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With the opioid crisis in North America, opioid addiction has come in the spotlight and

reveals the weakness of the current treatments. Two main opioid substitution therapies

(OST) exist: buprenorphine andmethadone. These twomolecules are mu opioid receptor

agonists but with different pharmacodynamic and pharmacokinetic properties. In this

review, we will go through these properties and see how they could explain why these

medications are recognized for their efficacy in treating opioid addiction but also if they

could account for the side effects especially for a long-term use. From this critical analysis,

we will try to delineate some guidelines for the design of future OST.
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INTRODUCTION

When people talk about opioid problems or addiction to opioids, they think of opioids that some
people get on the street, such as heroin, with the idea that only a minority of persons is concerned.
But the truth is very different and anyone who uses an opioid can develop addictive behaviors.
This is not a specific problem for heroin users as opioids are very useful molecules and powerful
medications that are generally prescribed to relieve severe pain. Thus, problematic opioid use
may also include the misuse of prescription opioid medications, such as oxycodone, morphine, or
codeine, or the use of a drug for which no personal prescription has been received. As a result,
the number of people over-using or dependent on opioids is increasing dramatically and is a
public health problem. Over the past few years, both the U.S. and Canada have seen a spectacular
increase in opioid overdose rates. From 1999 to 2016, more than 350,000 people died from opioid
overdose in U.S. (https://www.cdc.gov/drugoverdose/epidemic/index.html). This so-called “opioid
epidemic” or “opioid crisis” started in the 1990’s with the conjunction of different factors including
propaganda by pharmaceutical companies claiming that their opioids had a low liability to induce
addiction mainly because of the extended release formula, and a better pain management which led
to a widespread use of opioid drugs for the treatment of moderate pain (1, 2).

Behind these perfectly quantified data, there is another figure that is difficult to quantify, but
which is most certainly very high, people with opioid addiction. This crisis shed light on the
weakness of available treatments to manage opioid addiction. Two main medications—the opioid
substitution treatments (OST) are used: buprenorphine and methadone. After a rapid review of
neurobiology of opoid addiction, we will review some properties of these OST that could explain
why they have a certain success [for an extensive review on methadone and/or buprenorphine, see
(3)]. However, this success is only relative (relapses very often occur even when patients are under
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TABLE 1 | Examples of preclinical and clinical opioid drugs.

Ligand Selectivity Activity

Morphine MOPr >> KOPr Agonist Analgesia

Respiratory depression

Heroin MOPr >> KOPr Agonist Fast penetration in the brain

Acts through its mainly active metabolite, morphine

Buprenorphine MOPr

DOPr

KOPr

Partial agonist

Antagonist

Antagonist

Reduces withdrawal

Low risk of respiratory depression

Methadone MOPr Agonist Reduces withdrawal, risk of respiratory depression

TRV130 MOPr Agonist (biased toward G protein)

PMZ21 MOPr >

KOPr >

DOPr

Biased agonist

Antagonist

Weak agonist Analgesia

Cebranopadol MOPr, KOPr, NOPr >

DOPr

Agonist (partial at KOPr) Reduced respiratory depression

AT-121 MOPr,

NOPr >

DOPr KOPr

Partial agonist

Partial agonist

Naloxone MOPr, DOPr, KOPr Antagonist Blocks euphoric effects

Reverses respiratory depression

Naltrexone MOPr, KOPr > KOPr Antagonist

PL37, PL265 MOPr, DOPr (via

enkephalins)

Inhibit enkephalins degradation Analgesia

Lack opioid-associated side effects

OST) and as banning opioids is not an option, it is therefore
important to discuss the future of opioid research. A table with
the opioids cited in the present review is included to facilitate the
reading of the manuscript (Table 1).

THE NEUROBIOLOGICAL BASIS OF
OPIOID ADDICTION

It has been known for a long time that opioids such as morphine,
heroin, and derivatives induce numerous pharmacological
responses, including analgesia, dependence, respiratory
depression or euphoria (4, 5). From these observations, evidence
that different opioid drug effects could only be explained by
the existence of stereospecific receptors has emerged. In the
1970s, the endogenous opioid receptors were discovered (6–8),
followed by the characterization of the endogenous opioid
peptides (9). Since these identifications numerous studies have
been conducted in the opioid field.

