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Replicate mass spectrometry (MS) measurements and the use of multiple analytical methods 

can greatly expand the comprehensiveness of shotgun proteomic profiling of biological 

samples1-3. Such MS data contains inherent biases and variations which create 

computational and statistical challenges for quantitative comparative analysis4. We have 

developed and extensively tested a normalized label-free quantitative method termed the 

normalized spectral index, SIN, which combines three MS abundance features: peptide and 

spectral count with fragment-ion (ms/ms) intensity. SIN largely eliminated variances 

between replicate MS measurements, permitting quantitative reproducibility and highly 

significant quantification of thousands of proteins detected in replicate MS measurements of 

the same and distinct samples. It accurately predicts protein abundance more often than 

current methods tested. Comparative immunoblotting and densitometry further validate this 

method. SIN enables comparative quantification of complex datasets from multiple shotgun 

proteomics measurements, which is potentially useful for systems biology and biomarker 

discovery.

Quantitative proteomics is widely used for examining differences in global protein 

expression between cellular states and in disease biomarker and target discovery3, 5-8. These 

methods are based on one MS feature of abundance such as spectral or peptide count or 

chromatographic peak area or height values using labelled or label-free approaches (see 

supplementary notes online for details). How to compare and quantify differential 

expression remains an important challenge for this field9, 10. To date, MS fragment ion 
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intensities appear only to be used for candidate-based quantification, such as the 

quantification of small molecules relative to a labelled version of the analyte of interest11. A 

similar approach is single or multiple reaction monitoring (SRM, MRM) where transitions 

from selected precursor to specific fragment ions are monitored and compared to a spiked 

standard12, 13. Fragment ion intensities are also used in iTRAQ quantification, where the 

intensity of the reporter fragment ion is directly related to the abundance of the precursor 

from which it's derived14. To date, fragment ion approaches have not been applied in a 

label-free manner or used in large-scale shotgun proteomics analysis. Here, we explore their 

utility as an abundance feature.

We previously discovered that multiple MS measurements of a sample are required for 

large-scale shotgun proteomic platforms to achieve statistically significant 

comprehensiveness in protein identifications1 (supplementary notes). This is critical for 

biomarker discovery where proteins differentially expressed between normal and disease 

samples can only be meaningfully compared if samples are analyzed systematically and 

equivalently to completeness. This requires 4-8 MS measurements of each distinct sample1, 
2, 15. Unfortunately, replicate data contains inherent biases and variations so that MS signals 

are frequently corrupted by systematic or even apparently random changes (supplementary 

notes).

We set out to develop and test various methods to quantify, normalize and compare complex 

label-free proteomic data. We concurrently developed and tested various methods to 

normalize these features to control for measurement biases and variations. We sought MS 

features of abundance recorded in all datasets that can be easily extracted, and thus can be 

universally mined. These include spectral count (SC, number of ms/ms spectra per peptide) 

and unique peptide number (PN). We also include fragment ion (ms/ms) intensities as a new 

feature easily extracted from typical MS data and, to our knowledge, not incorporated 

previously into unlabelled, normalized quantification.

The spectral index (SI) is the cumulative fragment ion intensity for each significantly 

identified peptide (including all its spectra) giving rise to a protein and is defined as:

eq. 1

sc: spectral count for the peptide k,

i: fragment ion intensity of peptide k,

j: jth spectral count of sc total spectral counts for peptide k

pn: number of peptides identified for that protein,

Therefore, this equation inherently incorporates fragment ion intensity values with SC and 

PN for each protein.
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To test the reproducibility of the raw MS abundance features, we graphed the mean 

diamonds and confidence circles (see online methods) of multiple MS measurements of the 

same liver endothelial plasma membrane sample, with the null hypothesis that all replicates 

are equal. The mean PN, SC, and SI across datasets were not sufficiently reproducible and 

showed significant differences (Figure 1a-c), easily visualized by the non-overlapping mean 

diamonds and confirmed by ANOVA (online methods). Thus, normalization is required to 

enable meaningful quantitative comparison within and between samples.

