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Abstract
This paper investigated the organization of the postural control system in human upright

stance. To this aim the shared variance between joint and 3D total body center of mass

(COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The

CCA was performed as a function of established models of postural control that varied in

their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF),

ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model

(7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet

stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA

model selection procedures, the amount of shared variance between joint and 3D COMmo-

tions and the cross-loading patterns we provide direct evidence of the contribution of multi-

DOF postural control mechanisms to human balance. The direct model fitting of CCA

showed that incrementing the DOFs in the model through to 7DOF was associated with pro-

gressively enhanced shared variance with COMmotion. In the 7DOF model, the first canon-

ical function revealed more active involvement of all joints during more challenging one leg

stances and dynamic posture tasks. Furthermore, the shared variance was enhanced dur-

ing the dynamic posture conditions, consistent with a reduction of dimension. This set of

outcomes shows directly the degeneracy of multivariate joint regulation in postural control

that is influenced by stance and surface of support conditions.

Introduction
The human muscular-skeletal system consists of multiple components at different levels that
need to be coordinated in the service of action [1]. For example, in order to stand upright, tor-
ques at the various body joints must be applied and multi-joint actions coordinated in such a
way that the total body’s center of mass (COM) position is stabilized against gravity [2]. How-
ever, a longstanding assumption has been that the whole body is swaying about the ankle joint
with the remaining joints locked. Based on this assumption postural control has been modeled
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as a single link, inverted pendulum, whereas the center-of-pressure (COP = location of vertical
ground reaction force) can be regarded as the control variable and the COM as the controlled
variable [2, 3]. This simple mechanistic relationship has been supported by evidence that the
difference between COP and COM is proportional to COM acceleration [2, 4].

The single inverted pendulum model has long been considered the fundamental and sim-
plest model of postural control [2]. This assumption has led to the formulation of an ankle
strategy as the primary source of control during human quiet stance [5–9]. However, studies of
postural responses on a moving platform [5, 10, 11] have revealed that a hip strategy is also
used in conjunction to the ankle strategy. Indeed, even without platform perturbation signifi-
cant hip motion has been reported [4, 12–16] and a substantial role of the knee joint in quiet
standing has also been revealed [17–20]. Additional experimental evidence against the single
joint (ankle strategy) inverted pendulum model has been provided using the uncontrolled
manifold (UCM) data analysis approach [20–23]. In general, the findings show that postural
control is multivariate in nature, involving the many joint space degrees of freedom, leaving
the inverted pendulum model as too simplistic to accommodate the control problem.

Therefore, in light of the multi-segmented body and the fact that the total body’s COM is
the weighted average of segmental center-of-mass positions, mechanical multi-link models of
postural control as opposed to the single link, inverted pendulum [2, 6, 19, 20] have been de-
rived to gain deeper insight into the nature of balance control processes during upright stance.
A central focus in this line of research has been to address the relation between the functional
degrees of freedom (DOF) and the joint mechanical DOF of the postural control system. Exist-
ing inferences about the functional joint DOF are based on the contribution of body joint mo-
tions to the maintenance of upright stance. The contribution of each joint to postural control
has largely been assessed indirectly by the amount of COP motion [2], the joint motion vari-
ability [4, 15, 22], the magnitude of net joint torques [24], and the bivariate correlation between
each of the joint angular displacements and the COM displacement [4, 14].

The listing of methods emphasizes the role of variances and covariance to quantify postur-
al motion. In addition, the strength of correlation between each joint and the COM has been
extensively used to determine the importance of each joint motion during upright stance [4,
14]. Gatev and colleagues [14] showed that only the ankle joint was highly correlated with the
motion of the COM in the sagittal plane, whereas the knee and hip joints were not. Gage et al.
[4] found that the leg segment angle correlated more highly with the COM than the ankle
joint alone. It was concluded that compensatory knee movement plays a significant role in
quiet stance.

Federolf et al. [25] used a principal component analysis (PCA) to decompose the nature of
the multivariate input to postural control. They showed that during bipedal quiet stance the
first principal component was generally dominated by the ankle sway in the sagittal plane.
More challenging postures like tandem or single leg stance showed highly individual postural
strategies and the number of principal components that accounted for most of the total vari-
ance increased [26, 27]. Thus, with increasingly challenging task constraints postural strategies
become more complex and multi-DOF are involved in more active roles [10, 26, 28, 29].