Historically, three opioid receptors have been characterized,
mu (MOPr), delta (DOPr), and kappa (KOPr). Additional
receptor types have been identified, but are no longer considered
as “classical” opioid receptors (e.g., sigma, nociceptin/orphanin
receptor, NOPr) (10). The three opioid receptors were cloned in
the early nineties (11–14). Since this period, several knockout
mice lines, each harboring deletions of the genes encoding
a particular opioid receptor, have been used to clarify the
specific role of the different receptors in vivo and in many
physiopathological conditions (15). In this review the focus will
be on reward and addiction.

It is well-known that all drugs of abuse increase extracellular
dopamine levels in the nucleus accumbens (Nac), either
directly (e.g., cocaine and amphetamine directly target dopamine
transporters), or indirectly (e.g., opioids decrease GABA release
in the ventral tegmental area, leading to an activation of
dopamine neurons). Several lines of evidence indicate that
MOPr play a key role in mediating the rewarding effects of
opioids, while the role of DOPr remains debatable, and KOPr
are considered to have opposite functions to those of MOPr
in the regulation of reward and addiction. KOPr agonists have
dysphoric and aversive effects in humans and rodents (16, 17), in
good agreement with decreases in dopamine release in the Nac
observed following injection of selective agonists in this brain
structure (18).

The pharmacological responses induced by opioids (e.g.,
conditioned place preference, intravenous self-administration,
locomotor activity, analgesia) are abolished in MOPr knockout
mice, demonstrating that MOPr represent the primary in vivo
molecular target for these ligands (15). Morphine-induced
conditioned place preference in an unbiased procedure is also
reduced in DOPr knockout mice (19, 20), but these animals
show normal motivation to obtain morphine in intravenous
self-administration paradigm (20). These results, combined with
other data obtained from other experimental approaches suggest
that morphine reward andmotivation to obtain opioids are intact
in DOPr knockout mice, however drug-context association is
more certainly impaired.

Both with most clinically useful (e.g., morphine, fentanyl,
oxycodone) and most largely abused (heroin) opioids, opioid-
use disorder is a public health problem. The number of
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opioid prescriptions sharply increased in the past two decades,
increasing risks for addiction and overdoses. Addiction to
prescribed opioids is associated with transition to illicit opioid
use like heroin (21), and overdoses have strongly risen since the
1990s (22). As mentioned earlier the notion of “opioid crisis”
or “opioid epidemic” has emerged in North America, and to a
lesser extent in Australia (23). European countries appear to be
less affected (24), but even if the risk in Europe appears relatively
limited, vigilance is needed (25).

Opioid addiction is a brain disorder, involving alterations
in neuronal circuits with complex neuroadaptative mechanisms
that lead to dependence, craving, and relapse; thus contributing
to the maintenance of drug use. Until now, no medication can
reverse the drug-induced changes observed in the brain that are
involved in the relapsing nature of opioid-use disorders, even
after a protracted abstinence. Currently, the therapeutic approach
using an agonist strategy with methadone and buprenorphine,
has shown physical and psychosocial improvements in drug
users, but these molecules possess MOPr agonist properties
which limit their clinical usefulness, as described below.

CHARACTERISTICS OF THE OPIOID
SUBSTITUTION TREATMENTS

The Way They Reach Their Target:
Pharmacokinetic Properties
The therapeutic action of a compound strongly depends on its
pharmacokinetic properties (26). The opioid users seek a rapid
and intense euphoria which is obtained with heroin, which is a
prodrug. Indeed, although it has a low affinity toward MOPr, its
action is mainly mediated by its metabolites including morphine
(27, 28). The intense and rapid euphoria following heroin
administration is partly due to its high lipophilic nature, enabling
the molecule to readily cross the blood-brain barrier (29).
Another very important characteristic that determines the fast
action of heroin is the route of administration: the intravenous
route being the fastest (30). OST are both oral medications,
methadone as a syrup or pills and buprenorphine as sublingual
tablet or films. Methadone has a good oral bioavailability
(between 40 and 95%) (31), conversely, buprenorphine has a
poor oral bioavailability. In any case, both oral and sublingual
routes allow the OST to diffuse slowly, thus avoiding peak effects
which contribute to addiction. Therefore, after ingestion, the
peak effects and peak plasma levels are reached between 1 and
6 h for methadone (average: at 4 h) (32), whereas the peak levels
occur ∼1 h after buprenorphine administration (33, 34). One of
the mandatory features to be a good OST is that it needs to have
slow metabolism and elimination profiles which avoid patients
experiencing withdrawal. Methadone and buprenorphine fulfill
these criteria, with an average half-life of 22 and 32 h, respectively
(31, 33), therefore these medicines are taken once a day, which
favors the observance. Opioid pharmacokinetics are influenced
by their interaction with enzymes that metabolize xenobiotic,
such as cytochromes P450 and efflux pumps. For instance, the
two diphenylpropylamine opioids loperamide and methadone,
which display similar structures, have different fates once

