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A B S T R A C T

Quantitative Structure Activity Relationship studies were carried out on arylpiperazine derivatives to investigate
their anti-proliferate activity against prostate PC-3 cancer cell lines. The built model with statistical parameters;
R2 ¼ 0.8483, R2

adj ¼ 0.8078, Q2
cv ¼ 0.7122 and external validation (R2

test) 0.6682 revealed that the anti-
proliferate activities were strongly dependent on the descriptors: MATS7c, MATS3e, maxwHBa and WPSA-3.
The Variance Inflation Factor of the descriptors were all greater than one but less than two and all descriptors
were poorly correlated (r < 0.4). A graph of the experimental activities and predicted activities showed a high
correlation and a William's plot showed the presence of only one outlier compound. These results are similar to
those reported for stable and robust models with high predicting power. Molecular docking studies of compounds
5 (1-phenyl-4-(4-(2-(p-tolyloxy)ethyl)benzyl)piperazine) and 17 (4-(4-((4-phenylpiperazin-1-yl)methyl)phene-
thoxy)benzonitrile) with the androgen receptor gave binding affinities of �7.5 and �7.1 kcal/mol respectively.
Compound 5 formed a more stable complex having hydrogen, electrostatic and hydrophobic bond interactions
while compound 17 had hydrogen and hydrophobic bond interactions only. This study provides a roadmap to the
design of more potent anti-prostate cancer compounds.
1. Introduction

Themost common non-cutaneous cancer diagnosed in men is Prostate
cancer (PCa) (Center et al., 2012; Miller et al., 2016). Surveys have
shown that 1 man in every 9 is diagnosed with PCa during his life time. It
is also estimated that 1 man in every 39 between the ages 40 to 59 is
diagnosed with PCa annually. Projections show that there would be 174,
650 new cases of PCa in the US in 2019 and about 31,620 deaths from the
cancer and in Brazil, 70.42 patients per 100,000 men are projected this
year (ACS, 2016; Fernando and Ubirajara, 2018).

During the early stage of PCa, no symptoms are usually observed,
however, in few cases, repeated urges to urinate, difficulty in initiating
and maintaining urination, bloody urine, difficulty in attaining or sus-
taining erection etc., have been reported (Nordqvist, 2017). Though no
therapy is ideal for all patients, common treatments for PCa are active
surveillance, radical prostatectomy, External-Beam Radiation Therapy
(EBRT), androgen deprivation etc. Reports showed treatment effects to
be profound and prolonged, having adverse effects such as urinal and
intestinal disorders, erectile dysfunction, urinary incontinence and in
some cases death (Bell et al., 2014; Qaseem et al., 2013; Wolf et al.,
u).
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2010). PCa is the leading cause of cancer related deaths in men world-
wide and is estimated to be responsible for about 1–2% of all deaths in
men (Gerhardt et al., 2015). Studies have shown that men of African
descent are roughly twice more likely to develop PCa compared with
Caucasian men. They are also approximately 2.4 times more likely to die
from PCa than their Caucasian counterparts. This preferential attack of
PCa on men of African ancestry is however yet to be understood (PCF,
2010).

Piperazine and its derivatives are of immense biological importance,
they have been reported to be antidiarrheal, antipyretic, analgesic,
antimicrobial, antitumor, anti-inflammatory, diuretic, antipsychotic,
antimalarial and antidepressant properties (Arnatt et al., 2014; Baran
et al., 2014; Szkaradek et al., 2013). Due to their wide spectrum of ac-
tivity, piperazine and its derivatives are present in a lot of commercial
drugs; piperazine is the third most frequently used nitrogen based
pharmacophore among the U.S. Food and Drug Administration's
approved drugs. It is the pharmacophore in over fifty nine (59) marketed
drugs including Merck HIV protease inhibitor Crixivan, Proplomazine,
thiethylperazine, Prazosin, Sildenafil, Cinnarizine etc (James et al., 2014;
Vardanyan, 2017; Vitaku et al., 2014).
d 17 January 2020
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2. Computational methods

2.1. QSAR method

2.1.1. Dataset
Twenty nine (29) arylpiperazine derivatives were used in this study.

Their structures and activities were obtained from literature (Chen et al.,
2018a, 2018b). Their activities were reported in IC50 (μM). The skew in
the activities were reduced via normalization using the logarithmic scale
formula pIC50 ¼ � log10ðIC50 � 10�6Þ. Figure 1 presents the 2D struc-
tures of the molecules used in this study while Table 1 presents the IUPAC
nomenclature and anti-proliferate activity of the molecules.