Several studies have built upon the extant posture models and characterized the coordina-
tion patterns among the principal joint motions, especially between the ankle and hip joints [2,
5, 30–33]. Creath and colleagues [16] performed a coherence and co-phase analysis and found
anti-phase coupling of ankle and hip above 1Hz and in-phase coupling below 1 Hz. Aramaki
et al. [15] found an inverse relationship between the angular accelerations of the ankle and hip
in order to minimize COM acceleration. Our previous work [28] showed that the COP-COM
coherence in low-frequency ranges was larger and more consistent across various stance condi-
tions than the coupling between the different joints (all possible combinations of ankle, knee,
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hip and neck). Therefore, following a dynamical system view, it was suggested that individual
joint couplings of a multi-linkage posture model are embedded within the higher-order collec-
tive variable of COP-COM coupling.

This paper reports an experiment that was set up to examine the relation between joint mo-
tion and the motion of COM through a canonical correlation analysis (CCA) [34–36]. This is
a general approach that can reveal the linear structure between COM sway in three-dimen-
sional space and joint motions. CCA is based on simultaneous singular value (eigenvalue) de-
composition of two multivariate data sets in such a way that the component scores associated
with the first eigenvector of the first data set has maximum correlation with the component
scores associated with the first eigenvector of the second data set. Given the first eigenvectors,
the component scores associated with the second eigenvectors (which are orthogonal to the
first eigenvectors) again have maximum correlation, etc.

In this study CCA was used to decompose the total variance of the data into functions of
decreasing order that capture the shared variance of the motion of individual and combina-
tions of joint components with the variance of the 3D-COM as a function of different model
assumptions regarding joint inputs. Through this approach we examined directly in what way
multi-joint DOF posture models represent postural control strategies. We examine what sta-
tistically is labeled as the redundancy index to give a global measure of the amount of variance
in each linear combination that can be explained by the two sets. Note the use of the term re-
dundancy index in CCA is different from the meaning embedded in the motor control litera-
ture through Bernstein (1967). In our context, the CCA redundancy index quantifies the
shared variance of the motions of the joint components with that of the 3D COM. We also re-
port the cross-loadings of each variable in both sets of variables to determine the principal
COM sway direction and the contribution of each joint to the optimal linear structure be-
tween the sets.

More specifically, we compared posture models that were based on the different mechani-
cal DOF models of postural control [4, 5, 19, 20, 22], namely, ankle-model (2 DOF), ankle-
hip-model (4 DOF), ankle-knee-hip-model (5 DOF) and ankle-knee-hip-neck model (7
DOF). Except for the knee joint each joint motion was given 2 DOF (anterior-posterior (AP)
and medial-lateral (ML) joint motions). In addition, we used CCA model selection ap-
proaches to statistically derive the optimal model [37, 38] as opposed to the theoretically mo-
tivated posture models. Inferences about the true functional DOF of the postural control
system will be based on the CCA model selection outcomes, the amount of shared variance
between joint and 3D COMmotions and the cross-loading patterns. Furthermore, previous
work has shown that control mechanisms during bipedal quiet stance differ from perturbed
stance or challenged stances as, for example, in standing on one leg [5, 25, 29]. Therefore, we
also compared the different posture models in quiet bipedal stance as well as in more chal-
lenging postures (standing on one leg and/or on a foam surface) in order to determine the di-
rect fit of the different multi-DOF posture models to the control of upright stance and motion
of the COM [28].

In summary, this study investigated how the multiple joint space DOFs are organized in
different upright stances of postural control. To this aim established posture models with dif-
ferent mechanical DOF are compared with each other in terms of their shared variance with
the motion of COM using canonical correlation analysis [34–36]. On this direct basis, we de-
termined the relative contribution of joint motions to the maintenance of upright stance and
the principal direction of COM sway [4, 19, 20]. These features were examined under in-
creasingly complex posture tasks (bipedal stance, one-leg stance, voluntary AP and ML
sway), including standing on a compliant foam surface [16, 29, 39] and the standard rigid
ground support surface.
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Methods

Participants
Twelve healthy participants (28.6 ± 3.5 years, 6 females and 6 males) were recruited for this
study. The experimental protocol was approved by the Institutional Review Board of the Penn-
sylvania State University. After giving written informed consent, participants started with the
experimental procedures.

Apparatus
We used seven infrared cameras and the Qualisys Track Manager Software (Qualisys AB,
Gothenburg, Sweden) to record the 3D motion of 20 passive reflective markers at a sample rate
of 100Hz. Ground reaction force data were also collected at 100Hz using two adjacent AMTI
(American Mechanical Technology, Inc., Watertown, MA) force platforms. The two systems
were temporally synchronized. In addition, we used two medium firm polyurethane foam pads
of 10 cm height (same length and width as the force platforms).