administered. Whereas, methadone transport to the brain is
partly restricted by the multidrug resistance protein 1 (MDR-1)
(35), loperamide is unable to cross the brain blood-brain barrier
due to the presence of the same efflux pump (36) showing that
loperamide is a better substrate for MDR-1 than methadone.
Many pharmacogenetic studies of cytochromes P450 such as
CYP450 3A4 (one of the main cytochromes involved in OST
metabolism) or efflux pumps have been conducted to explain
the variability in OST dosing. Overall, it appears that although
some variants of these genes are associated with OST plasma
levels, their influence on dose requirement is very low (37).
OST pharmacokinetics is more likely to be influenced by co-
prescribed drugs, which interact with their metabolism. For
instance, delavirdine, an antiretroviral medication used in HIV
treatment, inhibits CYP450 3A4 and thus induces an elevation
of methadone plasmatic concentration and drug delayed
clearance (38).

The Way They Interact With the Target:
Pharmacodynamic Properties
Methadone and buprenorphine bindMOPr with a higher affinity
as compared to morphine. Therefore, when a patient under
OST uses heroin, its effects will be reduced, as the morphine
concentration in the brain will not be high enough to displace
methadone or buprenorphine from the receptor. This highlights
the issue of the optimum dose of OST, so each patient must
have a sufficiently high brain concentration to avoid withdrawal
symptoms. In addition, buprenorphine has a very low receptor
dissociation rates (39–41) conferring a long duration of action
(which contributes to its long half-life) and reinforcing its
inability to be displaced by other opioids. Opioid overdoses cause
death by respiratory depression: indeed, whereas tolerance to
analgesia develops rapidly, tolerance to respiratory depression is
far weaker and slower to appear (42). Methadone is a full agonist
at the MOPr (43) and its potency and efficacy increase the risk
of overdose, thus requiring this drug to be administered to treat
opioid dependency only in designated medical units with trained
staff. Buprenorphine has a particular pharmacological profile and
is described as a MOPr partial agonist (44). In pioneering studies
conducted in rodents, buprenorphine displayed a ceiling effect,
exerting only partial analgesia compared to morphine or more
effective agonists (45). Nevertheless, more recent studies have
not shown this ceiling effect in other species such as humans
where buprenorphine is quite powerful (46)—probably because
there is a greater MOPr reserve [i.e., more spare receptors
(47)]. The ceiling effect is probably rather more specific to the
target system (e.g., respiration) than to the species (48) and
may be explained by differences in the receptor reserve in the
different pathways (pain, respiration. . . ), probably explaining the
lack of severe respiratory depression at analgesic doses with
this drug (46). As a consequence, it was allowed to prescribe
buprenorphine as an ambulatory medicine in many countries
including UK, France, USA. Buprenorphine is also depicted as
a KOPr antagonist, which might contribute to its antidepressant
effect (49).
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WHY SEARCHING FOR NEW
TREATMENTS FOR OPIOID ADDICTION?

It is undeniable that the actual OST, methadone and
buprenorphine, have brought a substantial benefit in the
opioid addiction treatments. Indeed, when associated with a risk
reduction policy they substantially reduced death by overdoses
and the transmission of blood-borne diseases. They help addicts
to follow their recovery program and contribute to their social
reintegration. OST were also shown to preserve immune (50) and
memory (51) functions, have positive effects on psychopathology
(52, 53) and reduce polyabuse (54).

