strate-
gies of shifting the active subspace: in terms of months (Table 4), and the number
of nodes (Table 5).

We obtain the lowest JSD for S = 1 month and σ = 2.0, i.e., the active
subspace is shifted every month and the new Gaussian subspace is chosen from
a Gaussian distribution with standard deviation 2. However, the more interesting
pattern to observe in Table 4 is that we consistently get good results (low JSD)
with high σ values, while keeping the frequency of shifting the active subspace
constant. This stands true for the APS dataset as well.

Table 4. Percentage of papers in different categories obtained from the simulated
network of LBM-G for (a) MAS and (b) APS. We also vary S (in terms of months)
and σ (standard deviation) and report the result as well as the similarity with the real
data in terms of JSD.
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We can also vary S and σ to control the proportion of nodes belonging to
each category at a coarser level. We observe the following patterns in Tables 4
and 5:

– The proportion of Late Risers has a direct correlation with σ. This is probably
because Late Risers acquire a peak after the activation period. A high σ makes
it more likely that the active subspace shifts further away from the node, thus
delaying re-activation of the node’s location.

– The proportion of Early Risers is seen to have a positive correlation with S,
in general. This can be explained by the effect S has on the activation period
of a node. A higher S means the node’s location stays activated for a longer
period of time, thus giving it more opportunities to achieve a peak.

– The proportion of Steady Risers has a negative correlation with S, in general.
A node belonging to this category should not achieve a peak during the
activation period. This means that the factor controlling the proportion of
Early Risers can be used to control the proportion of Steady Risers as well.
A lower S means the active subspace gets shifted frequently, thus not giving
ample opportunity to form a very high peak. A higher S would instead keep
the location activated for an extended period of time which may lead to higher
peaks early on when the number of nodes in the network is low, and then
lower peaks as the number of nodes increases.

– The proportion of Frequent Risers should depend upon the frequency with
which a certain subspace is re-activated. We observe that this proportion
generally peaks for moderate values of S and σ.

Table 5. Percentage of papers in different categories obtained from the simulated
network of LBM-G for (a) MAS and (b) APS. We also vary S (in terms of nodes)
and σ (standard deviation) and report the result as well as the similarity with the real
data in terms of JSD.
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Fig. 2. (Color online) Sensitivity of trajectory classifier on two parameters – activa-
tion period and peak threshold for MAS (similar pattern is observed for APS).

7.3 Sensitivity Analysis

The results reported throughout the paper are obtained by setting activation
period to 5 years and peak threshold to 0.75 as default for categorization. We
further run LBM and LBM-G (with the default parameter setting) and vary
the two parameters associated with citation trajectory classification – activa-
tion period and peak threshold. Figure 2 hints upon the fact that the conclu-
sions drawn throughout the paper remain invariant (p < 0.005) with the minor
change in the parameters related to trajectory categorization. Please refer to the
full version of the paper to read about this experiment in detail.

8 Conclusion

In this paper, we proposed two models to explain an important characteristic of
a citation network – the trajectory of citation growth. The models focus more
on exploring the local neighborhood of node during edge formation, instead of
looking at the network globally. This is important because edge formation in
real networks is usually a local process. Experimental results showed significant
improvement over the existing growth models on two real-world datasets in terms
of realizing different citation trajectories of papers.
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