Tasks and procedures
The 20 reflective markers were attached to the following landmarks of the respective body seg-
ment: 3rd metatarsal, heel, lateral malleolus, lateral femoral epicondyle, greater trochanter, iliac
crest, acromion process, lateral humeral epicondyle, dorsal wrist (between radial and ulnar sty-
loid), and the lateral aspect of the head (anterior to ear canal).

The participants completed 3 trials that lasted for 35 s in each of 4 different stances (two-
leg, one-leg, voluntary AP and ML sway) on both a firm and more compliant (foam) surface,
totaling 8 experimental conditions. The order of foam and no foam blocks was randomized
across participants. In addition, the order of stance conditions within each block was random-
ized. During two-leg stance and AP and ML sway conditions participants stood in an upright
posture with the feet hip width apart, each foot placed on one of two force platforms. We
marked the foot position to avoid variation across trials and conditions. The instruction for
one-leg and two-leg stances was to stand as still as possible. For one-leg stance participants
were asked to stand on their preferred supporting leg. For AP and ML sway participants were
asked to voluntarily sway at the sound of a 0.45 Hz metronome. The participants were free to
choose their preferred sway amplitude. The task goal of AP sway was to naturally sway back
and forth. The instruction for ML sway was to naturally shift weight from one leg to the other.
During all conditions participants were standing barefoot with their arms crossed above their
chest. Participants were asked to look at a focal point positioned at eye level 3m in front of
the platforms.

Data analysis
Data were analyzed in Matlab (MathWorks, Natick, MA). The total body COM position was
calculated as the weighted sum of the center of mass positions of the head, upper arms, fore-
arms/hands, thorax/abdomen, pelvis, thighs, shanks and feet. In addition, the net COP (COP-
net) of the two force platforms was calculated from the ground reaction force data. The mean
velocities of the 2D COPnet and 2D COM (AP and ML directions) paths were calculated as tra-
ditional postural stability indices [40].

Based on the markers positioned at the endpoints of the body segments we defined vectors
of the foot, shank, thigh, pelvis, thorax/abdomen and head, similar to Hsu and colleagues [20].
Subsequently, the following joint angles in the sagittal plane: ankleAP, kneeAP, hipAP and
neckAP (Fig 1) and in the frontal plane: ankleML, hipML and neckML were computed. The
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planar angles were computed using the general trigonometric relationship of the tangent:

y ¼ tan�1 jv!1 � v!2j
v!1 � v!2

ð1Þ

where v!1 and v
!
2 are the 3D vectors of two adjacent body segments. Given the one-leg stance

condition, ankle, knee and hip joint angles were only computed for the preferred supporting
leg. Circular statistics was used to report the circular SD of the joint angular motions as a de-
scriptive statistic of the joint motion variability [41].

Fig 1. Schematic illustration of the CCA input joint angles in anterior-posterior (AP) direction
(ankleAP, kneeAP, hipAP and neckAP).

doi:10.1371/journal.pone.0126379.g001
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We used a canonical correlation analysis (CCA) [34–37] to interrelate multiple joint angles
(joint set = set 1) to the 3D COM position (COM set = set 2). Figs 2 and 3 illustrate the basic
procedures of the canonical correlation analysis in conceptual diagram form.

Set 1 with p variables and n observations is represented by a n×p random variable X. Set 2
with q variables and n observations is represented by a n×q random variable Y. CCA creates d
= min(rank(X), rank(Y)) pairs of n×1 linear combinations (= component scores) U and V of
the original variables from each set:

Ui ¼ Xai and Vi ¼ Ybi ð2Þ

where i = 1,. . ., d, ai and bi are p×1 and q×1 coefficient vectors. Let S be the total (p + q, p + q)-
dimensional variance-covariance matrix of X (set 1) and Y (set 2):

S ¼ S11 S12

S21 S22

" #
ð3Þ

Using singular value decomposition the eigenvalues in decreasing order and the corresponding
eigenvectors of

Ap ¼ S�1
11 S12S

�1
22 S21 and Aq ¼ S�1

22 S21S
�1
11 S12 ð4Þ

are obtained. The ith eigenvector of Ap constitutes the ai coefficients and the ith eigenvector of
Aq the bi coefficients. The canonical correlations are derived from the first d eigenvalues λi. The
canonical correlation ri is the square root of λi. The eigenvalues of Ap and Aq are the same and
either one can be used to obtain the canonical correlation.

ri ¼
ffiffiffiffi
li

p
ð5Þ

CCA was performed using standardized data, therefore S can be replaced by the correlation

Fig 2. Basic procedures of the canonical correlation analysis (CCA) in conceptual diagram form.

doi:10.1371/journal.pone.0126379.g002
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matrix ρ. The significance of each canonical function (pairs of U and V) was assessed using F-
statistics.