We began with a simplistic approach to normalize the MS datasets by using the 

“housekeeping” protein actin. The SI of each protein was divided by the SI of actin in each 

MS measurement to yield SIact (eq. 2),

eq. 2

This normalization approach was applied to the 5,923 proteins identified in common across 

all the liver replicate MS measurements. A significant difference was still detected between 

the replicates (Fig. 1d). The results were similar when we replaced SI with SC or PN, or 

when we tested different standards or tissue samples (data not shown).

Next we utilized mean SI values to normalize the data. The Mean Protein Intensity (MPI) 

was calculated by dividing the total SI for all identified proteins  by the total 

number of proteins identified, n. The SI of each protein was subsequently normalized by 

MPI:

eq. 3

Similarly, we incorporated the total SC to generate another Mean Intensity normalization 

(MI) method (eq. 4). MI was calculated by dividing the total SI for the dataset  by 

the total SC of the dataset . The SI of each protein was subsequently normalized by 

MI to yield SIMI for each protein:

eq. 4

However, the replicates were still significantly different (Fig. 1e, f). Equivalent 

normalization of the SC and PN datasets were even less effective (data not shown).
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Next, we incorporated PN, SC and ms/ms intensities of each peptide into subsequent 

normalizations, because the SI values are dependent on these features. Each individual SI 

was normalized by either the total PN (PNt) for the protein, p (eq.5), total SC, TSC (eq.6), or 

global/total intensity, GI (eq. 7):

eq. 5

eq. 6

eq. 7

The replicate SIP and SITSC datasets were still significantly different (Fig. 1g, h). SIGI 

showed no significant difference between the datasets (Fig. 1i), indicating it succeeded in 

normalizing the replicate datasets.

Although the SIGI method provided a dramatic improvement, we aimed for further 

enhancement. Large proteins can contribute more peptides than smaller ones, thus their 

abundance may be overestimated16, 17. To correct for protein length (number of amino 

acids), we first normalized SI by protein length (SIL) (eq. 8, Supplementary Table 1), 

resulting in improvement over SI alone (Fig. 1j), but significant differences were still 

evident between the samples. As SIGI successfully normalized different samples, we 

incorporated protein length into this method, resulting in normalized SI (SIN):

eq. 9

No significant difference could be detected between the SIN normalized datasets (Fig. 1k) 

and SIN was superior to SIGI.

We applied the SIN normalization similarly to the SC datasets, by substituting SI with SC to 

yield SCN.

eq. 10

SCN failed to adequately reduce the variation between the datasets (Fig. 1l), showing the 

superiority of SI over SC. As expected, PN was even worse (data not shown).

Next, we compared SIN to two published SC methods, NSAF18 and Rsc19. NSAF failed to 

adequately normalize our replicate liver datasets (Fig. 1m). Substituting SI for SC in the 

NSAF approach proved much better but there was still a significant difference between the 
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replicates (data not shown). Rsc proved better than NSAF in reducing the variation but was 

inferior to the SIN method, (Fig 1n). When SC was replaced by SI in the Rsc equation (RSI), 

SI yet again outperformed SC, demonstrating the substantial improvement that can be 

gained by using SI over SC, regardless of the normalization approach (Fig. 1n).

To validate SIN as an abundance feature, we performed spiking experiments with a mixture 

of 19 protein standards across a wide dynamic range (0.5-50,000fmol), with either BSA 

(2.65μg) or a complex plasma membrane fraction (40μg) as background (Supplementary 

Methods). The SIN for each of the standard proteins was calculated and plotted as a function 

of protein load. R2 = 0.9239 (Fig. 2a, Supplementary Fig. 2a). The slope of the regression 

line is 1.223 (95% CI of 1.101 to 1.345), meaning the magnitude of SIN for any given 

change in protein abundance can be calculated (Supplementary Data).

To determine how SIN compares to the most commonly used abundance features, namely 

SC and AUC, we analyzed the ability of SIN, SC and various AUC methods19, 20, to 

accurately predict the amount of each protein in “the standard protein mixture”21 

(Supplementary Methods, Notes), a published dataset generated by ISB. For 13 of the 16 

proteins in the standard mixture, no significant difference could be determined between the 

SIN predicted amount and the actual amount (Fig. 2 b, c, e). For the remaining 3 proteins, 

SIN came closest to predicting the actual protein amount 2 out of 3 times (Fig. 2d). Thus, 

SIN accurately predicted protein amount 81.25% and was the best method at predicting 

protein amount 93.75% of the time.

