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Abstract

General anesthesia causes hypothermia by impairing normal thermoregulatory mecha-

nisms. When using inhalational anesthetic agents, Redistribution of warm blood from the

core to the periphery is the primary mechanism in the development of hypothermia and

begins following induction of anesthesia. Raising skin temperature before anesthesia

reduces the temperature gradient between core and periphery, decreasing the transfer of

heat. This prospective, crossover study (n = 17 adult male and female SD rats) compared

three treatment groups: PW1% (pre-warming to increase core temperature 1% over base-

line), PW40 (pre-warming to increase core temperature to 40˚C) and NW (no warming). The

PW1% group was completed first to ensure tolerance of pre-warming. Treatment order was

then randomized and alternated after a washout period. Once target temperature was

achieved, anesthesia was induced and maintained with isoflurane in oxygen without further

external temperature support. Pre-warming was effective at delaying the onset of hypother-

mia, with a significant difference between PW1% (12.4 minutes) and PW40 (19.3 minutes,

p = 0.0044 (95%CI -12 to -2.2), PW40 and NW (7.1 minutes, p < 0.0001 (95%CI 8.1 to 16.0)

and PW1% and NW (p = 0.003, 95%CI 1.8 to 8.7). The rate of heat loss in the pre-warmed

groups exceed that of the NW group: PW1% versus NW (p = 0.005, 95%CI 0.004 to 0.027),

PW40 versus NW (p < 0.0001, 95%CI 0.014 to 0.036) and PW1% versus PW40 (p = 0.07,

95%CI -0.021 to 0.00066). Pre-warming alone confers a protective effect against hypother-

mia during volatile anesthesia; however, longer duration procedures would require addi-

tional heating support.

Introduction

Hypothermia remains a common complication encountered in both human and veterinary

anesthesia [1–5]. Heat loss during general anesthesia is affected by various patient and envi-

ronmental factors. Those related to the patient include severity of disease, and intervention

planned (e.g. open body cavities) [3, 4]. Factors related to the environment include exposure
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to fluids and surfaces at temperatures below core body temperature and continual circulation

of cool air in the environment [6]. Critically, though these factors contribute to peri-anesthetic

hypothermia, the most important mechanism of hypothermia during general anesthesia is the

redistribution of warm blood from the core to the periphery [7]. This explains why hypother-

mia begins so rapidly after induction of general anesthesia (before surgery begins) and the dif-

ficulty in its prevention or reversal [8, 9].

Body temperature is considered a vital sign and hypothermia can have important adverse

effects. In humans, a small decrease in core temperature, as little as 1˚C, is associated with pro-

longed recovery and hospitalisation, increased surgical site infection and contributes to post-

operative pain [10–12]. While the known consequences of hypothermia in the veterinary liter-

ature are currently limited, delayed recovery from anesthesia has been shown in both dogs and

rats [13, 14].

In mammals, core temperature is normally tightly regulated within a narrow range, the

inter-threshold range, that spans ± 0.3˚C. General anesthesia impairs thermoregulation through

depression of the hypothalamus, the major thermoregulatory center in the brain. As a result,

the inter-threshold range increases 10–20 fold, allowing core body temperature to decrease sub-

stantially before corrective measures (vasoconstriction, arterio-venous shunting) begin. Depres-

sion of thermoregulation in addition to vasodilation induced by many anesthetic agents allows

heat to flow down the temperature gradient from the core to peripheral tissues [15, 16]. In gen-

eral, core temperature follows a distinct pattern during general anesthesia that consists of three

phases: 1) redistribution of heat from the core to the periphery, which accounts for approxi-

mately 80% of hypothermia during the first hour of anesthesia, 2) a further decrease in core

temperature as heat loss exceeds metabolic heat production in the subsequent 2–3 hours and 3)

achieving a plateau in temperature over 3–4 hours as core temperature falls low enough for

vasoconstriction to occur and reduce metabolic heat loss to the periphery [7, 17].

