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Abstract

A parental selection approach based on genomic prediction has been developed to help

plant breeders identify a set of superior parental lines from a candidate population before

conducting field trials. A classical parental selection approach based on genomic prediction

usually involves truncation selection, i.e., selecting the top fraction of accessions on the

basis of their genomic estimated breeding values (GEBVs). However, truncation selection

inevitably results in the loss of genomic diversity during the breeding process. To preserve

genomic diversity, the selection of closely related accessions should be avoided during

parental selection. We thus propose a new index to quantify the genomic diversity for a set

of candidate accessions, and analyze two real rice (Oryza sativa L.) genome datasets to

compare several selection strategies. Our results showed that the pure truncation selection

strategy produced the best starting breeding value but the least genomic diversity in the

base population, leading to less genetic gain. On the other hand, strategies that considered

only genomic diversity resulted in greater genomic diversity but less favorable starting

breeding values, leading to more genetic gain but unsatisfactorily performing recombination

inbred lines (RILs) in progeny populations. Among all strategies investigated in this study,

compromised strategies, which considered both GEBVs and genomic diversity, produced

the best or second-best performing RILs mainly because these strategies balance the start-

ing breeding value with the maintenance of genomic diversity.

Introduction

Biparental crossing is a common scheme used for pure-line breeding in self-pollinated crops

such as rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean (Glycine max [L.] Merr.),

and oat (Avena sativa L.). Plant breeders cross two inbred parental lines to produce the F1 pop-

ulation. Then, a subset of diverse individuals from the F2 population is selected to produce

potential recombination inbred lines (RILs) after several generations of selfing. Parental lines

play a fundamental role in line development, and significantly affect the performance of the

resulting RILs. However, the identification of superior parental lines from germplasm collec-

tions for maximizing selection response in subsequent cycles remains challenging for plant

breeders [1, 2]. Another practical concern is that the number of possible crosses in such a

breeding program is often far greater than what can be handled in the field. Therefore,
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developing a method that can identify a limited number of superior parents before field trials

would be of great help to plant breeders.

Genomic selection, based on the statistical method of genomic prediction (GP), has been

used to improve breeding efficiency in dairy cattle [3] and a variety of crops [4–8]. The main

concept of GP is to capture all the effects of quantitative trait loci (QTLs) using high-density

DNA markers over the whole genome [9]. The most commonly used DNA markers are single

nucleotide polymorphisms (SNPs). A GP model is first built using the phenotypic and geno-

typic data of a training population. Then, genomic estimated breeding values (GEBVs) for the

candidate individuals with known genotypic data are predicted through the resulting GP

model. Two kinds of mixed linear model methods are widely employed to obtain GEBVs: (i)

best linear unbiased prediction (BLUP) based on markers, and (ii) BLUP based on a genomic

relationship matrix. To perform marker-based BLUP, the marker effects are treated as random

effects, and GEBVs of individuals are calculated by multiplying their marker scores by these

BLUP estimates; the ridge regression BLUP (rr-BLUP) method [9, 10] follows this approach.

To perform genomic relationship matrix-based BLUP, the genotypic values of individuals are

treated as random effects and estimated through a genomic relationship matrix; this approach

is used in the genomic BLUP (GBLUP) model [11, 12].

Gaynor et al. [13] proposed a two-part strategy for implementing genomic selection for line

development, which addresses two components: (i) a product development component, to

identify inbred lines either for hybrid parent development or cultivar release, and (ii) a popula-

tion improvement component, to increase the frequency of favorable alleles through rapid

recurrent genomic selection. Gaynor et al. [13] conducted a stochastic simulation and showed

that programs using the two-part strategy generated up to 2.5- and 1.5-fold more genetic gain

than conventional programs and the best performing standard genomic selection strategy,

respectively. Additionally, Yao et al. [14] combined GP with Monte Carlo simulation to select

superior parents in wheat breeding programs before field trials. The authors used the criterion

of usefulness function on a selection index, which incorporates yield and two quality traits, to

evaluate a cross, and concluded that the use of the usefulness function for parental selection

resulted in higher genetic gain than the use of mid-parent GEBV, implying that the strategy

for parental selection cannot only consider GEBVs of the candidate accessions.