However, like any other medications, OST are not fully
effective as many patients under OST might still relapse (55, 56),
and because they are MOPr agonists they may be misused (57).
The promised safety of buprenorphine was challenged as soon
it arrived on the market and for example in France, several
death cases were reported where buprenorphine was diverted
(intravenous use). Whereas, several of these cases included the
concomitant use of buprenorphine with other depressants of
the respiratory system (ethanol and/or benzodiazepines), some
of them reported only buprenorphine use (58). More recently,
when gabapentin was used with opioids a substantial increase in
the risk of opioid-related death was measured (59). Beyond the
high risk of fatal respiratory depression (see above), methadone
is associated with prolongation of the electrocardiographic QT
interval (60, 61). However, the link to cardiac dysrhythmia and
sudden cardiac death remains an open question. Indeed, recent
studies did not confirm the role of methadone in sudden cardiac
death (62) as it was previously suspected.

Many side effects have been reported with these OST such as
a decrease of cognitive performance (63) or sexual dysfunction
in men (64, 65). Finally, as they remain MOPr agonists, they
will contribute to maintain—very likely to a lesser extent—the
allostasis generated by previously abused opioids. In rodents,
a short treatment (5 days) with buprenorphine or methadone
is able to induce behavioral and neurochemical modifications
until 35 days after withdrawal (66, 67). It therefore appears
necessary to find new MOPr agonists, or new combinations of
MOPr agonists and other ligands, that would not induce the
neuroadaptations responsible for the harmful effects of opioids
(e.g., addiction, respiratory depression), and would therefore
gradually restore homeostasis, thus allowing for instance a
complete escape from addiction.

On the other hand, to avoid buprenorphine diversion,
different formulations of buprenorphine are currently evaluated
and usually consist of transdermal patches, subcutaneous
depot injections, or subdermal implants (68). An alternative
strategy to limit diversion is to combine buprenorphine with
an opioid antagonist, naloxone (suboxone). Naloxone has a
poor oral bioavailability, but when injected intravenously (in
the case of misuse), it will precipitate withdrawal. Human
studies shown that it has a reduced abuse potential (69),
however recent preclinical (70) and clinical (71, 72) data
questioned the lower level of rewarding properties of intravenous
suboxone.

SOME LEADS ON THE FUTURE OF OPIOID
RESEARCH

The “opioid crisis” dramatically exposes the need for more
research in at least two main directions. One is to find better
opioid analgesics with less and even virtually no addictive
potential. The other direction is the discovery of newmedications
to treat opioid addiction. We will discuss these two directions
focusing on opioid-based drugs.