Understanding the mechanism of hypothermia during anesthesia has led to the successful

practice of pre-warming human patients before induction of anesthesia [18]. The goal of pre-

warming is too raise the temperature of the periphery so that the temperature gradient with

the core is lessened, thereby delaying the decrease in core temperature as thermoregulatory

mechanisms are depressed [19]. Previous work has shown potential for pre-warming to be

effective in rodents [20].

The primary objective of this study was to assess different pre-warming temperature regi-

mens on core temperature during general anesthesia. We hypothesized that pre-warming ani-

mals before induction of general anesthesia would delay the onset of hypothermia. A

secondary objective was to compare the accuracy of different temperature measurement sites

to core temperature (telemetric capsules implanted in the abdomen).

Materials and methods

Animals

Adult female (n = 10) and male (n = 7) CD Sprague–Dawley rats were obtained from a com-

mercial supplier (Charles River Laboratories, Senneville, QC, Canada). Rats weighed 308–412

g (females; age 19–27 weeks old) and 220–576 g (males; age 7–11 weeks old) at the start of the

experiment.

Ethics statement

Study review and approval was provided by the local animal care and use committee of the

Université de Montréal (protocol ID 18-Rech-1947), operating under the auspices of the Cana-

dian Council on Animal Care.
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Rats were acclimatized to the environment (warming chamber) and experimenter (MR)

for 7 days before the experiment. Rats were considered habituated when they readily accepted

a treat offered by hand while in the anesthesia induction box. Rats were pair housed in a plas-

tic cage (45 [l] x 24 [w] x 20 [h] cm) with wood chip and shredded paper bedding and a plas-

tic tube for enrichment. The housing environment was controlled: 14h/10h light/dark cycle

(lights on at 06:00), temperature (22˚C) and humidity (20–25%). Food (Rodent laboratory

chow 5075, Charles River Breeding Laboratories, St-Constant, Quebec, Canada) and tap

water were provided ad libitum. Small treats were also offered ad hoc during the project

(Supreme Mini-Treats™, Very berry flavor, Bio-Serv, Flemington, NJ 08822, USA; Veggie-

Bites™, Bio-Serv, Flemington, NJ 08822, USA; Fruit Crunchies, Bio-Serv, Flemington, NJ

08822, USA).

The project had two phases: 1. Temperature capsule instrumentation surgery and 2. Pre-

warming temperature experiment. Sample size was determined a priori with an alpha level of

0.05 and power of 90% (G�Power 3.1.9.2, Germany). The target mean difference was 0.5˚C in

core temperature with a standard deviation of 0.4˚C. This was based on the results of a similar

project, giving an estimated sample size of 15 rats per treatment group [20].

Telemetric temperature capsule implantation

On the day of surgery, telemetry capsules (Anipill temperature sensor; Aniview system1,

Bodycap, Hérouville-Saint-Clair, France) were activated and accuracy confirmed by immer-

sion in water baths at 35˚C and 37˚C: bath temperature was checked with a calibrated infrared

thermometer (Fluke infrared thermometer 561, Fluke Corporation, Everett, WA, USA; cali-

brated at 30˚C, 45˚C and 60˚C with an accuracy of +/- 0.1˚C). Temperature capsules were ster-

ilised (chlorhexidine gluconate 0.05% immersion for 30 minutes) and rinsed with sterile saline

(0.9% NaCl) before implantation.

All surgeries were completed between 17:00 and 20:00. Approximately 30 minutes before

surgery, each rat was given meloxicam (2 mg/kg SC, Metacam, 5 mg/mL; Boehringer Ingel-

heim Vetmedica, Inc, St Joseph, MO, USA) and buprenorphine (0.03 mg/kg SC, Vetergesic,

0.3 mg/mL; Champion Alstoe, Whitby, ON, Canada). Rats were anesthetized individually in

an induction chamber (25.7 [l] x 11 [w] x 10.7 [h] cm; Small box, Harvard apparatus, Hollis-

ton, Massachusetts, USA) and the isoflurane vaporizer dial set at 5% in 1 L/min of oxygen

until loss of the righting reflex, at which time the rat was removed from the chamber and

placed in dorsal recumbency on a heat pad (16 × 38 cm; Stoelting Rodent Warmer with Cage

Heating Pad, Stoelting Corporation, Wood Dale, IL) with an output maintained at approxi-

mately 37˚C. General anesthesia was maintained via nose cone with the isoflurane vaporizer

set at approximately 1.75%, carried in 1 L/min oxygen.