By selecting parental lines with the highest GEBVs, breeders hope to maximally pass the

favorable traits of parental lines on to their progeny. However, the truncation selection

approach risks the elimination of several favorable QTLs from the breeding population

because of a lack of genomic diversity [15]. Therefore, in this study, we took both GEBV and

genomic diversity into account for identifying superior parents in a biparental crossing pro-

gram. We constructed a GBLUP model for a specific target trait to predict the GEBVs of the

candidate accessions. We first proposed a new index to quantify the genomic diversity of a set

of candidate accessions. Subsequently, we simulated the genotypic data for progeny popula-

tions derived from a cross over successive generations, and predicted the GEBVs of the simu-

lated progeny populations through the trained GBLUP model. Then, we made generation

advancement decisions according to the resulting GEBVs. Finally, we assessed a set of parental

lines based on F10 RILs. We compared the performance of several selection strategies via analy-

sis of two real rice genome datasets.

Materials and methods

Rice genome datasets

Dataset I. The rice genome dataset originally collected for genome-wide association study

(GWAS) in Zhao et al. [16] was used to illustrate the proposed procedure. This dataset
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contains 44,100 SNP variants and 36 traits of 413 O. sativa accessions, which comprises five

subpopulations and one admixed group. SNPs with missing rate> 0.05 and minor allele

frequency< 0.05 were removed from the dataset. To reduce redundant collinearity in the

genomic relationship matrix, one SNP was randomly selected from each bin of 20,000 bp over

each chromosome. A scatter plot based on the first two principal components (PCs) using the

retained 11,047 SNPs is displayed in Fig 1, which is almost the same as that in the correspond-

ing plot generated using all 44,100 SNPs [16]. The SNP genotype at each locus was coded as -1,

0, or 1, where 1 indicates homozygous genotype of the major allele; -1 indicates homozygous

genotype of the minor allele; and 0 indicates heterogenous genotype. After SNP coding, any

missing locus was imputed as 1. Six traits were analyzed: brown rice seed width (BRSW), flo-

rets per panicle (FPP), flowering time at Arkansas (FTAA), flowering time at Faridpur

(FTAF), plant height (PH), and panicle number per plant (PNPP).

Dataset II. The rice genome dataset, which was collected for genomic selection study [8],

was further analyzed as dataset II. This dataset contains 73,147 SNP variants and 363 elite

breeding lines belonging to indica or indica–admixed group. Phenotypic observations include

four years (2009–2012; two seasons per year [dry and wet]) of data on grain yield (YLD), flow-

ering time (FT), and plant height (PH), although PH data in the wet season of 2009 were not

available. Phenotypic values of 35 out of 363 individuals were missing; therefore, adjusted

means of only 328 individuals were used in this study. Additionally, only 10,772 out of 73,147

SNPs were used in this study. One SNP marker was selected per 0.1-cM interval on each chro-

mosome because the chosen subset of the full marker set has been shown to be efficient enough

for genomic selection in this collection of rice germplasm [8].

Fig 1. Scatter plot of 413 accessions with 11,047 SNPs according to the first two principal components (PCs) for

the 44k rice genome dataset. IND: indica rice; TEJ: temperate japonica rice; TRJ: tropical japonica rice; AUS: Aus rice;

AROMATIC: aromatic rice; ADMIX: admixed group.

https://doi.org/10.1371/journal.pone.0243159.g001
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Monte Carlo simulation of the genotypic data of progeny populations

To simulate the genotypic data of progeny populations, the Gramene Annotated Nipponbare

Sequence [17] was used to estimate recombination rates between two adjacent SNPs. The Gra-

mene Annotated Nipponbare Sequence database contains both physical and linkage distances

between SNPs, which can be downloaded from http://archive.gramene.org. The genetic posi-

tions of SNPs were estimated via linear interpolation between the two markers flanking each

SNP. Once the genetic positions were obtained, the recombination rates between adjacent

SNPs were estimated using Haldane’s mapping function [18]:

rAB ¼
1

2
1 � e� 2XABð Þ

where rAB is the recombination rate between markers A and B; XAB is the linkage distance

between markers A and B; and e is Euler’s number, a mathematical constant approximately

equal to 2.71828. Based on a series of Bernoulli distributions and the estimated recombination

rates, the crossover of each chromosome was simulated to yield the sequence of a gamete.

Then, two gametes were paired to produce the genotypic data for the progeny.

GBLUP model

The following GBLUP model was considered for GP:

y ¼ m1n þ g þ e ð1Þ

where y denotes the vector of phenotypic values of a training population with n individuals; μ
is a constant term; 1n is the vector of order n with all elements equal to 1; g represents the vec-

tor of genotypic values; and e is the vector of random errors.

It is assumed that g follows a multivariate normal distributionMVNð0; s2
gKÞ, where 0 is a

zero vector; s2
g is the genetic variance of additive effects; and K is a genomic relationship

matrix among the individuals. Furthermore, e followsMVNð0; s2
e InÞ, where s2

e is the random

error variance, and In denotes the identity matrix of order n. Here, g and e are assumed to be

mutually independent. In this study, the genomic relationship matrix K = MMT/p was consid-

ered, where M is the marker score matrix, and p is the number of SNP markers.