2.1.2. QSAR model
ChemDraw Ultra version 12.0 software was used to draw two-

dimensional structures of the chemical compounds and converted to
three-dimensional structures in Spartan 14.0 version 1.1.2 software.
The equilibrium ground state geometry of the molecules were ob-
tained by optimizing the structures at the DFT/B3LYP/6-31G* basis
set in the abovementioned Spartan software (Arthur et al., 2018;
Wavefunction, 2013; Becke, 1993). Pharmaceutical Data Exploration
Laboratory (PaDEL) version 2.21 software was used to calculate the
molecular descriptors of the optimized molecules. One thousand eight
hundred and seventy five molecular descriptors were calculated per
molecule. These descriptors are mathematical equivalents of spatial,
topological, thermodynamic etc., properties of the molecule (Oga-
dimma and Adamu, 2016).

The calculated descriptors were pre-treated at a correlation coeffi-
cient cut-off of 0.8 using DTC Lab's Data Pre-treatment GUI 1.2 software
to remove constant, non-informative and highly correlated descriptors
(Abdullahi et al., 2019). Furthermore, the pre-treated descriptors were
divided in to two independent sets (training and test set) using Kennard
  

Figure 1. 2D structure of dataset
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and Stone algorithm in the DTC Lab's Dataset Division GUI 1.29 software
(Kennard and Stone, 1969; Arthur et al., 2018).

The training set was used in building the model using Biovia Material
Studio version 8 software. In building the model, Genetic Function Al-
gorithm - Multilinear Regression (GFA-MLR) analysis was employed
(Ibrahim et al., 2018). The built model had the form shown in Eq. (1).

Y ¼ a1x1 þ a2x2 þ a3x3 þ…þ anxn þ c (1)

where Y is the inhibitory concentration; a1, a2, a3, …, an are regression
coefficients; x1, x2, x3, …, xn are distinct molecular descriptors and c is
the regression constant.

2.1.3. Model validation
The stability, robustness and predicting power of a built model is

determined by subjecting the built model to certain statistical tests. The
Co-efficient of determination (R2), Leave-One-Out (LOO) cross validation
co-efficient of determination (Qcv

2 ), Friedman's Lack of Fit (LOF), mean
effect, Variance Inflation Factor (VIF), and Pearson's correlation tests
were carried out on the built model to measure its fitness, robustness and
predicting ability. Applicability domain as well as external validation of
the model was also evaluated.

The R2 is a measure of the proportion of the variance in the anti-
proliferate activity that can be explained/predicted by the molecular
descriptors in the model. A good model usually has an R2 � 0.6 (Veer-
asamy et al., 2011). Qcv

2 is a model validation method that asses how the
model will generalize to another independent dataset. Qcv

2 values range
from 0 – 1. A good model is reported to have Qcv

2 � 0.6 (Veerasamy et al.,
2011). The LOF test measures the fitness of the model; if the prediction of
the built model is significant. R2, Qcv

2 and LOF values are automatically
generated by Biovia Material Studio software while building the model.
The mean effect of a molecular descriptor is the influence that molecular
  

 

(Chen et al., 2018a, 2018b).



Table 1. Structure and inhibitory concentration of arylpiperazine derivatives.