Fur was clipped from the xiphoid process to the pubis and the skin was cleaned with alcohol

and chlorhexidine. A celiotomy was performed with a 15 mm incision, beginning immediately

caudal to the umbilicus. The temperature capsule was positioned freely in the peritoneal cavity

and the surgical incision closed in two layers. At completion of surgery, the vaporizer was

turned off and the rat allowed to recover with 1 L/min of oxygen on the heating pad. The rat

was returned to its home cage following return of sternal recumbency. Meloxicam (2mg/kg

SC) was administered 24 and 48 hours post-operatively and a food supplement (DietGel

Recovery; Clear H2O, Portland, ME, USA) provided in addition to food for the following 7

days. Only rats displaying a positive weight gain proceeded to the second (temperature experi-

ment) phase. The exclusion criteria from the experiment in the post-operative period consisted

of: weight loss, telemetric implant failure, lethargy, pain/infection or complication at the surgi-

cal site.
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Pre-warming temperature experiment

The pre-warming experiment was conducted 7 days after capsule instrumentation. A prospec-

tive cross-over study was conducted, with animals receiving 3 treatments. Treatment 1

(PW1%): pre-warming to a target of 1% increase in core (capsule) body temperature from

baseline. Treatment 2 (PW40): pre-warming to a target core temperature of 40˚C. Treatment 3

(NW): no pre-warming control group. A core temperature was established for each animal by

averaging temperatures recorded between 08:00 and 18:00 the day before the temperature

experiment. From this, each rat’s individual hypothermia threshold was determined (mean

core temperature minus two standard deviations) and used to identify time to hypothermia.

[20] Baseline core temperature from all rats were pooled to facilitate general comparisons

between treatments. The hypothermia threshold was determined in the same way for pooled

data. The PW1% treatment was performed first as a proof of concept and to ensure there were

no adverse behavioral effects of warming before randomising treatment order (www.random.

org) to the PW40 and NW treatments. A washout period of at least 5 days was allowed between

experiments. The study design and single experimenter (MR) during data collection precluded

blinding to treatment. Rats were video-recorded when in the warming chamber (25.7 [l] x 11

[w] x 10.7 [h] cm) for all treatment groups and videos reviewed by an observer blinded to

treatment (VL) for signs of behaviors associated with potential distress. Behavioral signs were

assessed at two timepoints: 1) the first three minutes after the rats were placed in the chamber

and 2) last three minutes (before isoflurane was started). The presence of the following behav-

iors were recorded: pawing or digging, open mouth breathing, abnormal posture (i.e. hunched

back or head pressed into corner), audible vocalisations, chromodacryorrhea and rearing [21,

22]. The direction faced (towards or away from the heat source) was also assessed.

Criteria to withdraw an animal from the temperature experiment were: cutaneous thermal

injury and a core temperature < 27˚C or> 41˚C.

Experiments were conducted between 09:00–17:00. Core temperature was recorded every

2.5 minutes in all treatment groups. The following proxy temperatures were also monitored

every 5 minutes in all groups: 1. lateral tail base, 2. fur temperature (at the xyphoid process)

and 3. rectal temperature (rectal thermometer inserted 6 cm into rectum, Physio Logic Accu-

flex Pro, Model 16–639; AMG Medical, Montreal, QC, Canada). Rectal thermometer accuracy

was confirmed as described for the telemetry capsules and a correction factor applied as neces-

sary. Proxy temperatures were recorded from the loss of righting reflex, as soon as rats were

taken out of the warming chamber, until core temperature achieved a nadir of approximately

34˚C. Additionally, skin temperature at the level of the elbow and knee (right thoracic and pel-

vic limb, respectively) was measured with the infrared thermometer just before entry and as

soon as rats were taken out the warming chamber.