Fig 3 highlights that only a proportion of total variance of the data is represented by the
component score associated with the first eigenvector of the respective set. The value represents
an average proportion of total variance of the original variables. The CCA redundancy index of
each set (CCA redundancy COM set and CCA redundancy joint set) can be obtained by multi-
plying the average proportion of total variance by the squared canonical correlation coefficient.
It quantifies the amount of variance represented by the component score associated with the
ith eigenvector of set 1 that can be explained by the component score associated with the ith ei-
genvector of set 2 and vice versa. Similar to R2 in multiple regression it is the shared variance
between the two sets, that is, how much variation in the COM position can be predicted by var-
iation in joint angles. In this study we report the sum of the CCA redundancy values of the first

Fig 3. Cross-loadings, CCA redundancy, canonical correlation coefficient and amount of variance in each component score of the first canonical
function of one representative trial during two-legged quiet stance.

doi:10.1371/journal.pone.0126379.g003
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two component score pairs as they are assumed to capture the most important variance. This
index was labelled total CCA redundancy. A pair of component scores associated with the ith
eigenvectors of the two sets is commonly termed the ith canonical function [34].

Furthermore, we computed the cross-loading of each variable in both sets. The cross-load-
ings are the bivariate correlations between each original variable and the component score of
the other set. Here, a high squared cross-loading generally indicates that a change in angular
motion was matched by a change in COM position. However, there are no general guidelines
for distinguishing high versus low cross-loadings [37]. Therefore, the interpretation of the
cross-loadings is kept at a qualitative level. Note that the CCA redundancy index can also be
obtained by averaging the squared cross-loadings. Fig 3 shows the squared cross-loadings and
CCA redundancy of the first canonical function of one representative trial during two-legged
quiet stance.

In this study model or variable selection was motivated both theoretically [2, 4, 5, 16, 19, 20,
22] and statistically [37, 38]. Based on existing literature three different subsets of joint angles
of the full 7DOF-model were examined while the COM set was held constant (COMAP,
COMML and COMupdown). The 7DOF-model contains all variables, that is, ankleAP,
kneeAP, hipAP, neckAP, ankleML, hipML and neckML. The 2DOF-model (subset 1) includes
ankleAP and ankleML joint angles, the 4DOF-model (subset 2) ankleAP, hipAP, ankleML and
hipML, and the 5DOF-model (subset 3) ankleAP, kneeAP, hipAP, ankleML, and hipML.

On the other hand, similar to variable selection in regression analysis a simple sequential ap-
proach was chosen for statistical model building in CCA [37]. All variables of the 7DOF-model
(7 variables in set 1 and 3 variables in set 2) were subject to this sequential method in order to
test whether the full (10 variables) or a reduced model is the best model. The first step is to
choose two variables (one from each set) from all possible p×q combinations that minimize
Wilks’ lambdaΛ:

L ¼ P
d

i¼1
ð1� liÞ ð6Þ

The procedure only continues if this best combination is significant. The next step is to deter-
mine the variable of the remaining variables that minimizes partial lambdaΛpartial:

Lpartial ¼
Lfull

Lred

ð7Þ

where lambda fullΛfull is based on the first two variables plus the potential new variable and
lambda reduced Λred on the first two variables. The variable that minimizes Λpartial enters the
model if the following F-statistic that follows an F-distribution (α = 0.01 and w, n − p� −

q�degrees of freedom) is significant:

F ¼ ð1� LpartialÞ
Lpartial

� ðn � p� � q�Þ
w

� �
ð8Þ

Where p� is the number of current variables in set 1 and q� in set 2. w equals p� if a X variable is
tested and q� if a Y variable is tested. Λred and Λfull are constantly being updated until either all
possible variables are included in the model or the best potential new variable does not signifi-
cantly improve the model fit.

Furthermore, a second variable selection method based on the total CCA redundancy of X,
that is, the sum of the redundancy values of the first two canonical functions was applied [38].
The approach seeks to find the subsets X� and Y� that are smaller than the original sets and
best represent the original shared variance between the two sets. As a first step the total CCA
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redundancy of X using the two original sets is computed as a reference value (TRedX,Y). Now
the best subset Y� is sought. The best subset Y� (here containing 2 variables) of all possible vari-
able combinations is the one that is closest to TRedX,Y and, therefore, satisfies the following
condition:

minðTRedX;Y � TRedX;Y� Þ ð9Þ

where TRedX,Y� is the total CCA redundancy of X given Y�. Subsequently, the total CCA re-
dundancy reference value for finding the best subset X� of X is updated to be TRedX,Y�. All pos-
sible variable combinations forming subsets X� (here containing 2 to 6 variables at a time) are
tested and the one that satisfies:

min ðTRedX;Y� � TRedX� ;Y� Þ � p
�

p

� �
ð10Þ

represents the best subset X�. Multiplication by p�
p
normalizes the total CCA redundancy of X�

to the full set X. Note that this normalization was also applied to report the CCA redundancy
of the theoretically motivated 2DOF, 4DOF and 5DOF-models. Each analysis was performed
on an individual trial basis.