S/No. IUPAC Nomenclature IC50 (μM) pIC50

1 1-(4-(2-phenoxyethyl)benzyl)-4-phenylpiperazine 8.20 5.09

2 1-(4-(2-(naphthalene-1-yloxy)ethyl)benzyl)-4-phenylpiperazine 4.72 5.33

3 1-phenyl-4-(4-(2-((5,6,7,8-tetrahydronaphthalen-1-yl)oxy)ethyl)benzyl)piperazine 17.70 4.75

4 1-phenyl-4-(4-(2-(o-tolyloxy)ethyl)benzyl)piperazine 15.10 4.82

5b. 1-phenyl-4-(4-(2-(p-tolyloxy)ethyl)benzyl)piperazine 1.47 5.83

6 1-(4-(2-(4-(tert-butyl)phenoxy)ethyl)benzyl)-4-phenylpiperazine 4.86 5.31

7b. 1-(4-(2-(3,4-dimethylphenoxy)ethyl)benzyl)-4-phenylpiperazine 6.72 5.17

8.b 1-(4-(2-(3,5-dimethylphenoxy)ethyl)benzyl)-4-phenylpiperazine 2.99 5.52

9 1-(4-(2-(4-methoxyphenoxy)ethyl)benzyl)-4-phenylpiperazine 8.95 5.05

10 1-(4-(2-(2-fluorophenoxy)ethyl)benzyl)-4-phenylpiperazine 48.80 4.31

11 1-(4-(2-(4-fluorophenoxy)ethyl)benzyl)-4-phenylpiperazine 5.70 5.24

12b 1-(4-(2-(4-chlorophenoxy)ethyl)benzyl)-4-phenylpiperazine 3.59 5.44

13 1-(4-(2-(3,4-dichlorophenoxy)ethyl)benzyl)-4-phenylpiperazine 23.00 4.64

14 1-(4-(2-(3,5-dichlorophenoxy)ethyl)benzyl)-4-phenylpiperazine 10.10 5.00

15b 1-(4-(2-(4-bromophenoxy)ethyl)benzyl)-4-phenylpiperazine 6.69 5.17

16 1-phenyl-4-(4-(2-(4-(trifluoromethyl)phenoxy)ethyl)benzyl)piperazine 4.96 5.30

17 4-(4-((4-phenylpiperazin-1-yl)methyl)phenethoxy)benzonitrile 1.05 5.98

18 1-(4-(2-(4-nitrophenoxy)ethyl)benzyl)-4-phenylpiperazine 9.23 5.03

19 1-(pyridin-2-yl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 29.20 4.53

20b 1-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)-4-(o-tolyl)piperazine 25.50 4.59

21b 1-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)-4-(m-tolyl)piperazine 56.80 4.25

22 3-(4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazin-1-yl)benzonitrile 32.00 4.5

23 1-(4-methoxyphenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 76.50 4.12

24 1-(3-methoxyphenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 2.84 5.55

25 1-(2-fluorophenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 27.30 4.56

26b 1-(4-fluorophenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 57.30 4.24

27b 1-(2-chlorophenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 31.30 4.50

28 1-(3-chlorophenyl)-4-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperazine 46.70 4.33

29 4-phenyl-1-(4-(((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl)phenethyl)piperidine 10.50 4.98

Key: b ¼ Molecules in the test set.
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descriptor has on the anti-proliferate activity of the compounds. It
measures the effect a unit change in the value of the descriptor would
have on the anti-proliferate activity (Minovski et al., 2013). The mean
effect was calculated using Eq. (2)

Mean Effect¼ βj
Pn

i DjPm
j

�
βj
Pn

i Dj

� (2)

βj ¼ coefficient of the jth descriptor in the QSAR model, Dj ¼ value of
the jth descriptor for each training set molecule, n¼ number of molecules
Figure 2. Crystal structure of the androgen receptor (5t8e).

3

in the training set and m ¼ number of descriptors in the model. VIF and
Pearson's correlation tests were used to measure inter-correlation (or
multicollinearity) among the descriptors. A good QSAR model is sup-
posed to be made up of poorly correlated molecular descriptors. Thus, for
a good model, the correlation coefficient (R) should be R < 0.5. VIF is
calculated as (1 – R2)�1. VIF value of 1 means there is no inter-
correlation, values of 2–5 means there is poor correlation and is gener-
ally acceptable while a value above 10 implies that there is significant
inter-correlation between the molecular descriptors and thus, the model
is unstable and should be discarded (Edache et al., 2017). The response
surface in which the QSAR model makes reliable predictions is called its
applicability domain. The applicability domain simply highlights the
surface area where forecasts made by the model can be reliably useful
(Netzeva et al., 2005). Thus, molecules within the applicability domain
can be reliably used as ligands for QSAR based drug design. We employed
leverage technique in evaluating the applicability domain using Eq. (3)
(Abdullahi et al., 2019)