The next best method was total AUC, which was accurate 50% of the time (56.25%, 

including the one time AUC outperformed SIN when none of the methods were significantly 

accurate). The other AUC methods19, 20 faired just as poorly as the “raw” AUC method in 

accurately determining the protein amount (18.75%, 43.75%, respectively). SC predicted 

correct protein abundance for the proteins only 37.5% of the time.

To determine whether SIN could control for variation in sample load, we compared two 

different MS datasets taken from the same sample, but analyzed different protein amounts. 

Proper normalization should scale the individual 40 and 150μg samples, facilitating a direct 

comparison based on relative abundance. Before normalization, the mean SI values between 

the 40 and 150μg samples were clearly and significantly different (Fig. 3a). First, we 

corrected the SI values for the 40μg sample by the dilution factor, SI40*150/40 (Fig. 3b). 

However, the samples were still significantly different, (t-ratio 24.459). The Rsc method 

was more effective than the NSAF method but significant variation was still apparent (Fig. 

3d, e). SIN was the only method tested that eliminated the variation introduced by dissimilar 

or even unknown protein loads, and thereby facilitated comparisons of proteins between 

these samples (Fig. 3c). When the t-ratios obtained from testing SIN and Rsc are plotted at 

incremental peptide cut-off levels (significantly identified peptides), SIN consistently 

outperforms Rsc as each t-ratio falls below the significance level of 2, meaning that no 

significant difference can be found between the SIN normalized datasets (Fig. 3f).

Next, we used SIN values to estimate protein amounts (online methods). Linear regression 

analysis of the ng amounts for each of the 2,660 common proteins from the 40 and 150ug 
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samples fit a straight line (R2>0.94) with a slope of 3.72, in excellent agreement with the 

150/40 ratio of 3.75 (Fig. 3g). This test provides additional strong statistical validation for 

the applicability of the SIN method to thousands of proteins for large-scale quantification of 

protein expression.

As a more stringent test, we determined whether the SIN method could facilitate 

unsupervised hieracherical clustering of biologically distinct datasets to identify correlated 

expression patterns. Using endothelial cell plasma membranes isolated from kidney and 

heart, each with five replicate MS measurements, we performed two-way unsupervised 

clustering (not imparting any prior knowledge onto the dataset) on the complete datasets 

using SIN values for all commonly identified proteins (across all datasets), which are 

represented by rows and tissues by columns (Fig. 3h). The clustering algorithm successfully 

clustered replicates according to tissue type, whereas distinct samples (heart vs. kidney) 

visually separated. This confirmed that SIN is quite successful in maintaining sameness of 

replicates while exposing the differences of distinct biological samples.

Next, we compared intensities obtained from a Coomassie-stained SDS-PAGE gel (Fig. 4a) 

to the SI abundance values generated by LC-MS/MS analysis. Each gel slice was treated as 

a distinct sample with an MS and densitometric measurement to determine relative 

abundance. The two profiles overlapped substantially for most of the gel (Fig. 4b). This 

strong correlation verifies further the utility of SI as a quantitative tool. Notably, MS also 

detected proteins in gel regions containing high molecular weight proteins with little 

Coomassie staining, consistent with this stain's well-known inability to stain some high 

molecular weight proteins. The sensitivity and utility of the SI method is readily apparent.

To determine whether we could detect quantitative differences for individual proteins 

expressed in two distinct samples, we applied the SIN method to datasets from total lung 

homogenates (H) versus lung endothelial plasma membrane (P) subfractions. Because the P 

fraction is physically derived from H, the protein composition of P is a subset of the proteins 

present in H. To determine those proteins that are enriched in P compared to H, we used SIN 

and western blotting to generate P/H expression ratios for individual proteins. Statistical 

comparison of the P/H ratios for 64 proteins, ranging from low to high abundance, produced 

a Spearman's Rho correlation coefficient of 0.86, indicating an excellent positive correlation 

between the two methods (Fig. 4c). As the Bland Altman plot 22 showed a mean difference 

of 0.09, and the data points fall within 2 s.d. of the mean (95% CI for the difference between 

the two methods), there is very little evidence to indicate that the quantitative methods are 

significantly different (Fig. 4d).