Statistics
To analyze the statistical effects of the traditional postural stability indices and the redundancy
indices of the 7DOF-model we performed a two-way repeated measures ANOVA. The two fac-
tors were postural stance (4 levels) and foam (2 levels). For post hoc pairwise multiple compari-
sons we used the Bonferroni correction. Statistical analysis was performed in RStudio (The R
Project for Statistical Computing).

Results

Variability of joint and COPnet/COMmotion
Fig 4 shows the mean velocities of the COPnet and COM paths as a function of stance and sur-
face of support condition. There was a significant main effect of postural stance for COPnet ve-
locity (F3,33 = 130.75, p< 0.01) and for COM velocity (F3,33 = 213.62, p< 0.01). All pairwise
comparisons were significant. Velocities systematically increased for the different stances (two-
leg, one-leg, AP sway, ML sway, respectively). The effect of foam was not significant (p> 0.05).

Fig 5 shows the circular SD of the joints that were included in the multi-joint-models. There
were significant main effects of postural stance (ankleAP: F3,33 = 89.71, p< 0.01; kneeAP: F3,33
= 36.84, p< 0.01; hipAP: F3,33 = 41.24, p< 0.01; neckAP: F3,33 = 24.43, p< 0.01; ankleML:
F3,33 = 53.33, p< 0.01; hipML: F3,33 = 62.68, p< 0.01; neckML: F3,33 = 22.31, p< 0.01). The
SD of each joint motion generally increased during one-leg stance and during the dynamic
tasks (AP and ML sway). Further, there were main effects of foam (ankleAP: F1,11 = 10.12,
p< 0.05 and ankleML: F1,11 = 132.67, p< 0.01). SD of joint motion increased when standing
on a foam surface of support.

CCAmodel selection
The model building approach based onWilks’ lambda [37] sequentially added the next best
variable to the CCA model. The results have shown that 100% of the times the process contin-
ued until the last remaining variable. This means that the full 7DOF-model produced the best
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CCA model fit compared to subsets of the full model. The order of variable inclusion varied
across trials and subjects.

The variable selection method based on the total CCA redundancy of X [38] produced 50–
80% of the time best subsets X� of X that contained only 5 variables. The remainder of the
times the best subsets X� contained 6 variables. The best subsets of Y were constrained to con-
tain 2 variables. Fig 6 shows the percentages of variable inclusion in the best subsets X� and Y�

as a function of postural stance and surface of support condition. The best subsets Y� showed
in the main that COMAP and COMupdown sway were most important during two-leg and
one-leg stances and voluntary AP sway, whereas COMML sway was most important during
voluntary ML sway. For the other set, it appears that across participants and trials each variable
was equally often included in the best subset X�. Note that the percentage of variable inclusion
does not directly allow inference about variable importance once the variable was included in
the best subset.

In the following, the 7DOF-model will be analyzed in detail as the model selection outcomes
favored the 7DOF-model as the bestmodel. In addition, only the first two canonical functions
were analyzed. The rationale for this decision was that F-statistics have shown that the first two
canonical functions were significant for every single trial and the 2DOF-model produced a
maximum of 2 canonical functions.

Total CCA redundancy index of 7DOF-model
There were significant main effects of postural stance (F3,33 = 7.97, p< 0.01) and foam (F1,11 =
14.78, p< 0.01) for the total CCA redundancy index of the joint set (Fig 7). The redundancy
was lower under the foam conditions compared to no foam. Further, the redundancy was also
lower for two-leg and one-leg stance compared to ML sway. For the total CCA redundancy
index of the COM set (Fig 8) there were also significant main effects of postural stance (F3,33 =
3.74, p< 0.05) and foam (F1,11 = 12.01, p< 0.01). When standing on foam the redundancy de-
creased. The redundancy also decreased during one-leg stance compared to AP sway. In addi-
tion, the CCA redundancy indices of the theoretically motivated 2DOF, 4DOF and 5DOF
models are also displayed in Figs 7 and 8. However, no statistical analysis was performed on
these models as the model selection outcomes favored the 7DOF-model as the best model.