The model parameters of the GBLUP model can be estimated through the Henderson’s

equation [19], as follows:

n 1Tn

1n In þ lK
� 1

" #
m̂

ĝ

" #

¼
1Tny

y

" #

ð2Þ

where the regularization parameter λ is given by l ¼
s2
e
s2
g
.

The mmer () function in the R package sommer [20] was used to obtain the restricted maxi-

mum likelihood estimates (REMLs) for the two variance components of s2
g and s2

e , and the

resulting estimates were entered into Eq (2) to obtain m̂ and ĝ .

If ĝ bp is considered as the vector of estimated genotypic values for a breeding population,

and Kbp is considered as the genomic relationship matrix between the breeding and training

populations, the following equation is obtained:

ĝ bp ¼ KbpK
� 1ĝ

The GEBV for the breeding population is ĝ bp plus the estimate of the constant term m̂.
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Index for quantifying genomic diversity

Let g0 be the vector of genotypic values, and K0 be the genomic relationship matrix for a partic-

ular set of accessions with size n0. According to the GBLUP model in Eq (1), the covariance

matrix for g0 is given by:

Varðg
0
Þ ¼ s2

gK0

The determinant of the covariance matrix represents the overall variability of the genotypic

values, which is calculated as:

jVarðg
0
Þj ¼ ðs2

gÞ
n0 jK0j ð3Þ

Clearly, the determinant of Eq (3) is proportional to the D-score defined below:

D‐score ¼ jK0j ð4Þ

For a fixed number of n0, a subset of accessions chosen from a breeding population with the

maximal D-score will have greater genomic diversity than the competing choices with size n0.

The concept of the D-score is adopted from optimum experimental designs [21].

A simple example is given below to illustrate the D-score. Suppose that there are three

accessions (n = 3) in the candidate set with the genomic relationship matrix:

K ¼

1 0:9 0:5

0:9 1 0:1

0:5 0:1 1

2

6
4

3

7
5

For n0 = 2, the D-score for g1 and g2 is calculated as jK0j ¼
1 0:9

0:9 1

�
�
�
�
�

�
�
�
�
�
¼ 0:19. Similarly,

the D-scores for g1 and g3 and for g2 and g3 are given as 0.75 and 0.99, respectively. Clearly, the

two accessions with g2 and g3 genotypic values have greater genomic variation (smaller geno-

mic correlation) than the other competing choices. Closely related individuals could be

excluded from the maximal D-score set. The genetic algorithm presented in Ou and Liao [22]

was used to search a subset of accessions from a candidate population, such that it can attain

the maximal D-score of Eq (4).

Procedure for selecting parental lines

To evaluate a variety of strategies for determining parental lines, the following steps were car-

ried out:

1. For a specific target trait, all phenotypic values available from each rice genome dataset

were used to build the corresponding GBLUP model of Eq (1).

2. The GEBVs of all accessions in the dataset were predicted through the trained GBLUP

model in step 1. Seven strategies were used to select a subset of 10 parental lines according

to their GEBVs: (i) the GEBV only (GEBV-O) approach, which chose the top 10 accessions

(either maximal or minimal); three genomic diversity only (GD-O) approaches: (ii) GD-O-

30, (iii) GD-O-50, and (iv) GD-O-100, which applied the genetic exchange algorithm to

search for an optimal subset of 10 accessions from each of the three candidate sets com-

posed of the top 30, 50, and 100 accessions, respectively, such that the chosen subset had

the maximal D-score; and three approaches that considered both GEBV and genomic diver-

sity: (v) GEBV-GD-30, (vi) GEBV-GD-50, and (vii) GEBV-GD-100, which retained the top
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two accessions, and then applied the genetic exchange algorithm to search for another eight

accessions from the remainder of each candidate set for GD-O-30, GD-O-50, and GD-O-

100, respectively, so that the resulting 10 accessions had the maximal D-score.

3. For each subset of 10 accessions determined by the seven strategies, any two parental lines

were crossed to produce 45 F1 hybrids. Here, we started to simulate the genotypic data for

successive generations of progeny populations through the Monte Carlo simulation. Each

of the 45 F1 hybrids produced 60 individuals of the F2 population by self-pollination, result-

ing in 2,700 F2 individuals. After obtaining the GEBVs for the 2,700 F2 individuals via the

trained GBLUP model, the top 45 F2 individuals were retained. Again, these 45 F2 individu-

als were used to produce 2,700 F3 individuals (60 F3 individuals per F2 individual), and the

top 45 F3 individuals were retained. The same procedure was repeated to produce 2,700 F10

individuals, which were assumed to be a fixed population.