In this study, we have developed and tested a number of methods to quantify and normalize 

complex proteomics data obtained from a variety of MS methodologies. We performed 

extensive statistical testing and validation of our methods, systematically proving their 

utility through a wide variety of tests and demonstrating their application to diverse MS 

datasets. With the SIN method, we have successfully compensated for experimental and 

random bias and noise, thus showing that protein abundances, as reflected by mean SIN from 

replicate samples, are essentially the same. Conversely, the analysis of biologically distinct 
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samples, with noise and bias controlled by proper normalization, enables meaningful direct 

quantitative comparisons reflecting their true biological diversity.

We aimed to generate an abundance index with the convenience of SC, but greater 

confidence at low peptide numbers without the added complexity of peak area or AUC 

measurements. We tested the benefit of combining PN, SC and ms/ms ion intensities into 

one metric, (SI) as opposed to using these features in isolation. This approach proved 

statistically robust, more so than SC or AUC (Fig. 1, Fig. 2 and Supplementary Fig. 5&6) 

and obviates the need for spiked samples.

Using the fragment ion intensity, specifically only those intensities that match the peptide of 

interest as they are inherently more reflective of the precursor, may facilitate more accurate 

measurements as there is less chance of including the signal of co-eluting precursors or 

background noise (Supplementary Discussion online). Also, for SIN, it's the peak height of 

the ms/ms fragments that are summed where as for the AUC, the precursor ions are 

integrated thus providing more scope for error with the integration process. This is 

particularly important as most mass spectrometers operate in conjunction with liquid 

chromatography (LC) systems, thereby producing MS scans permeated by chemical noise. 

In addition, the chromatogram becomes noisier as the sample complexity increases. For 

example, even our typical 36hr LC-LC-MS/MS runs for complex samples still produce over-

lapping chromatograms due to co-elution peaks, making AUC quantification troublesome. 

Most groups use LC or LC-LC setups with much shorter elution times. This will continue to 

be an issue, even in the advent of high-resolution instruments, as improvements in MS 

resolution can only really be appreciated when the chromatographic resolution improves in 

tandem, which has yet to be fully realized. This is not an issue for the SIN calculation as the 

ms/ms spectra is inherently less complex and no integration is preformed.

SIN, above all other methods tested, could accurately determine the correct amount of each 

protein standard in a mixture (Fig. 2 b-d, e). Despite giving the AUC methods the best 

possible advantage (Supplementary Notes), SIN consistently outperformed them in 

determining protein abundance (Supplementary Fig. 5&6). SC performed as modestly as the 

AUC methods. SIN could accurately determine the relative abundance for thousands of 

proteins in complex samples, without the need for spiking of protein standards (Fig. 3g, Fig. 

4). SIN also facilitated the identification of a subset of proteins enriched in P relative to H. 

We showed outstanding correlation between the SIN and western blot ratios (Fig. 4c&d), 

validating this enrichment.

As abundance features, SI, SC, PN, and AUC are not reproducible across replicate datasets 

(Fig. 1 a-c, Supplementary Fig. 4a). Methods of normalizing complex LC-MS/MS data are 

only just emerging19, 23-27, but no comparison is generally shown between the pre- and 

post-normalized data. Stringent validation has been rather sporadic and the results and 

efficacy have been variable24, 28-30. Therefore, we undertook a systematic and logical 

approach to normalize our datasets. Of the methods tested, only SIGI and SIN were 

successful in removing the variability between replicates (Fig. 1i). For SIN, we added a 

protein size parameter to the SIGI calculation, resulting in a clear benefit over SIGI alone 

(Fig. 1i, k). Even when we substituted SI for SC, PN or AUC in the normalization methods, 
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SI consistently outperformed all other features, regardless of the sample, measurement or 

normalization approached applied (Fig. 1k, l, o & Supplementary Fig. 4c). Even the raw SI 

values show less variation between the replicates than the SIN “normalized” AUC values 

(Supplementary Fig. 4).

SIN does not over-normalize, but rather can reduce replicate variability to maintain 

sameness in datasets from a single sample while maintaining quantitative differences 

between distinct samples (Fig. 3h). SIN can also successfully normalize datasets with 

different loading amounts (Fig. 3c), thus, the dilution factor between samples can be 

accurately derived from the data simply by calculating the slope of the regression line (Fig. 