Hi ¼ xiðXTXÞ�1
xiT (3)

where Hi is the leverage of the ith compound, xi is the 1 � m descriptor
rowmatrix of the ith compound, X is an n� k matrix made up of n rows of
descriptor values and k molecules in the training set. The warning (or
critical) leverage (h*) defines the boundary of the applicability domain
and is calculated as: h* ¼ 3 (n þ 1)/k. where n is the number of de-
scriptors in the model and k is the number of compounds in the training
set.

The robustness of the built model was ascertained by subjecting the
model to the test set. This external validation is aimed at measuring the



Table 2. Description and class of descriptors.

Descriptor Description Class

MATS7c Moran autocorrelation - lag 7/weighted by charges 2D

MATS3e Moran autocorrelation - lag 3/weighted by Sanderson
electronegativities

2D

maxwHBa Maximum E-States for weak Hydrogen Bond acceptors 2D

WPSA-3 Charge weighted partial positive surface area
* total molecular surface area/1000

3D
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predicting ability of the built model. External validation subjects the built
model to compounds that were not initially part of the dataset from
which the model was built. The coefficient of determination (Rtest

2 ) is a
measure of the predicting capacity of the model. Rtest

2 ranges from 0 – 1, a
good model should have Rtest

2 � 0.6 (Tropsha, 2010). Rtest
2 is calculated as

shown in Eq. (4) (Abdullahi et al., 2019)

Rtest
2 ¼ 1�

P�
Yexptest � Ypred test

�

P�
Yexptest � Yexp train

� (4)

Yexptest is the experimental anti-proliferate activity of each molecule in
the test set, Ypredtest is the corresponding predicted anti-proliferate ac-
Table 3. Validation parameters for built models.

Validation parameter Model 1

Friedman LOF 0.1700

R-squared 0.8630

Adjusted R-squared 0.8264

Cross validated R-squared 0.7675

Significant Regression Yes

Significance-of-regression F-value 23.619191

Critical SOR F-value (95%) 3.103976

Replicate points 0

Computed experimental error 0

Lack-of-fit points 15

Min expt. error for non-significant LOF (95%) 0.149558

Table 4. Molecular descriptors, activities and residual for compounds in the training

Molecule MATS7c MATS3e maxwHBa

28 �0.00996 �0.07502 2.3708

17 �0.00979 �0.11039 2.2367

9 �0.09700 �0.11748 2.2562

19 �0.05012 �0.05887 2.2596

25 �0.01999 0.02512 2.2392

23 �0.15786 �0.07128 2.2631

13 �0.04992 �0.03405 2.2847

24 0.03529 �0.07128 2.2620

4 0.01127 �0.07922 2.2705

29 0.08565 �0.08940 2.2858

14 �0.04565 �0.14332 2.3191

18 �0.02349 �0.07812 2.1992

10 0.02869 0.07070 2.1964

1 �0.00437 �0.11089 2.2653

22 0.00795 �0.04089 2.3213

16 0.00484 �0.03508 2.1624

6 �0.11949 �0.11486 2.2748

2 0.02322 �0.07484 2.2746

11 �0.03900 �0.10688 2.2190

3 0.02246 �0.04938 2.2949

Key: YPred ¼ predicted anti-proliferate activity, YExp. ¼ Experimental activity.
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tivity and Yexptrain is the average experimental activity of the molecules in
the training set.
2.2. Molecular docking studies

Molecular docking studies were used to explore the interaction be-
tween the molecules and the androgen receptor (AR). Compounds 5 and
17 were selected for the docking studies because they were the most
potent compounds with pIC50 5.83 and 5.98 (IC50: 1.47 and 1.05 μM)
respectively.