4. For the resulting 2,700 F10 individuals generated according to each strategy, we found the

best F10 RILs with the highest GEBVs.

A flowchart of this procedure is displayed in Fig 2. This procedure was repeated 30 times to

obtain the best F10 RILs from each repetition for each strategy. The average of the GEBVs for

the best F10 RILs was then calculated and used as the measure of efficiency for the strategy.

Then, pairwise comparisons were performed among the GEBV averages, based on the least

significant difference (LSD) test. Note that for BRSW, FPP, and PNPP in Dataset I and for

YLD in Dataset II, larger GEBVs are preferable (i.e., for these traits, the larger the GEBV, the

better). The remaining five traits (FTAA, FTAF, and PH in Dataset I, and FT and PH in Data-

set II) follow the rule: that the smaller the GEBV, the better.

Calculation of genetic gain

To understand the genetic improvement in a target trait using different strategies, the genetic

gain was estimated as:

Genetic gain ¼ GEBVF10
� GEBVP ð5Þ

where GEBVF10
denotes the average GEBV of the resulting 2,700 F10 RILs; and GEBVP denotes

the average GEBV of 10 parental lines selected using each strategy [23]. The larger the absolute

value of the genetic gain, the greater the improvement in the target trait. The average of genetic

gains from 30 repetitions was reported for each strategy, and multiple comparisons among the

genetic gain averages were performed using the LSD test.

Results

Comparison of strategies based on the best F10 RILs

The GEBV averages of the best F10 RILs and results of the LSD test are displayed in Tables 1

and 2 for Datasets I and II, respectively. The strategies that considered both GEBV and geno-

mic diversity (GEBV-GD-30, -50, -100) generally showed satisfactory efficiency because they

achieved the best or second-best performance for all traits. Therefore, these types of strategies

could be used as a reliable means for selecting parental lines. On the other hand, strategies

accounting for only genomic diversity (GD-O-30, -50, -100) did not show satisfactory effi-

ciency for all traits, except GD-O-100, which was satisfactory for YLD in Dataset II. The

GEBV-O strategy showed the best or second-best performance for FPP and PH in Dataset I

and for PH and FT in Dataset II, but it also showed the worst or second-worst performance for

the remaining four traits in Dataset I and for YLD in Dataset II. These data indicate that
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GEBV-O is a high-risk strategy. In general, the results of the LSD test showed significant differ-

ences in GEBV averages between the best/second-best and worst/second-worst performances

for all traits in both datasets.

We also displayed the average GEBV ± standard deviation (SD) of the best RILs selected by

30 repetitions over consecutive generations in Figs 3, 4 and 5. Four strategies including

GEBV-O, GEBV-GD-30, -50, and -100 selected the same best individual from the 30 repeti-

tions at the parental generation and also at the F1 generation; therefore, no SD is shown with

the corresponding GEBV averages. The GEBV averages of the best parental lines selected by

the strategies can be ranked as GEBV-O = GEBV-GD-30 = GEBV-GD-50 = GEBV-GD-

Fig 2. Flowchart showing the Monte Carlo simulation. GEBV: genomic estimated breeding value; GBLUP: genomic

best linear unbiased predictor; RIL: recombinant inbred line.

https://doi.org/10.1371/journal.pone.0243159.g002
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100� GD-O-30� GD-O-50� GD-O-100 in decreasing desirability. The desirability at the

parental generation decreased as the degree of diversity increased for the three strategies, con-

sidering the genomic diversity only. Additionally, the desirability declined from the parental

generation to F1 generation for every strategy because of the heterozygous alleles in F1 hybrids.

To explore the extent to which the top two accessions contributed to the subset of 10 paren-

tal lines determined by four strategies (GEBV-O, GEBV-GD-30, -50, and -100), we compared

each subset with a reduced group consisting of F1 hybrids, whose parental lines contained at

least one of the top two accessions for each subset. Each reduced group consisted of 17 F1

Table 1. Ranking and GEBV averages (in parentheses) of the best F10 RILs selected by 30 repetitions of the seven proposed strategies applied to six traits in Dataset

I.