Warming chamber heating unit

The warming chamber heating unit (Vetronic Services Ltd, England) consisted of an in-line

electrically heated device and an electronic controller. Located within a 10 cm pipe fitted with

22 mm male connectors, four heating coils provide heat to the fresh gas supplied directly from

the fresh gas outlet of anaesthetic machine. Temperature sensors within the heating unit pro-

vide information on the exit temperature of the fresh gas. By means of a microprocessor, the

heating effect was varied to maintain a constant exit temperature with varying fresh gas flow.

Auxiliary temperature sensors provided information on air temperatures in the warming

chamber. The heating unit was placed between the distal end of the anesthetic circuit and the

entry port to the warming chamber. Due to heat losses from the warming chamber itself, the

temperature of the incoming gas was higher than the target patient temperature.
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PW1% group

The warming chamber was heated for 35 minutes before rat entry to achieve a box temperature

of 34.4 ± 1.6˚C. Chamber heating continued after a rat was introduced to the chamber

until core temperature increased by 1% over baseline for each animal. Once the target temper-

ature was achieved, general anesthesia was induced with 5% isoflurane in oxygen at 1L/min.

At loss of righting reflex, the rat was removed from the warming chamber and placed on an

absorbent pad (17" x 24", Ultra Blok, A.M.G. Medical Inc. Montreal, QC) with no further

active heat source and core temperature allowed to decrease to below the hypothermic

threshold.

PW40 group

The methods was as described for the PW1% group, except that the target core temperature

was 40.0˚C before beginning general anesthesia.

NW group

Rats were placed in the warming chamber for 10 minutes (based on the initial PW1% experi-

ment time within warming chamber) with the same oxygen flow rate as during the PW1% and

PW40 treatments. No heat was provided and anesthesia maintained until core temperature

decreased below the hypothermic threshold.

Statistical analysis

Data were analysed with commercial software (Prism 8.1.2, GraphPad Software, La Jolla, CA,

USA and MedCalc Software 18.5, Ostend, Belgium). All data approximated a normal distribu-

tion according to the D’Agostino-Pearson Omnibus normality test. Time to hypothermia

(individualised to each rat) was assessed with a repeated measures 1-way ANOVA (post-hoc

Tukey). The effectiveness of the different treatments were assessed with an area under the

curve. Curve limits were set as start of anesthesia (time 0) and onset of hypothermia. The area

under the curve was assessed with a 1-way ANOVA (post-hoc Tukey test). Agreement between

different temperature measurement sites and core temperature were evaluated with a Bland-

Altman analysis for repeated measures with data pooled from the three treatment groups. The

criterion method (core temperature) was subtracted from the other measurements (tail, fur

and rectal). Differences between treatment groups in the percentage of time spent facing the

heat source was assessed with a mixed-effect analysis (post-hoc Tukey test). p-values of< 0.05

were considered significant. Data are presented as mean ± SD in the text and mean ± SEM or

median ± 10–90 percentile in the figures. Data supporting the results are available in an elec-

tronic repository: Pang, Daniel, 2020, "Pre-warming and perianesthetic hypothermia_01",

https://doi.org/10.7910/DVN/GCIXJ3, Harvard Dataverse, V1, UNF:6:KaxaaRzSaksvTc+-

8qIe18Q = = [fileUNF].

Results

None of the pre-established exclusion criteria was met during the experiment and each rat

completed all experiments (n = 17 / group). Nine video files were corrupted and therefore,

behavioural observations could not be completed for these animals (PW1%: n = 8, PW40:

n = 1). Additionally, one rat from the PW1% group was excluded from behavioural analysis as

an outlier: its behavior differed from all other animals in spending 83% of the time facing the

heat source.
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The mean core temperature of all rats during baseline (day before experimentation) was

37.2 ± 0.17˚C. Therefore, an overall hypothermia threshold value of 36.9˚C. Pre-warming was

successful in increasing core temperature while in the warming chamber. The time to increase

core temperature by 1% or to 40˚C was 11 ± 5.1 and 23 ± 5.3 minutes, respectively. The mean

core temperatures of the PW1%, PW40 and NW groups at time 0 were 38.5 ± 0.6, 39.6 ± 0.2

and 37.9 ± 0.4˚C, respectively. Pre-warming was also effective in raising skin temperature,

with an increase from baseline of 4.8 ± 1.6˚C for the PW1% group and 3.4 ± 1.2˚C for the

PW40˚C group. The NW group had a small increase in skin temperature when placed in the

warming chamber of 1.6˚C ± 1.1˚C. The core body temperatures of all rats reduced when

warming was stopped, and anesthesia started (Fig 1).