Fig 4. COPnet and COM velocities (groupmeans ± SE) as a function of postural stance and surface of support condition.

doi:10.1371/journal.pone.0126379.g004
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CCA cross-loadings of 7DOF-model
Fig 9 shows the CCA cross-loadings of the 7DOF-model (both joint and COM sets) of the first
two canonical functions as a function of stance and foam. Overall, high cross-loadings of func-
tion 1 decreased in function 2 and lower loadings increased. The following joint angular mo-
tions showed strikingly high loadings in function 1: ankleAP, kneeAP and ankleML during
two-leg stance; ankleML and neckML during one-leg stance on a foam surface; kneeAP and
ankleML during voluntary AP sway; ankleAP, kneeAP and ankleML during voluntary AP sway
on foam; and finally kneeAP, hipAP, ankleML and hipML during voluntary ML sway. The

Fig 5. Circular SD (groupmeans ± SE) of each joint motion (ankleAP, kneeAP, hipAP, neckAP,
ankleML, hipML, neckML) as a function of postural stance and surface of support condition.

doi:10.1371/journal.pone.0126379.g005
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following COM sway directions showed high cross-loadings in function 1: COMAP during
two-leg stance and one-leg stance on foam, COMAP and COMupdown during AP sway and
COMML during ML sway. One-leg stance on a rigid surface showed more uniform cross-load-
ings of all three variables. Finally, AP sway produced the lowest cross-loadings in function 2.

Fig 6. CCA variable selection: Selection of the best subset of the original variables based on the total CCA redundancy of the joint set. Percentage
of variable inclusion in the best subset of the respective set across trials and participants is displayed for both joint and COM sets as a function of postural
stance and surface of support condition.

doi:10.1371/journal.pone.0126379.g006

Fig 7. Total CCA redundancy (groupmeans ± SE) of the joint set as a function of posture model,
postural stance and surface of support condition. The total CCA redundancy of the theoretically
motivated 2DOF, 4DOF and 5DOF-models were normalized to the 7DOF posture model.

doi:10.1371/journal.pone.0126379.g007
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Figs 10 and 11 show the CCA cross-loadings of the 2DOF, 4DOF and 5DOF models. In gen-
eral, the results indicated that a high cross-loading of a particular variable was consistently
high across models.

Discussion
This study investigated the organization of the joint DOFs postural control system in different
upright stances. Recent work has established that there are multivariate joint inputs of posture
control [20–22, 25, 28] in contrast to the long-standing view of a single link inverted pendulum
model [4], but the nature of the multivariate control and its relation to postural sway is still an
open challenge. Here we used linear multivariate canonical correlation analysis [34–36] to di-
rectly determine the shared variance in the joint motions and the 3D motion of COM as a func-
tion of established models of postural control that varied in their joint DOF. This afforded a
direct examination of the control of COMmotion as a function of different multivariate inputs
that varied in assumptions about joint DOF control: namely, an inverted pendulum ankle
model (2 DOF), ankle-hip model (4 DOF), ankle-knee-hip model (5 DOF), and ankle-knee-
hip-neck model (7 DOF).

Postural motion (COPnet and COM velocities) and joint motion variability systematically
increased across progressively less stable stance conditions (bipedal quiet stance, one-leg
stance, voluntary AP and ML sway). Variability of joint motions also either increased or

Fig 8. Total CCA redundancy (groupmeans ± SE) of the COM set as a function of posture model,
postural stance and surface of support condition.

doi:10.1371/journal.pone.0126379.g008
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decreased respectively when standing on a foam surface compared to a rigid surface of sup-
port. These findings are consistent with the proposition that the postural control system be-
comes more unstable with increasingly challenging constraints to upright stance and that
this greater instability is accompanied by an enhanced level of activity at each individual
joint, namely, ankle, knee, hip and neck [22]. More generally, these results provide further ev-
idence that the upright human body moves as a multi-link system in order to maintain bal-
ance [15, 19, 20, 22, 28].

However, irrespective of the amount of variability (dispersion) the level of synchronization
between COM and joint motions has the potential to reveal the functional contribution of the
respective joint angular displacements in controlling COM position [4, 14]. Here, the total
CCA redundancy index quantifies the shared variance of the motion of the joint components
with that of 3D COM [34–36], that is, it estimates how much COMmotion depends on the
joint motions when both multivariate data sets are considered collectively. It follows that simi-
lar to R2 in multiple regression a higher CCA redundancy reflects increased predictability.