Since the 1990’s, studies have demonstrated that different
ligands could induce (or select) different receptor conformations
that could promote different signaling pathways. This concept
is now known as biased agonism or functional selectivity (73).
For opioid receptors, this notion combined with the pioneer
work of Bohn and co-workers paved the way to design new
opioids. It is now well-established that following ligand binding,
MOPr activation could result in the activation of multiple
downstream pathways through either G protein dependent
processes (e.g., regulation of ion channels, adenylate cyclase
inhibition) or G protein independent processes (e.g., beta-
arrestin signaling). Beta-arrestin is a protein that binds the
activated and phosphorylated receptor and is responsible for its
desensitization and endocytosis (74). Bohn and co-workers found
that in beta-arrestin-2 knockout mice, morphine analgesia was
increased and prolonged (75, 76) with a decrease of respiratory
depression and acute constipation (77). Therefore, it has been
suggested that biased opioid agonists toward G protein pathway
will retain analgesic effects with a reduction of side effects
including tolerance mediated by beta-arrestin activation. This
last point is of particular importance as tolerance, by increasing
the dose required to induce the same effects, will contribute to
dependence and overdose. So, recently few opioid biased agonists
for the treatment of pain have been developed including TRV130,
a compound recently entered in phase 3 to treat moderate and
severe acute pain (78). This molecule is biased toward G proteins
and shows less tolerance and respiratory depression as compared
to morphine (79). Using the recent discovery of MOPr structure
(80), Manglik and co-workers discovered PMZ21 a molecule that
displays a protracted analgesia as compared to morphine and
like the TRV130 has no rewarding effects in the conditioned
place preference paradigm (81). However, this lack of rewarding
effects has been recently challenged by Altarifi and colleagues
who found that TRV130 reduced the threshold of intracranial
self-stimulation (82). These results are not surprising as these
molecules selectively target MOPr, so alternative strategies
are currently considered such as targeting multiple opioid
receptors to reduce some side effects and increase efficacy (83).
For instance, cebranopadol a mixed MOPr/DOPr/KOPr/NOPr
receptor agonist was found to be efficient in acute and chronic
pain and development of tolerance was delayed as compared
to equianalgesic doses of morphine (84). More recently, Ding
et al. reported the discovery of AT-121, a MOPr/NOPr mixed
agonist with analgesic effects in non-human primates and
a lack of common opioid-associated side effects such as
physical dependence, abuse potential, respiratory depression, and
opioid-induced hyperalgesia (85). Finally, instead of activating
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opioid receptors with synthetic compounds that could results
in unwanted effects (due to overstimulation in many target
systems) the use of endogenous ligands has been proposed
through the blockade of the catabolism of the endogenous
peptides. This approach was developed by Roques and co-
workers in the 1980’s who published the first study showing that
blocking enzymatic degradation of enkephalins enhances their
physiological effects (86). It has the advantage to target only the
structures where enkephalins are expressed, thus explaining why
multiple preclinical studies demonstrated that these compounds
are as effective as morphine to produce analgesia but without
promotion of tolerance, physical dependence, constipation or
respiration depression (87). Indeed, enkephalins are highly
expressed in pain-control centers (88) whereas they are found
in low amount in respiratory centers (89) or locus ceruleus
(90), a structure involved in the expression of opioid physical
dependence (91). At the moment, two of these molecules, PL37
and PL265, are in clinical development for treating acute and
chronic pain.

Regarding the treatment of opioid addiction, no real progress
has been made since the introduction of methadone and
buprenorphine and most of the current research consists
of work related to these compounds or other marketed
opioids such as modifying the formulation to obtain slow-
release compounds. For instance, it has been proposed to
use slow release morphine for patients who cannot tolerate
methadone (92).

Recently, some opioid antagonists (e.g., naltrexone, naloxone)
have been approved for opioid addiction but only for abstinent
patients because of the risk of withdrawal. They have multiple
benefits: lack of reinforcing effects, blockade of the euphoric
effects of opioids, relative safety (no respiratory depression)
(93). Even so, the adherence to these medications is generally
poor, thus limiting their efficacies for the prevention of relapse
in patients with opioid-use disorder. To circumvent this low
treatment observance, an injectable extended-release naltrexone
was developed. The first meta-analysis on its efficacy mainly
revealed that, unsurprisingly, the success of extended-release

naltrexone was higher in opioid detoxified patients. However,
when randomization occurred after detoxification, extended-
release naltrexone showed similar efficacy to buprenorphine,
whereas when randomization occurred prior to detoxification,
buprenorphine efficacy was superior (94). The fact remains that
opioid antagonists are very efficient in emergency medicine, by
preventing opioid overdose fatalities (95). Naloxone is actually
the only opioid antagonist approved for treating opioid overdose.
Its efficacy is based on a rapid onset of action via intravenous
route (2–3min) (96), but its shorter half-life than that of
most opioid agonists, requires multiple injections or continuous
administration to reverse respiratory depression. A recent study
showed that it was also able to reverse buprenorphine-induced
respiratory depression (97). It is noteworthy that fast opioid
detoxification in opioid-dependent patients might lead to acute
opioid withdrawal syndrome accompanied by catecholamine
releases, responsible for cardiac and respiratory functions
impairment (98).

CONCLUSION

This review was focused on opioids, but knowing whether if they
will remain the gold standard in pain management is an open
question considering the opioid crisis. In addition, long-term
treatment with OST, more than restoring the neurobiological
equilibrium disturbed by the opioid misuse, will maintain drug-
induced neuroplastic changes. So, besides the short and mid-
term necessary research on the discovery of safer opioids, other
pharmacological strategies have to be envisioned based either on
different use of existing treatments or on other neurotransmitter
systems with the objectives of having painkillers devoid of any
activity on the reward system.
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