PCa is linked with alterations in AR functions (Tan et al., 2015). A
three dimensional structure of the androgen receptor with PDB code
5T8E and resolution 2.71Ǻ deposited by Wilson et al. was obtained from
the protein data bank. The heteroatoms, water molecules and cofactors
were removed from the downloaded receptor when preparing it for
docking studies using Biovia Discovery Studio Visualizer version 16.1.0
software (Veerasamy et al., 2011). The crystal structure of the prepared
androgen receptor is presented in Figure 2. Drawn and optimized 3D
structures of compounds 5 and 17 were prepared for molecular docking
by converting them to the.pdb file format (Arthur et al., 2018).

The interaction between the prepared receptor and ligands was car-
ried out using autodock vina integrated into the PyRx – Python
Model 2 Model 3 Model 4

0.1779 0.1859 0.1883

0.8566 0.8502 0.8483

0.8184 0.8103 0.8078

0.6783 0.6436 0.7122

Yes Yes Yes

22.401335 21.285013 20.968048

3.103976 3.103976 3.103976

0 0 0

0 0 0

15 15 15

0.153001 0.156375 0.157374

set.

WPSA-3 YPred. YExp. Residual

28.756 4.29 4.33 0.04

35.084 5.67 5.98 0.31

34.629 5.16 5.05 �0.11

31.262 4.66 4.53 �0.13

31.039 4.23 4.56 0.33

32.690 4.31 4.12 �0.19

37.637 4.85 4.64 �0.21

33.181 5.32 5.55 0.23

27.621 4.79 4.82 0.03

27.378 5.16 4.98 �0.18

32.459 5.16 5.00 �0.16

29.622 5.09 5.03 �0.06

31.400 4.34 4.31 �0.03

29.462 5.13 5.09 �0.04

30.751 4.49 4.50 0.01

35.533 5.53 5.30 �0.23

34.826 4.96 5.31 0.35

34.950 5.37 5.33 �0.04

29.625 5.15 5.24 0.09

31.074 4.77 4.75 �0.02



Table 5. Calculated descriptors, activities and residual for test set compounds.

Molecule MATS7c MATS3e maxwHBa WPSA-3 YPred. YExp. Residual

27 �0.02542 0.00757 2.2927 30.538 4.06 4.50 0.44

26 �0.11348 �0.06624 2.2425 30.239 4.40 4.24 �0.16

21 �0.00299 �0.06489 2.2981 31.621 4.80 4.25 �0.55

20 �0.04550 �0.04596 2.2729 30.038 4.42 4.59 0.17

12 �0.03117 �0.12652 2.2740 35.946 5.58 5.44 �0.14

8 0.00860 �0.12149 2.2735 36.649 5.80 5.52 �0.28

5 �0.01263 �0.11638 2.2686 32.988 5.39 5.83 0.44

7 �0.00567 �0.11612 2.2727 31.957 5.32 5.17 �0.15

15 �0.02748 �0.13150 2.2764 33.115 5.41 5.17 �0.24

Key: YPred ¼ predicted anti-proliferate activity, YExp. ¼ Experimental activity.

Table 6. Pearson's correlation matrix, mean effect and VIF of the descriptors.

MATS7c MATS3e maxwHBa WPSA-3 Mean Effect VIF

MATS7c 1 0.01393 1.29861

MATS3e 0.28266 1 �0.07242 1.22541

maxwHBa �0.00806 �0.31990 1 1.39824 1.16618

WPSA-3 �0.38535 0.00698 �0.20256 1 �0.33975 1.24057
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Prescription 0.8 software (Trott and Olson, 2010). Afterwards, the
ligand-receptor interaction was observed using Discovery Studio soft-
ware (Ibrahim et al., 2018).