3g). SIN can also control for the variation introduced by different MS methodological 

analysis of the same sample (Supplementary Fig. 3) to facilitate comparison and 

quantification across all datasets (Supplementary Fig. 7). This may have significant 

implications for the comparison of datasets acquired in different labs.

In summary, combining and normalizing several MS abundance features, including for the 

first time, fragment ion intensities, represents a novel approach to MS quantification with 

broad utility. When we compared our new methods to each other and to previously reported 

methods19, 20, the best method was SIN, which was developed through logical systematic 

application of enabling parameters which, when combined, produced improved 

normalization and quantification. This method now allows the quantitative comparison of 

biologically distinct datasets with high confidence and relative ease, and should therefore 

greatly facilitate the use of label-free quantitative proteomic approaches for differential 

protein expression analysis. This method is all the more valuable in the era of systems 

biology and biomarker discovery where distinct samples must be analyzed both 

quantitatively and comprehensively through the replicate MS measurements necessary to 

gain confidence in determining expression differences and novel biomarkers.

Methods

Mass spectrometry analysis

Proteins were pre-fractionated on SDS-PAGE gels prior to 2D-LC-MS/MS and Reverse 

Phase-MS/MS. For RP-MS/MS using either an LCQ or LTQ mass spectrometer, digested 

peptides were extracted from each gel slice and lyophilized. For 2D-LC-MS/MS using an 

LCQ, peptides extracted from each gel slice were first pooled into 7 groups then 

lyophilized2. Data acquisition from both the LCQ and LTQ was carried out in data-

dependent mode. Full MS scan were recorded on the eluting peptides over the 400-1400 m/z 

range with one MS scan followed by three MS/MS scans of the most abundant ions. A 

dynamic exclusion was applied for Repeat Count of 2, a Repeat Duration of 0.5 minute, and 

an Exclusion Duration of 3 min. A dynamic exclusion window was applied for duration of 

10 minutes for 2D-LC-MS/MS.

Database search

The acquired MS/MS spectra were converted into mass lists using the Extract_msn program 

from Xcalibur and searched against a protein database containing human, rat and mouse 
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sequences using the Sequest program in Bioworks™ 3.1 for Linux (Thermo Fisher 

Scientific, Inc., Waltham, MA, USA). The searches were performed allowing for tryptic 

peptides only with peptide mass tolerance of 1.5 Da for LTQ data, 2.0 Da for LCQ data. 

Accepted peptide identification was based on a minimum ΔCn score of 0.1; minimum cross 

correlation score of 1.8(z=1), 2.5(z=2), 3.5(z=3). The false positive identification rates were 

≤ 1% (see supplementary methods). The positive protein identification results were 

extracted from Sequest.out files, filtered and grouped with DTASelect software using the 

above criteria. Proteins were identified based on 2 unique significantly identified peptides.

Fragment ion intensity (intensity of the ions in the ms/ms spectrum that are assigned to a 

given peptide), peptide number (number of unique peptides identifying a protein) and 

spectral counts (number of ms/ms spectra assigned to a particular peptide) were extracted 

from the DTAselect output files using a script written in-house (see supplementary 

methods). For the purpose of this manuscript, fragment ion intensity is defined as the total 

intensity of all detected b and y fragment ions (ms/ms spectra) for a specific peptide. The 

fragment ion intensity of each peptide that passes the threshold for identification that gives 

rise to a significantly identified protein (see above) is summed. The combination of these 

summed fragment ion intensities from all ms/ms spectra and peptides relating to a given 

protein is combined and is referred to as the spectral index (SI) for that protein.

NSAF and Rsc

NSAF is described by Zybailov et al18 as

where Spc is the spectral count for protein k and L is the length of protein k.

The Rsc is described by Old et al19 as:

where, for each protein, RSC is the log2 ratio of abundance between Samples 1 and 2; n1 

and n2 are spectral counts for the protein in Samples 1 and 2, respectively; t1 and t2 are total 

numbers of spectra over all proteins in the two samples; and ƒ is a correction factor set to 0.5 

by Beissbarth et al33 and varied in the study by Old et al. We used the 1.25 correction factor 

as per Old et al19.