Area under the curve during temperature reduction

Increasing core temperature before the onset of general anesthesia was associated with a signif-

icantly greater area under the curve until hypothermia was reached. Significant differences

Fig 1. Core temperature changes in rats pre-warmed to 40˚C (PW40, n = 17), 1% above baseline temperature (PW1%, n = 17) or without warming (NW, n = 17).

Time spent in warming chamber is highlighted in red (time -35 to 0 mins), followed by induction of general anesthesia and removal from warming chamber (green box,

time 0 to 50 mins). Area under the curve during temperature reduction was calculated from time 0 to 50 mins. Before time 0, data are plotted every 5 minutes for clarity.

Data presented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0219722.g001
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between areas under the curve was found between all treatment groups: PW1% vs NW

(p = 0.0108, 95% CI of difference, -14 to -1.4), PW1% to PW 40 (p< 0.0001, -17 to -5.7) and

PW40 to NW (p< 0.0001, -25 to -13; Fig 1).

Time to reach individual hypothermia threshold

Pre-warming had a significant effect on the time to reach the hypothermia threshold. Times

to reach the hypothermia threshold were 7.1, 12.4 and 19.3 minutes for treatment groups

NW, PW1% and PW40, respectively. These times were significantly different between each

treatment group: PW1% versus PW40 (p = 0.004, 95%CI -12 to -2.2), PW40 versus NW

(p< 0.0001, 95%CI 8.1 to 16), PW1% versus NW (p = 0.003, 95%CI 1.8 to 8.7, Fig 2).
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Fig 2. Time to reach individual hypothermia threshold. The no-warming (NW, n = 17) group reached their individual hypothermia threshold more quickly than the

pre-warming to 1% above baseline core temperature (PW1%, n = 17) (p< 0.01) and pre-warming to 40˚C (PW40, n = 17) (p< 0.0001) groups. The PW1% group

reached their individual hypothermia threshold more quickly than the PW40 group (p< 0.01). Data presented as mean ± SEM. ��p< 0.01. ����p< 0.0001.

https://doi.org/10.1371/journal.pone.0219722.g002
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Comparisons of different temperature measurements

Rectal temperatures approximated core temperatures (bias -0. 20˚C, 95% limits of agreement

-4.3 to 4.0; Fig 3). Fur and tail temperatures underestimated core temperatures (fur: bias

-2.5˚C, 95% limits of agreement -6.6 to 1.7 Fig 4; tail: bias -7.8˚C, 95% limits of agreement

-15.3 to -0.30; Fig 5).

Behavioural assessment

During both timepoints evaluated, rats that were prewarmed preferred to face away from the

heat source during both three-minute intervals (Fig 6). During the first and last three minutes

of observation, NW animals did not display a position preference and were more likely to face

the heat source in comparison to PW1% (first 3 mins: p = 0.0005, 95%CI 28.3 to 68.1; last 3

mins: p = 0.009, 95%CI 15.1 to 80.5) and PW40 (first 3 mins: p = 0.003, 95%CI 11.2 to 53.5;

last 3 mins: p = 0.016, 95%CI 6.5 to 63.2). During the first three minutes, PW40 animals were

Fig 3. Bland-Altman plot of repeated measures comparing rectal and core temperatures. Rectal temperature underestimates core temperatures by 0.20˚C, with 95%

limits of agreement ranging from -4.3 to 4.0. Data were pooled from the three treatment groups.

https://doi.org/10.1371/journal.pone.0219722.g003
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more likely to face the heat source than PW1% animals (p = 0.016, 95%CI 3.59 to 28.2). A low

incidence of digging behaviour was observed in both PW1% (n = 2/9) and PW40 (n = 3/16)

groups, which was only displayed during the second observation period (end of warming

period). Chromodacryhorrhea was observed in two rats that displayed digging behavior in the

PW40 group. Neither digging behaviour nor the occurrence of chromodacryhorrhea were evi-

dent in the NW group. No other abnormal behaviours were observed.