3. Results and discussion

3.1. QSAR

The Genetic Function Algorithm was used in building four models for
predicting the anti-proliferate activities of the chemical compounds. Each
model contained four molecular descriptors and the fourth model was
chosen as the best model as its statistical parameters best fits the criteria
described in Section 2.1.3. The fourth model was also selected because it
was the only model that gave an R2

test > 0.6.
Model 1

pIC50¼� 0.090295289 * ATSC3s� 6.625744745 * MATS5c� 0.254838435
* BCUTp-11 þ 0.258170707 * RDF120m þ 5.466086523

Model 2

pIC50¼� 5.570729167 * AATS7e� 3.109356589 * MATS3s� 7.739104160
* VE1_Dzs þ0.646311321 * RDF120m þ 44.100000350

Model 3

pIC50 ¼ 1.859359226 * GATS3e � 0.838587442 * GATS7s � 6.532303653 *
VE1_Dzs þ0.577948965 * RDF120m þ 2.200052020
5

Model 4

pIC50 ¼ 5.031260843 * MATS7c � 7.803254787 * MATS3e � 4.545755956
* maxwHBa þ0.078229414 * WPSA�3þ 12.277442821

The description and class of each descriptor in model 4 are presented
in Table 2. The positive coefficients of descriptors MATS7c and WPSA-3



Table 7. Findings from docking studies of compounds 5 and 17 against the
androgen receptor.

Ligand Binding
Affinity
(kcal/mol)

Amino Acids Bond Type Interaction Distance
(Ǻ)

5 �7.5 ARG871 Hydrogen Bond;
Electrostatic

Pi-Cation; Pi-Donor
Hydrogen Bond

4.0679

LYS912 Electrostatic Pi-Cation 4.4729

TYR915 Hydrophobic Pi-Pi T-shaped 4.84303

ILE815 Hydrophobic Alkyl 5.28911

ARG871 Hydrophobic Alkyl 4.16664

ILE906 Hydrophobic Alkyl 4.65071

HIS874 Hydrophobic Pi-Alkyl 5.09449

LYS912 Hydrophobic Pi-Alkyl 5.08607

PRO913 Hydrophobic Pi-Alkyl 5.44251

ILE914 Hydrophobic Pi-Alkyl 4.87692

ARG871 Hydrophobic Pi-Alkyl 3.82029

PRO913 Hydrophobic Pi-Alkyl 3.82213

17 �7.1 SER853 Hydrogen Bond Carbon Hydrogen Bond 3.36949

TYR857 Hydrophobic Pi-Pi Stacked 3.8868

PHE856 Hydrophobic Pi-Pi T-shaped 4.84843

TYR857 Hydrophobic Pi-Pi T-shaped 4.81343

TYR857 Hydrophobic Pi-Alkyl 5.04044

LYS861 Hydrophobic Pi-Alkyl 5.13623

ARG854 Hydrophobic Pi-Alkyl 5.4418

Figure 6. 2D Interaction between

Figure 7. 2D Interaction between
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means an increase in the value of these descriptors would increase the
anti-proliferate activity of the compounds against PC3 PCa cell lines
while the negative coefficients of MATS3e and maxwHBa means
increasing the value of the descriptors would decrease the activity of the
compounds. Statistical parameters for each model are shown in Table 3
and these parameters are all in agreement with values reported in liter-
ature (Veerasamy et al., 2011; Tropsha, 2010). The values of these pa-
rameters show the stability and robustness of each model.

The calculated molecular descriptors in model 4 were used to pre-
dicted anti-proliferate activity for each compound in the training and test
set. The calculated descriptors, predicted anti-proliferate activities,
experimental anti-proliferate activities and the residuals for the com-
pounds in the training and test set are displayed in Tables 4 and 5. The
difference between the experimental anti-proliferate activity and the
corresponding predicted activity is equal to the residual, the low values
obtained showed that the model had good predicting power.

As earlier highlighted in section 2.1.3, the co-efficient of determina-
tion of the test set (R2

test) is used to ascertain the stability, robustness and
predicting power of the built model. R2

test was calculated and obtained to
be equal to 0.6682. This implies that the built model is able to explain
66.82% of the variation in the anti-proliferate activity of the molecules in
the test set.

Table 6 shows the mean effect, correlation matrix and VIF of the
descriptors in the model. The mean effect revealed that the descriptor
maxwHBa had the highest effect on the activity of the molecule while
descriptor MATS3e had the lowest. Descriptor pairs had low correlation
coefficients (all<0.4) implying that no significant inter-correlation exists
between the descriptors. VIF values obtained were less than 2 which
compound 5 and AR (5t8e).

compound 17 and AR (5t8e).
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show that there was little multicollinearity between the descriptors. The
VIF values reveal that the descriptors are indeed poorly correlated and
are therefore suitable for model building.