Protein abundance calculation

SIN were converted to estimated nanogram amounts, by including the initial sample load in 

the final calculation using the following equation:
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where j = number of all proteins identified with ≥2 unique peptides, and the subscript i refers 

to the ith protein of j total proteins, and Q is the amount of sample (μg) used in a given 

measurement.

Statistics

JMP IN 5.1 (SAS Institute) was used for all statistical analysis. T-tests and ANOVAs are 

common statistical tests used for determining difference between sample means but require 

data to be normally distributed to achieve analytical rigor. Our raw SC, PN and SI datasets 

were not normally distributed (Supplementary Fig. 1) as measured by the skewness and 

kurtosis of the frequency distribution. To maintain statistical rigor and to avoid inflated 

variance, we performed a log10 transformation of our datasets which produce a reasonable 

normality as determined from the histogram and Q-Q plots (Supplementary Fig. 1). Thus, 

for comparative statistical analysis, we similarly transformed all the datasets after 

performing the normalizations described below. It should be noted that equivalent results to 

those described below were obtained with non-parametric analyses (data not shown).

To visualize normalized datasets, we graphed the mean (center line) and 95% confidence 

intervals (CI), indicated as diamonds on the graphs, of normalized spectral indexes. If the 

CIs shown by the mean intervals do not overlap, the groups are significantly different. The 

reverse is not necessarily true and significance is determined from the summary statistics 

associated with the analysis (see below). The confidence circles are another way of 

visualising the diamonds and aids in determining CI overlap.

To determine whether there was any evidence that the replicate values were significantly 

different before and after application of the normalization methods, we applied a t-statistic 

(2 replicates) or ANOVA, one-way (>2 replicates) to look for differences in normalized 

mean abundance features. For the statistical analysis, we used only the proteins that were 

identified in common across all replicate datasets for a particular comparison. Our null 

hypothesis was that both (2 replicates) or all (>2 replicates) samples were equal. For the t-

statistic (2 replicates), the normalized values were deemed significantly different if a large t-

ratio (as determined from the t-tables) and a small P-value (p<0.05) were produced from the 

t-statistic. We use a t-ratio <2 in absolute value for significance as it approximates the 0.05 

significance level. For analysis of difference in mean intensities between multiple replicate 

(>2) samples, analysis of variance (ANOVA, one-way) was performed. Our null hypothesis 

was that all replicate samples were equal. If our null hypothesis was true then we expect the 

F-ratio to be ∼1. (Informally, the smaller the F statistic [equivalently, the larger the p-

value], the closer the agreement across the replicates). Our significance level was p<0.05. If 

there is no statistically significant difference between the replicates (as indicated by F-ratio 

∼1) we conclude that the normalization method succeeded in controlling for the variation 

between the replicate datasets.
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Unsupervised hierarchical clustering—Cluster analysis was performed on a dataset 

from 5 replicate MS measurements of endothelial cell plasma membranes isolated from 

kidney and heart samples using JMP 5.1, and using Wards hierarchical method34. Ward's 

method is a hierarchical method designed to optimize the minimum variance within clusters 

(minimizes within-group dispersions). The SIN values for each protein was normalized 

across each row (all 10 samples) using the following standard approach: (SIN – (mean 

SIN)row/(standard deviation) row).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Statistical analysis of replicate MS measurement variation before and after 
normalization
The mean and 95% confidence interval (CI) for the abundance features, peptide number, PN 

(a), spectral count, SC (b), and spectral index, SI (c) were calculated for 4 MS replicate 

measurements of pooled endothelial cell plasma membrane isolated from liver and were 

plotted using the mean diamonds and comparison circles methods. If the CIs, as indicated by 

the diamonds, do not overlap, the groups are significantly different. For statistical analysis 

of difference in mean intensities or other features, between multiple replicate samples, 

analysis of variance (ANOVA, one-way) was performed. Our null hypothesis was that all 
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replicate samples were equal. If our null hypothesis is true then we expect the F-ratio to be 

∼1 (d.f.= 5919). Our significance level was p<0.05. The x-axis represents each of the 4 

replicate datasets and the y-axis represents the log of abundance feature being examined 