Discussion

The main findings of this study are that pre-warming is effective at delaying the onset of hypo-

thermia during general anesthesia. This was achieved by increasing skin and core tempera-

tures. Following pre-warming, the rate of temperature loss was slightly faster than without

pre-warming. Additionally, the accuracy and agreement of tail and fur temperature, as proxies

of core temperature, was poor, whereas rectal temperature showed good agreement with core

temperature.

Fig 4. Bland-Altman plot of repeated measures comping fur and core temperatures. Fur temperature underestimates core temperature by 2.50˚C, with 95% limits of

agreement ranging from -6.7 to 1.7. Data were pooled from the three treatment groups.

https://doi.org/10.1371/journal.pone.0219722.g004
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The consequences of hypothermia are well documented in human medicine, with a

decrease in core temperature of 1˚C linked to significant adverse outcomes. These include

increased surgical site infection, hemorrhage, impaired immune function, thermal discomfort

and prolonged recovery and hospitalisation [11, 23–28]. In laboratory mice, warming animals

between injection of anesthetic agents and induction of anesthesia resulted in reduced data

variability [29].

Despite these known adverse effects, hypothermia remains a common peri-anesthetic

complication in both human and veterinary medicine. Recent studies have documented inci-

dence rates as high as 84–97% in cats and dogs undergoing a variety of procedures [1, 3, 4].

Good temperature management is a key element in optimal recovery from surgery and is

included in the concept of Enhanced Recovery After Surgery (ERAS), a perioperative manage-

ment strategy applied in human medicine to optimise recovery (return to normal function)

without compromising pain management [30, 31]. ERAS is in its infancy in veterinary medi-

cine [32–34].

Fig 5. Bland-Altman plot of repeated measures comparing tail and core temperatures. Tail temperature underestimates core temperature by -7.80˚C, with 95%

limits of agreement ranging from -15.3 to -0.3. Data were pooled from the three treatment groups.

https://doi.org/10.1371/journal.pone.0219722.g005
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In mammals, core body temperature is normally closely regulated by the hypothalamus,

maintaining core temperature within ± 0.3˚C through various autonomic and behavioral

mechanisms. General anesthesia (injectable and volatile anesthetics) prevents heat-seeking

behaviors, inhibits heat-producing activities (i.e. shivering) and loosens the regulation of core

temperature so that fluctuations in core temperature of 3–6˚C are permitted. Protective strate-

gies against hypothermia are impaired: vasoconstriction does not occur until a lower tempera-

ture is attained and there is a loss of control over arteriovenous shunting [15, 35, 36].

Inhibition of thermoregulation promotes a major redistribution of heat from the core to

the periphery, explaining the rapid drop in core temperature noted during the first hour of

general anesthesia [7]. This rapid onset of hypothermia is well documented in both rats and

mice [14, 20, 37].

Fig 6. Percentage of time rats faced the heat source. The no-warming (NW, n = 17) group spent approximately 50% of the time facing the heat source and this was

significantly longer than the pre-warming to 1% above baseline core temperature (PW1%, n = 17) and pre-warming to 40˚C (PW40, n = 17) groups during the first and

last 3 mins of observation (p< 0.05). During the first three minutes, the PW40 group was more likely to face the heat source than PW1% (p < 0.05). Data presented as

median ± 10–90 percentile. �p< 0.05. ��p< 0.01. ���p< 0.001.

https://doi.org/10.1371/journal.pone.0219722.g006
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The concept of pre-warming patients was introduced in humans on the basis that increas-

ing peripheral temperature before general anesthesia would limit temperature redistribution

from the core to the periphery, subsequently delaying hypothermia [18]. This was successfully

achieved by raising skin temperatures by approximately 4 to 5˚C, an increase associated with

small increases in core temperature (0.3–0.5˚C) [19]. When coupled with intra-operative

warming, this strategy was effective at preventing hypothermia [38–40].