Strategy1 Traits2

BRSW FPP FTAA FTAF PH PNPP

GEBV-O 6 (3.418)e 2 (5.961)a 6 (56.52)e 6 (61.85)d 1 (42.18)a 6 (4.125)c

GD-O-30 7 (3.408)e 5 (5.951)a 3 (51.56)b 3 (59.35)a 5 (49.33)b 3 (4.188)b

GD-O-50 3 (3.576)c 6 (5.916)b 5 (53.34)d 5 (60.12)c 6 (49.80)b 5 (4.138)c

GD-O-100 4 (3.496)d 7 (5.882)c 7 (56.83)e 7 (61.96)d 7 (51.78)c 7 (4.086)d

GEBV-GD-30 5 (3.419)e 3 (5.954)a 1 (47.13)a 1 (59.21)a 2 (42.69)a 1 (4.225)a

GEBV-GD-50 1 (3.656)a 1 (5.964)a 2 (47.45)a 2 (59.30)a 3 (43.23)a 2 (4.214)a

GEBV-GD-100 2 (3.634)b 4 (5.953)a 4 (51.38)c 4 (59.63)b 4 (43.49)a 4 (4.171)b

1 GEBV-O: subset of the top 10 accessions with minimal or maximal GEBV; GD-O-30, -50, -100: subsets of 10 accessions with the maximal D-scores chosen from

candidate sets comprising the top 30, 50, and 100 accessions, respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from

the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-scores.
2 BRSW: brown rice seed width; FPP: florets per panicle; FTAA: flowering time at Arkansas; FTAF: flowering time at Faridpur; PH: plant height; PNPP: panicle number

per plant. Different lowercase letters indicate significant differences among the strategies for a given trait (P< 0.01; LSD test). The best and second-best strategies are

indicated in bold, while the worst and second-worst strategies are underlined.

https://doi.org/10.1371/journal.pone.0243159.t001

Table 2. Ranking and GEBV averages (in parentheses) of the best F10 RILs selected by 30 repetitions of the seven

proposed strategies applied to three traits in Dataset II.

Strategy1 Traits2

YLD PH FT

GEBV-O 7 (6472)b 1 (85.817)a 2 (77.818)a

GD-O-30 4 (6491)b 5 (87.517)b 7 (78.410)c

GD-O-50 5 (6489)b 6 (89.920)c 5 (78.164)b

GD-O-100 1 (6546)a 7 (91.799)e 6 (78.359)bc

GEBV-GD-30 3 (6506)ab 3 (85.976)a 4 (77.883)a

GEBV-GD-50 6 (6485)b 2 (85.917)a 1 (77.725)a

GEBV-GD-100 2 (6539)a 4 (86.062)a 3 (77.873)a

1 GEBV-O: subset of the top 10 accessions with the minimal or maximal GEBV; GD-O-30, -50, -100: subsets of 10

accessions with maximal D-scores chosen from the candidate sets comprising the top 30, 50, and 100 accessions,

respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from the

remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-

scores.
2 YLD: yield; PH: plant height; FT: flowering time. Different lowercase letters indicate significant differences among

the strategies for a given trait (P< 0.01; LSD test). The best and second-best strategies are indicated in bold, while the

worst and second-worst strategies are underlined.

https://doi.org/10.1371/journal.pone.0243159.t002
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Fig 3. GEBV averages of the best individuals selected from 30 repetitions at consecutive generations for the six

chosen traits in Dataset I. GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GD-O-30, -50,

-100: subsets of 10 accessions with maximal D-scores chosen from candidate sets composed of the top 30, 50, and 100

accessions, respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from

the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with maximal D-

scores; BRSW: brown rice seed width; FPP: florets per panicle; FTAA: flowering time at Arkansas.

https://doi.org/10.1371/journal.pone.0243159.g003
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Fig 4. GEBV averages of the best individuals selected from 30 repetitions at consecutive generations for the six

chosen traits in Dataset I. GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GD-O-30, -50,

-100: subsets of 10 accessions with maximal D-scores chosen from candidate sets composed of the top 30, 50, and 100

accessions, respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from

the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with maximal D-

scores; FTAF: flowering time at Faridpur; PH: plant height; PNPP: panicle number per plant.

https://doi.org/10.1371/journal.pone.0243159.g004
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Fig 5. GEBV averages of the best individuals selected from 30 repetitions at consecutive generations for the three

target traits in Dataset II. GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GD-O-30, -50,

-100: subsets of 10 accessions with maximal D-scores chosen from candidate sets composed of the top 30, 50, and 100

accessions, respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from

the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-

scores; YLD, yield; PH, plant height; FT, flowering time.

https://doi.org/10.1371/journal.pone.0243159.g005
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hybrids. Similarly, we followed the analysis procedure to obtain the GEBV averages of the best

F10 RILs from 30 repetitions based on the reduced group. The results are displayed in Table 3,

with the corresponding GEBV averages based on the group of the original 45 F1 hybrids. The

results showed no practical significance between these two groups for all the traits using the

four strategies (Table 3). Therefore, the reduced group can be an alternative to the full group.