The predicted and experimental activity of the dataset are plotted on
Figure 3. The R2 of the training and test set reflects the strong agreement
between predicted and experimental activity, and affirms the reliability
and predicting power of the built model. A graph of standardized re-
siduals against experimental activity of the molecules is shown in
Figure 4. The graph shows the absence of systematic errors because the
standardized residuals are randomly distributed on either side of the zero
mark.

The leverage of each molecule in this study was calculated and
plotted against the standardized residuals so as to identify outliers
and influential compounds. This plot (the William's plot) is shown in
Figure 5. The critical leverage (h*) was evaluated to be equal 0.75.
Only one molecule had leverage above the warning leverage,
further highlighting the reliability and predicting power of the built
model.

3.2. Docking

Findings from docking studies comprising of the binding affinity,
amino acids, bond type, nature of interaction and bond distance of
compounds 5 and 17 are presented in Table 7. Binding affinities of
compounds 5 and 17 were found to be �7.5 and �7.1 kcal/mol respec-
tively indicating that compound 5 formed amore stable complex with the
ligand than did compound 17. The ligand-receptor interaction as
observed from Biovia Discovery Studio revealed that compound 5 had
hydrogen, electrostatic and hydrophobic interactions with the receptor.
A 2D image of this interaction (Figure 6) revealed that the delocalized pi
electrons in the benzene moieties formed a pi-cation bond with ARG871
(4.0679 Ǻ), LYS912 (4.4729 Ǻ) and a Pi-Pi T-shaped bond with TYR915
(4.84303 Ǻ).

Compound 17 on the other hand was observed to form only hydrogen
and hydrophobic interactions with the receptor. The piperazine ring in
compound 17 formed a carbon-hydrogen bond interaction with the re-
ceptor, while it was also observed that benzenemoieties in the compound
formed a hydrophobic Pi-Pi T-shaped interaction with TYR857 (4.81343
Ǻ) and PHE 856 (4.84843 Ǻ) as seen in Figure 7.

Results obtained revealed that both compounds mainly bind to AR
(5t8e) via hydrogen and hydrophobic bond interactions. Chen et al.
(2018a) reported some aryl piperazine derivatives to bind to the
Ligand Binding Pocket (LBP) of AR through hydrogen bond interac-
tion. Arjun et al. (2019) reported some Benzohydrazine derivatives to
bind via hydrophobic interactions. Anti-prostate compounds have
been reported to bind with ARG (arginine), ASN (Asparagine), PHE
(Phenylalanine), LYS (Lysine), VAL (Valine), ILE (Isoleucine), LEU
(Leucine) protein residues of the androgen receptor (McNerney and
Onate, 2015; Chen et al., 2018a; Arjun et al., 2019). The binding af-
finity of compounds 5 and 17 were within the range reported Arjun
et al. (2019).

4. Conclusion

A QSAR model for arylpiperazine was successfully developed which
predicted the anti-proliferate activity against PC3 PCa cell lines by
employing Genetic Function Algorithm method. Model 4 was the best
model built; its R2, R2

adj and Q2cv are 0.8483, 0.8078 and 0.7122
respectively. When tried on the test set, Model 4 gave an external vali-
dation (R2

test) of 0.6682. Model 4 revealed that the activities of the
compounds were strongly dependent on four descriptors; MATS7c,
MATS3e, maxwHBa and WPSA-3. These descriptors were poorly corre-
lated and had VIF values below 2. The robustness of the model was tested
using the William's plot and only one outlier compound was obtained.
Molecular docking studies of compounds 5 and 17 showed they had a
binding affinity of �7.5 and �7.1 kcal/mol respectively. Compound 5
7

bound to the androgen receptor through electrostatic, hydrogen and
hydrophobic bonds while compound 17 form hydrogen and hydrophobic
bond interactions with the receptor. These findings provide a roadmap
for the development of novel piperazine compounds with potent activity
against PCa PC3 cell lines.

Data availability
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