The literature on peri-anesthetic temperature management in rodents is limited, with a

focus on warming after general anesthesia is induced [37, 41, 42]. However, recent preliminary

work has shown that pre-warming can be effective. Warming an anesthetic induction

box before and during induction of general anesthesia with isoflurane in rats (box temperature

35.7 ± 3.5˚C to 37.5 ± 2.6˚C) was successful in maintaining core temperature above baseline

during 40 minutes of general anesthesia in conjunction with active warming using a heat pad

(set at 40˚C); however, this study did not investigate the effects of pre-warming in isolation

[20].

The PW1% group was determined based on human literature, which shows an increase in

core temperature of approximately 1% above baseline to be effective in preventing core to

periphery heat redistribution [19, 40]. The PW40 treatment was selected to assess the effect of

warming to a higher core temperature on behavior and temperature maintenance. An upper

limit of 40˚C was selected as core temperatures in mice of 41.5 ± 0.1˚C for 2 hours resulted in

apoptosis [43].

Pre-warming was successful in delaying the onset of hypothermia, which took approxi-

mately 2.5 times longer to occur in the PW40 group and 1.5 times longer in the PW1% group

compared with the NW group. Overall, pre-warming conferred protection against hypother-

mia for approximately 15 minutes without additional warming, a duration suitable for short

procedures. Beyond this period, normothermia could be simply maintained with active warm-

ing and appropriate warming during recovery, as previously shown [20, 44]. As has been

reported in humans, the rate of heat loss following induction of anesthesia was greater than in

the pre-warmed than in the NW animals, reflecting the temperature gradient to the environ-

ment [9, 45].

The use of telemetry capsules placed within the peritoneal cavity has the advantages of accu-

rately reflecting core temperature and allowing remote monitoring [46]. However, it is clearly

not a practical approach for routine monitoring. Therefore, several other temperatures were

recorded for comparison against core temperature. Rectal temperature performed well, with

values acceptably close to core temperature. This is in line with previous work showing a simi-

lar bias and limits of agreement between rectal and core temperatures: Bias; -0.9˚C, limits of

agreements; 0.1 to -1.9˚C [20]. Importantly, rectal temperature accuracy is dependent on ther-

mometer insertion depth [47]. In contrast to rectal temperature, fur and tail temperature per-

formed poorly. Comparing these alternative sites for temperature measurement with

telemetric core temperature allows an accurate determination of their inter-relationship.

These findings show that rectal temperature can be used as a proxy for core temperature in

healthy rats but fur and tail temperatures are highly variable and unlikely to be useful in esti-

mating core body temperature. The application of the Bland-Altman method reveals this vari-

ability, in contrast to interpreting correlation alone [48].

The behavioral analyses were equivocal. Though rats in the pre-warmed groups showed a

clear preference for facing away from the heat source, overt signs of distress were rarely dis-

played. Nonetheless, further investigation is required to characterise the presence and severity

of stress. A larger warming chamber that would allow rats to move away from the heat source

may be preferable.
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Limitations

This study had several limitations. The study was limited to a single volatile anesthetic; there-

fore, the role of pre-warming during injectable anesthetic drug use remain unknown. There

was no measurement of air humidity or velocity in the warming chamber; both factors affect

heat loss through evaporation [49]. Any adverse effects of the transient increase in core tem-

perature to 40˚C are unknown as neurological outcomes were not studied following recovery;

however, no overt changes in behavior or body condition were noted in the weeks following

the study. Finally, the study design was limited to a simple procedure performed in healthy

animals. While the general principles are unlikely to change, the rate and degree of heat loss

during invasive procedures (entering a body cavity) or in systemically sick animals are likely to

differ.

Conclusion

Pre-warming alone is effective in delaying hypothermia in rats anesthetized with isoflurane.

The duration of effect was short, necessitating temperature support for longer anesthetic peri-

ods. Rectal temperature measurement is an acceptable proxy for core temperature, unlike fur

and tail temperature. Further research is needed to establish temperature profiles and optimal

temperature management during surgery and in sick animals.
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