Genetic gains with different strategies

The average genetic gains and results of the LSD test are displayed in Tables 4 and 5 for Data-

sets I and II, respectively. It is also reasonable to evaluate the performance of the strategies

according to the endpoint of GEBVF10
. The comparison results based on GEBVF10

were consis-

tent with the above comparison results based on the best F10 RILs. Strategies that considered

genomic diversity (GD-O-30, -50, -100; GEBV-GD-30, -50, -100) showed greater genetic gain

than the GEBV-O for all traits, except PH in Dataset I (Table 4). The genetic gain generally

increased with the increase in genomic diversity, as expected (GD-O-100 outperformed both

GD-O-50 and GD-O-30 for all traits, except BRSW and FTAF in Dataset I; GEBV-GD-100

outperformed both GEBV-GD-50 and GEBV-GD-30 for all traits). The results of the LSD test

showed that the GEBV-GD-100 strategy significantly differs from the remaining strategies in

genetic gain for all traits in Dataset I, but it showed no significant difference from GEBV-GD-

50 for FTAA and from GEBV-GD-50 and -30 for PH. On the other hand, the GD-O-100 strat-

egy significantly differed from the remaining strategies for all traits in Dataset II, except from

the GEBV-GD-100 for PH. In addition, GEBV-O showed the best GEBVP, while GEBV-GD-

30, -50, and -100 showed higher GEBVP than their counterparts (GD-O-30, -50, and -100,

respectively) for all traits in both datasets. Thus, a strategy has a relatively good starting point,

as it considers more candidate accessions with the top GEBVs.

Table 3. GEBV averages of the best F10 RILs selected by 30 repetitions, based on the original group comprising 45 F1 hybrids and the reduced group comprising 17

F1 hybrids, using four strategies.

Trait1 Strategy2

GEBV-O GEBV-GD-30 GEBV-GD-50 GEBV-GD-100

Dataset I 45 F1 17 F1 45 F1 17 F1 45 F1 17 F1 45 F1 17 F1

BRSW 3.418 3.423 3.419 3.418 3.656 3.652 3.634 3.650

FPP 5.961 5.965 5.954 5.957 5.964 5.958 5.953 5.943

FTAA 56.521 57.513 47.136 46.961 47.457 47.421 51.382 51.734

FTAF 61.856 61.850 59.216 59.123 59.304 59.232 59.634 59.713

PH 42.185 43.409 42.699 43.271 43.232 43.791 43.498 43.854

PNPP 4.125 4.129 4.225 4.226 4.214 4.204 4.171 4.161

Dataset II 45 F1 17 F1 45 F1 17 F1 45 F1 17 F1 45 F1 17 F1

YLD 6472 6476 6506 6499 6485 6484 6539 6534

PH 85.817 85.991 85.976 85.844 85.917 86.092 86.062 86.060

FT 78.818 77.834 77.883 77.750 77.725 77.778 77.873 77.690

1 BRSW: brown rice seed width; FPP: florets per panicle; FTAA: flowering time at Arkansas; FTAF: flowering time at Faridpur; PH: plant height; PNPP: panicle number

per plant; YLD: yield; PH: plant height; FT: flowering time.
2 GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen

from the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-scores.

https://doi.org/10.1371/journal.pone.0243159.t003
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Discussion

Dataset II was specifically collected for genomic selection. All the available accessions in this

dataset are indica or indica–admixed. The results of performance based on the best F10 RILs

(Table 2) revealed that all seven strategies showed similar performance for the three target

traits. The resulting GEBV averages of the best F10 RILs ranged from 6472 to 6546 kg/ha for

YLD, from 85.889 to 91.852 cm for PH, and from 77.725 to 78.410 days for FT. This could be

because the candidate accessions in Dataset II are elite breeding lines, with limited genetic

diversity and similar phenotypic values for the target traits. However, the results of the LSD

test revealed that the two strategies (GD-O-100 and GEBV-GD-100) with greater genomic

diversity for YLD led to significantly larger YLD than the other five strategies. Four strategies

Table 4. Average genetic gains from 30 repetitions for Dataset I.