Fig 9. CCA cross-loadings (groupmeans ± SE) of all variables of both joint and COM sets of the 7DOFmodel as a function of postural stance and
surface of support condition. The cross-loadings of the first canonical function are displayed in the upper panels and the cross-loadings of the second
canonical function in the lower panels.

doi:10.1371/journal.pone.0126379.g009
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The total CCA redundancy of the joint set was higher for voluntary ML sway compared to
one or two-leg stances and the total CCA redundancy of the COM set was higher for voluntary
AP sway compared to one-leg stance. This shows that for the dynamic postural trials the rela-
tionship between joint and COM sets was greater in terms of the proportion of total variance
that was explained by the first two canonical functions. We conclude that the dimensionality
may be reduced in the dynamic conditions and thus the postural control coordination solution
simplified [42]. In our case this means that the controlled DOF are lower than the dimensions
of the data sets. In a similar way the CCA redundancy index of both sets was also higher when
standing on a rigid ground support compared to a foam surface. The finding that the first two
canonical functions captured less shared variance when standing on foam reflects an increase
in the dimension of the postural control strategies [10, 25].

Based on the normalized total CCA redundancy index of the joint sets it was found that the
full model (7DOF) accounted for a greater shared variance between the two sets of variables
than the theoretically motivated subsets (2DOF, 4DOF and 5DOF models). Total shared vari-
ances of the first two canonical functions of the 7DOF model ranged from 40–70%, which is
considered to be high in the context of CCA [34]. This observation was supported by the find-
ing that the subset out of all possible subsets of the full model that best reproduced the shared
variance of the full model contained at least 5 variables. We conclude that models with fewer
DOFs (e.g., an inverted pendulum-like model) are not sufficient to capture the critical shared
variance of the original full DOF model. However, the fact that 50–80% of the time the best
subsets contained one variable less than the maximum number of possible variables may reflect

Fig 10. CCA cross-loadings (groupmeans ± SE) of all variables of both joint and COM sets of the 2DOF, 4DOF and 5DOFmodels as a function of
postural stance when standing on a rigid surface of support (No Foam). The cross-loadings of the first canonical function are displayed in the upper
panels and the cross-loadings of the second canonical function in the lower panels.

doi:10.1371/journal.pone.0126379.g010
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a reduction of the controlled DOF. In addition, the findings showed individual patterns across
trials and subjects, which highlights that no joint angular motion can be a priori excluded from
the model. Furthermore, similar to regression model building we found that the full 7DOF
model produced the best canonical model fit compared to subsets. It appears that most of the
joint angular motions directly contribute to the control of COM.

To gain deeper insight into the specific role of each joint motion in stabilizing COM posi-
tion against gravity we analyzed the cross-loadings of all joints. Higher loadings imply that
these joints play a major role as changes in the respective joint angle are directly linked to devi-
ations of the COM position. In addition, the cross-loadings of the 3D COM showed the princi-
pal directions of postural sway. Generally we found that the contribution of each joint and the
dominant COM sway direction varied across postural stance and surface of support conditions,
revealing adaptive postural strategies [20, 22, 25]. The first canonical function was thereby con-
sidered to reflect the primary control mechanisms.

During bipedal quiet stance on a rigid surface we observed an ankle (both AP and ML direc-
tions)—knee strategy that primarily controlled COM AP sway. This outcome is consistent with
previous work that showed during quiet two-legged stance that the ankle joint motion is most
representative of COM sway in the sagittal plane [3–9, 25]. On the other hand, the finding of a
substantial role of the knee over the hip joint [4, 17–19] challenges the proposition of ankle-hip
synergy as dominating coupling relationship at the joint level [3, 5, 15, 16, 30].

For one-leg stance we found a strong multi-DOF strategy [25], that is, all joints co-varied
with the COM position and all three directions of COM were equivalently important. Further,

Fig 11. CCA cross-loadings (groupmeans ± SE) of all variables of both joint and COM sets of the 2DOF, 4DOF and 5DOFmodels as a function of
postural stance when standing on a foam surface of support (Foam). The cross-loadings of the first canonical function are displayed in the upper panels
and the cross-loadings of the second canonical function in the lower panels.

doi:10.1371/journal.pone.0126379.g011
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the first canonical function of the more dynamic trials (voluntary AP and ML sway) also re-
vealed a postural strategy that involved contributions of variance from the ankle, knee, hip and
neck joints. During AP sway kneeAP and ankleML correlated the most with COM AP and
COM up down motion. Except for hipML and neckML the loadings of the remaining joints
were also high. These results show that the task that most resembles the traditional single in-
verted pendulum model in the sagittal plane [2], did not produce an inverted pendulum-like
ankleAP strategy but rather a multi-DOF postural control strategy with primary control in the
AP direction given the task instruction. During ML sway we also found that all joints, except
for neckAP controlled COMML sway. Similarly to AP sway this set of outcomes reflects the or-
ganization of a multi-link postural system.