(n=5923). The indicated normalization methods were applied separately to the SI (d-k) or 

SC (l) datasets and tested for differences as described above. We applied NSAF20 and Rsc19 

methods to the replicates datasets (see online methods for equations) and tested for 

differences (m,n). Graph of the comparison of F-ratios obtained from statistical testing of 

SIN, Rsc and RSI, where RSI is the Rsc equation with SI substituted for SC (n).
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Figure 2. Correlation of SIN with protein abundance
(a) A protein standard mix spanning a wide dynamic range (0.5 – 50000fmol) was spiked 

into BSA, separated by SDS-PAGE, trypsin digested and analyzed by 2DLC. SIN values for 

each spiked protein were calculated, averaged and plotted against the amount of the protein 

standard added. (Note: clustering of many of the data points close to the origin due to the 

large range in protein abundance; this region was zoom and expanded for ease of 

visualization). The R2 correlation was 0.9239. (b-d) Statistical analysis comparing the 

quantification of proteins across replicate measurements using 6 quantification methods 

(relative to known value). The mean and 95% CI for protein abundance, as determined by 

various relative quantitative methods, were plotted for three representative proteins from the 

“standard protein mixture” and compared to the actual loaded amount using ANOVA, and 

individual means were compared using the Tukey-Kramer HSD method 31, 32, Quantitative 

methods that were not significantly different from the actual protein abundance, (ANOVA, 

α=0.05) are highlighted in red. (e) The table summarizes the statistical analysis used to 

compare the ability of 5 quantitative methods to accurately determine the correct amount of 

a protein in a standard mixture across replicate datasets. The number of correct abundance 

determinations was determined using ANOVA where the predicted protein amount, as 

determined by each method, did not deviate significantly from the mean of the actual protein 

amount, α=0.05 Abbreviations; SC- spectral count, AUC- area under the curve; total AUC 

for all identifying peptides.
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Figure 3. Statistical analysis of normalization methods applied to variable protein load and 
distinct sample datasets
The indicated normalization methods were each applied to the 40 and 150μg MS datasets 

from normal lung endothelial cell plasma membranes (ECPM). Mean and 95% CI for (a) 

raw SI dataset and datasets normalized by: (b) the dilution factor, (c) SIN, (d) Rsc, (e) 

NSAF, were plotted using the mean diamonds and comparison circles. The x-axis represents 

the 2 different protein loads and the y-axis represents the log of the normalized abundance 

feature (number of common proteins, n = 2660). (f) T-ratios for statistical testing of SIN & 

Rsc are plotted as a function of peptide cut-off numbers (number of peptides/protein 

commonly identified between the samples). α=0.05 significance line is plotted, T-ratios 

above this line indicate that samples are different. (g) The ng converted SIN values (based on 

initial sample load) for 2,660 proteins common between the 40 and 150ug datasets were 

plotted against each other. The slope of the line is 3.72, R2 = 0.94. (h) Two-way clustering 
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of ∼3,000 proteins identified in ECPM heart and kidney samples. Each column in the matrix 

represents a single 2D-LC-MS/MS run for either heart or kidney, based on the SIN 

normalized MS data. Proteins (rows) and tissues (columns) are clustered based on their 

similarities in protein intensity profile. Colors within the heatmap range from light blue 

(least prevalent) to dark red (most prevalent), illustrating the relative abundance of each 

protein within a particular sample.
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Figure 4. Comparative analysis of proteins quantified by SDS-PAGE and MS analysis
(a) Proteins in ECPM from rat lung were separated by SDS-PAGE, stained with coomassie 

blue and cut into 51 slices. Each gel slice was subjected to densitometry and MS analysis. 

(b) The densitometry intensities for each slice were compared to the SI on the same axis, 

with the x-axis being the gel slice number. (c) 64 proteins found in both lung ECPM (P) and 

the entire lung homogenate (H) were analyzed by Western blotting to quantify protein signal 

by densitometry. The P/H ratio for each protein from the Western analysis is plotted against 

its P/H ratio from the SIN values (multiple measurements). Spearman's Rho correlation 

between Western and SIN ratio is ρ = 0.86, all the points fall within 95% CI (red line). (d) 

The Bland-Altman plot for the two methods with 1 and 2 s.d. of the mean.
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