Strategy1 Brown rice seed width (BRSW) Florets per panicle (FPP)

GEBVP
2 GEBVF10

3 Genetic gain4 GEBVP GEBVF10
Genetic gain

GEBV-O 3.17 3.42 0.25f 5.51 5.96 0.45f

GD-O-30 3.10 3.41 0.31e 5.48 5.95 0.47e

GD-O-50 3.00 3.57 0.57c 5.41 5.91 0.50d

GD-O-100 2.94 3.49 0.55d 5.31 5.88 0.57b

GEBV-GD-30 3.12 3.42 0.30e 5.48 5.95 0.47e

GEBV-GD-50 3.04 3.65 0.61b 5.43 5.96 0.53c

GEBV-GD-100 3.00 3.63 0.63a 5.34 5.95 0.61a

Flowering time at Arkansas (FTAA) Flowering time at Faridpur (FTAF)

GEBVP GEBVF10
Genetic gain GEBVP GEBVF10

Genetic gain

GEBV-O 64.30 56.57 -7.73d 63.45 61.87 -1.58f

GD-O-30 72.25 49.26 -22.99bc 64.93 59.40 -5.53cd

GD-O-50 75.41 53.54 -21.87c 65.82 60.16 -5.66c

GD-O-100 80.01 57.00 -23.01bc 67.34 62.01 -5.33e

GEBV-GD-30 71.09 47.31 -23.78b 64.68 59.25 -5.43de

GEBV-GD-50 72.86 47.64 -25.22a 65.40 59.35 -6.05b

GEBV-GD-100 77.16 51.53 -25.63a 66.46 59.68 -6.78a

Plant height (PH) Panicle number per plant (PNPP)

GEBVP GEBVF10
Genetic gain GEBVP GEBVF10

Genetic gain

GEBV-O 83.77 42.52 -41.25b 3.93 4.12 0.19e

GD-O-30 89.50 49.69 -39.81b 3.86 4.19 0.33d

GD-O-50 90.11 50.13 -39.98b 3.80 4.14 0.34d

GD-O-100 92.10 52.10 -40.00b 3.64 4.08 0.44b

GEBV-GD-30 87.26 42.99 -44.27a 3.90 4.22 0.32d

GEBV-GD-50 87.95 43.50 -44.45a 3.84 4.21 0.37c

GEBV-GD-100 89.27 43.95 -45.32a 3.70 4.17 0.47a

1 GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GD-O-30, -50, -100: subsets of 10 accessions with maximal D-scores chosen from the

candidate sets composed of the top 30, 50, and 100 accessions, respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from

the remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-scores.

2 GEBVP: average GEBV of the 10 selected parental lines.

3 GEBVF10
: average GEBV of 2,700 F10 RILs.

4 Lowercase letters indicate significant differences among strategies for a given trait (P< 0.01; LSD test).

https://doi.org/10.1371/journal.pone.0243159.t004
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including GEBV-O, GEBV-GD-30, -50, and -100 performed equally well for PH but per-

formed significantly better than GD-O-30, -50, and -100.

It is well known that Dataset I contains more genomic diversity than Dataset II since it con-

sists of five subpopulations and one admixed group. The higher genomic diversity of Dataset I

could result in a bigger difference between GEBV-GD-30/50/100 strategies and the GEBV-O

strategy for some traits. For example, the difference in the GEBV averages among the best F10

RILs between GEBV-GD-50 and GEBV-O was approximately -9.06 days for FTAA and -2.55

days for FTAF in Dataset I (Table 1), but the corresponding difference was only -0.09 days for

FT in Dataset II (Table 2). However, the flowering time is very sensitive to environmental

Table 5. Average genetic gains derived from 30 repetitions for Dataset II.

Strategy1 Yield (YLD)

GEBVP
2 GEBVF10

3 Genetic gain4

GEBV-O 5571.61 6468.60 896.99e

GD-O-30 5452.39 6488.02 1035.63c

GD-O-50 5436.58 6484.58 1048.00bc

GD-O-100 5289.74 6540.72 1250.98a

GEBV-GD-30 5538.44 6501.23 962.79d

GEBV-GD-50 5522.45 6482.13 959.68d

GEBV-GD-100 5454.37 6535.79 1081.42b

Plant height (PH)

GEBVP GEBVF10
Genetic gain

GEBV-O 97.75 85.89 -11.86d

GD-O-30 102.20 87.59 -14.61a

GD-O-50 103.66 89.99 -13.67b

GD-O-100 106.83 91.85 -14.98a

GEBV-GD-30 99.00 86.01 -12.99c

GEBV-GD-50 99.39 85.99 -13.40bc

GEBV-GD-100 101.15 86.13 -15.02a

Flowering time (FT)

GEBVP GEBVF10
Genetic gain

GEBV-O 83.14 77.84 -5.30e

GD-O-30 83.98 78.43 -5.55d

GD-O-50 84.57 78.19 -6.38b

GD-O-100 85.62 78.39 -7.23a

GEBV-GD-30 83.44 77.90 -5.54d

GEBV-GD-50 83.69 77.76 -5.93c

GEBV-GD-100 84.16 77.89 -6.27b

1 GEBV-O: subset of the top 10 accessions with minimal or maximal GEBVs; GD-O-30, -50, -100: subsets of 10

accessions with maximal D-scores chosen from the candidate sets composed of the top 30, 50, and 100 accessions,

respectively; GEBV-GD-30, -50, -100: subsets of the top two accessions plus eight accessions chosen from the

remainder of the candidate sets composed of the top 30, 50, and 100 accessions, respectively, with the maximal D-

scores.