Moreover, it is noteworthy to highlight that it is in the more challenging and dynamic pos-
tures that the multi-DOF are involved in more active roles [10, 25, 26, 28, 43]. When standing
on a foam surface, which generally has been shown to increase the overall postural sway [16,
29], the functional joint DOF for one-leg stance were reduced. Whereas on a rigid surface all
joints equally contributed to control the 3D COM position, on foam solely neckML and the
ankle joint highly correlated with COM AP sway. It appears that the postural control strategy
of one leg stance is driven by the mechanical properties of the foam that produces enhanced
ankle inversion—eversion instability. On the contrary, during voluntary AP sway on a foam
surface the multiple DOF are more actively exploited.

The second canonical function captures the shared variance between the two sets under the
constraint to be uncorrelated to the first function. In general, we observed a switch in loadings,
that is, the loadings that were low in the first canonical function became higher in the second
canonical function. Considering the first two canonical functions together, we conclude that
each joint motion has an active role in controlling the different components of the 3D COM
motion. Finally, CCA can be sensitive to changes in the data sets. However, when comparing
posture models (2DOF, 4DOF, 5DOF and 7DOF) of this study, patterns of joint and COM
cross-loadings were systematic. This outcome reflects a high degree of stability of the CCA
analysis. Nevertheless, as CCA is a linear multivariate statistical method, non-linear relations
among variables can only be captured to a first degree of approximation.

The concept of synergies and dimensionality reduction of the control problem have been
discussed in the literature within the framework of the Uncontrolled Manifold (UCM) ap-
proach [11, 20–23, 44] and principal component analysis (PCA) [10, 25]. The UCM approach
as described in Scholz and Schöner [23] is based on an a priori geometric model (but see de
Freitas and Scholz [45]). In stable conditions that model can be applied to the variability across
time of a multivariate time series obtained in a single replication; in dynamic conditions it is
applied to the variance across replications at selected time points. The Jacobian at a chosen ref-
erence point is taken (local linearization) and, given that there is a difference in the dimension
of the time series and the controlled DOF, the UCM-based decomposition is carried out. By
varying the a priori geometric model (which DOF are presumed to be controlled) and testing
for differences in the variances along the UCM versus the orthogonal space, the actual con-
trolled DOF can be detected.

The described UCM approach holds similarities to a model-based PCA. It is based on line-
arization of the model and focuses on differences in explained variance. The details of the com-
putations involved in the UCM approach compared to PCA are, however, quite different. PCA
is a model-free linear transformation and simply maximizes the explained variance of the first
component, then maximizes the explained variance of the second component, etc. From the
UCM perspective, the PCA components that explain the most variance would initially seem to
span the UCM, not the orthogonal space. But that interpretation would not hold in general.
One has to be careful in specifying what kinds of variation are inherent in the observations.
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And, this depends on the details of the experiment in which the time series data have been ob-
tained and the way in which the observed data are preprocessed.

In sum, the UCM approach is comparable to PCA if the experimental conditions generate
stable behavior. If the latter is the case then the relation of the UCMmethod to CCA is compa-
rable to the relation of PCA to CCA. That is, UCM/PCA decomposes the observed variance in
a single set of multivariate time series, whereas CCA decomposes two distinct sets of time series
in such a way that maximum linear prediction between the two sets is obtained using the first
set-dependent components.

The CCA redundancy index reveals that there is degeneracy in the postural solutions at the
level of joint space that is dependent on the stance and the surface of support. This is an inverse
relation in the sense that a higher CCA redundancy score indicates a stronger direct relation
between the independent and dependent data sets and hence a lower level of degeneracy to the
joint space configuration. The dynamic postural task clearly shows greater predictability than
the quiet standing task in the relation of the joint space solution to indices of postural sway.

The central issue of this paper was to examine the structure of the multivariate postural con-
trol system through a canonical correlation analysis [34–36]. Established models of postural
control [2, 4, 5, 16, 19, 20, 22] that differed in their joint DOF were examined based on the
most important shared variance between joint angular displacements and total body 3D COM
motion. The purpose was to determine the nature of the functional DOF of ankle, knee, hip
and neck joint motions. Based on CCA model selection procedures, the amount of shared vari-
ance and the cross-loading patterns we revealed the direct contribution of the multi-DOF
mechanisms [20] to postural control. Furthermore, we observed a reduction in dimensionality
during the dynamic posture conditions (voluntary AP andML sway) as opposed to quiet stance
and when standing on a rigid surface compared to foam, suggesting simplified postural control
coordination solutions.
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