2 GEBVP : average GEBV of the 10 selected parental lines.

3 GEBVF10
: average GEBV of 2,700 F10 RILs.

4 Lowercase letters indicate significant differences among the strategies for a given trait (P< 0.01; LSD test).

https://doi.org/10.1371/journal.pone.0243159.t005
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conditions, implying that genomic diversity cannot solely amount to the differences in results

between these two datasets. More interestingly, the higher genomic diversity of Dataset I could

lead to a larger genetic gain for a specific trait. The average genetic gain using the seven strate-

gies for PH in Dataset I was -42.15 cm (Table 4); however, the corresponding mean in Dataset

II was only -13.79 cm (Table 5).

The average GEBV of the best F10 RILs for YLD was the highest using the GD-O-100 strat-

egy on Dataset II (Table 2). However, the corresponding GEBV averages for two yield compo-

nents, FPP and PNPP, were the lowest in Dataset I (Table 1). This is possible because the

analysis results were based on two different collections of rice lines. There is little diversity

among the RILs in Dataset II; therefore, the difference in the average GEBV for YLD among

the strategies seems to be negligible. Note that the LSD test revealed only two significance

groups in YLD. Nonetheless, the results of FPP and PNPP analysis using the GD-O-100 strat-

egy in Dataset I appear to be reasonable.

Apparently, the number of accessions fixed in the proposed strategies seemed to be arbitrary,

similar to the selection of 10 parental lines, retaining the top 2 accessions, and searching 10 or

another 8 accessions from the three candidate sets composed of the top 30, 50, and 100 acces-

sions, respectively. A user certainly can adjust these numbers in the strategies according to their

own study. Additionally, historical phenotypic data were required to build the GP model. If the

historical phenotypic data are not available, then a pilot experiment is needed to phenotype a set

of accessions, which can be determined using an optimization algorithm [22]. Two R functions

used to perform the proposed procedure for selecting parental lines are provided in S1 File.

We addressed the issue that incorporating genomic diversity into the conventional trunca-

tion selection could improve the likelihood of identifying superior parental lines. More impor-

tantly, we showed that combining GP with Monte Carlo simulation could help breeders to

discover superior parental lines before conducting field experiments. It is well known that phe-

notype is affected by the genotype (G), environment (E), and G × E interaction. In reality,

environment can have a significant impact on the performance of progeny populations during

the growth period of each generation until reaching the F10 generation. Thus, parental lines

selected from our simulation study may not perform as expected. Therefore, conducting field

experiments to validate our study would be worthwhile. As mentioned earlier, the works of

Gaynor et al. [13] and Yao et al. [14] support that the strategy for selecting better parental lines

through GP with Monte Carlo simulation should prove useful in plant breeding. The study of

Vanavermaete et al. [15] supports our theory that considering both GEBV and genomic diver-

sity in parental selection is a promising strategy.

In this study, we focused on single-trait selection; therefore, the proposed approach could

select different parental lines for different target traits. In practice, it is desirable to extend the

approach to multiple-trait selection. A straightforward extension is to apply a selection index

incorporating multiple traits, and then treat the selection index as a new target trait for the cur-

rent single-trait approach. Another possible modification is to directly implement multiple-

trait GP models, and then use an appropriate selection index for evaluating candidate acces-

sions. Jia and Jannink [24], Hayashi and Iwata [25], and Guo et al. [26] have shown that multi-

ple-trait GP models provide better prediction accuracy than single-trait GP models for a low-

heritability trait, which shows strong correlation with a high-heritability trait. We will present

results of the multiple-trait approach in a future communication.

Conclusion

Combining GP with Monte Carlo simulation can serve as a practical means of detecting supe-

rior parents for crop pre-breeding programs. Different strategies can be implemented to
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identify a set of superior parental lines from a candidate population. The strategy that consid-

ers only GEBV will have a higher starting average GEBV among selected parental lines, but it

may lead to a less genetic gain. On the other hand, strategies that consider genomic diversity

only can retain greater genomic diversity but cannot simultaneously have a favorable starting

GEBV average, and therefore may not produce RILs with satisfactory performance. Strategies

that consider both GEBV and genomic diversity balance the starting GEBV average and geno-

mic diversity among parental lines; these strategies show satisfactory genetic gain and produce

high-performing RILs.
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