
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10555-021-10005-3

What do cellular responses to acidity tell us about cancer?

Wiktoria Blaszczak1 · Pawel Swietach1 

Received: 30 September 2021 / Accepted: 22 November 2021 
© The Author(s) 2021

Abstract
The notion that invasive cancer is a product of somatic evolution is a well-established theory that can be modelled mathemati-
cally and demonstrated empirically from therapeutic responses. Somatic evolution is by no means deterministic, and ample 
opportunities exist to steer its trajectory towards cancer cell extinction. One such strategy is to alter the chemical microen-
vironment shared between host and cancer cells in a way that no longer favours the latter. Ever since the first description 
of the Warburg effect, acidosis has been recognised as a key chemical signature of the tumour microenvironment. Recent 
findings have suggested that responses to acidosis, arising through a process of selection and adaptation, give cancer cells 
a competitive advantage over the host. A surge of research efforts has attempted to understand the basis of this advantage 
and seek ways of exploiting it therapeutically. Here, we review key findings and place these in the context of a mathematical 
framework. Looking ahead, we highlight areas relating to cellular adaptation, selection, and heterogeneity that merit more 
research efforts in order to close in on the goal of exploiting tumour acidity in future therapies.

Keywords  Metabolism · pH · Acid–base · Cell lines · Variation · Adaptation · Selection · Evolution · Phenotype

1 � The role of cell lines in cancer research

The World Health Organization estimates that cancer 
accounts for one in six deaths globally [1]. This headline 
figure is the reason for the tremendous and increasingly 
interdisciplinary research efforts aimed at understanding and 
treating the disease. The widespread laboratory use of can-
cer cell lines established from human patients has, beyond 
doubt, contributed greatly to the relative success of scientific 
research in improving survival for patients diagnosed with 
melanoma, Hodgkin lymphoma and breast, prostate, tes-
ticular, cervical, and thyroid cancers [2]. Despite emerging 
concerns and recognised limitations [3–6], cell lines offer 
a degree of insight into molecular disease mechanisms that 
is matched by no other available biological resource [7]. 
As research methods improve in terms of cost-effectiveness, 
spatiotemporal resolution, sensitivity, and data throughput, 
it is likely that cell lines will remain a cornerstone of cancer 
research in the foreseeable future, especially considering the 

growing consensus for repeating measurements on a wide 
panel of lines. In light of the so-called reproducibility crisis 
[8, 9] and the perceived failure of many preclinical con-
cepts to succeed in human trials [10], the case for designing 
informative, relevant, and well-controlled experiments on 
cell lines has never been more pressing. This ambition can 
be met by considering clinical observations made on patients 
and by referring to predictions made by mathematical mod-
els which have their roots in ecology.

2 � What cancer patients and mathematical 
models tell us about the optimal design 
of experiments using cell lines

Cancer cell lines carry with them a record of genetic muta-
tions which were ultimately responsible for the neoplastic 
growth that mandated surgical resection [11]. On excision, 
the cancer cells lost the unique cellular and humoral con-
text that they grew into, which inadvertently impacts their 
biological behaviours in vitro. After many months or even 
years of passages in culture media, cell lines may behave 
very differently from the original cancer cells and even 
diverge between different laboratories [12–15]. These issues 
highlight the importance of two matters pertaining to good 
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laboratory practice. Firstly, cell lines must be monitored for 
characteristic behaviours that verify the retention of key 
properties of the original cancer cells. Secondly, culture 
conditions should attempt to mimic the chemical (e.g. ionic 
composition [16–18]) and physical properties (e.g. matrix 
stiffness [19–21]) of the tumour [22, 23].

Historically, observations made on human cancers have 
provided essential instructions on how to perform in vitro 
experiments using cell lines. Over time, these observations 
have been refined and expanded to include newly described 
properties. This information includes a description of the 
hallmarks of cancer [24, 25], which experimental models 
should strike to retain in order to ensure disease relevance. 
Additionally, measurements on human tumours have 
described the physicochemical properties of the tumour 
microenvironment [26–29], such as the oxygen partial pres-
sure (pO2) [30, 31] or acid–base balance quantified in terms 
of pH [32–35]. For example, elevated lactic acid produc-
tion has been recognised – for over a century – to be char-
acteristic of tumours, even when adequate oxygen supply 
would seem to favour oxidative phosphorylation [36]. This 
hallmark is exploited diagnostically in 18F fluorodeoxyglu-
cose imaging to identify cancer cells based on their glu-
cose appetite [37–39]. Thus, it is prudent to confirm that 
the cell lines chosen for studying a particular cancer also 
phenocopy its metabolic profile [40, 41]. It is equally impor-
tant to ensure that culture conditions are relevant to the in 
situ milieu of the relevant tumour of interest. The reference 
thresholds for experimental conditions have been defined 
by measurements using invasive probes [42] and imaging of 
patient tumours [43] or by assays performed on biopsies [44, 
45]. While these tasks are conceptually simple with con-
temporary technology, efforts to define precise thresholds 
are compounded by variation among patients (exacerbated 
further by any comorbidity), the spatiotemporal heterogene-
ity within tumours, and the diversity of metastatic niches. 
Consequently, it has not been possible to match every com-
monly used cell line with a bespoke set of growth conditions, 
although formal guidelines and informal agreements have 
been implemented in recognition of this issue [46–48].

A central pillar of the scientific process is to study how 
cells respond to controlled changes in specific factors. This 
hypothesis-driven, reductionist approach is necessary for 
ranking the various possible factors that influence cancer 
progression. However, this strategy raises the critical ques-
tion of which factor to select as the independent variable for 
testing. It would be desirable to perform a sensitivity analy-
sis for all known variables, but this is still outside the scope 
of modern research approaches. Instead, decisions on what 
factor to vary have often been influenced by historical prec-
edent, methodological constraints, or even personal biases. 
One approach that can assist in identifying the dominant 
factors influencing carcinogenesis involves mathematical 

models that have their origins in studies of interactions 
between species in an ecosystem [49–52]. Despite some 
obvious differences between animal and cellular societies, 
the results of these simulations have laid down priorities for 
cancer research.

The relationship between cancer cells and normal cells 
resembles predator–prey interactions, described math-
ematically using a system of differential equations called 
the Lotka–Volterra equations [53]. The elegance of these 
simulations is that they can track the tumour-host interplay 
over time until one of three scenarios is attained at the equi-
librium point (Fig. 1):

	 (i)	 extinction of cancer cells, i.e. cancer recedes;
	 (ii)	 a stable coexistence of cancer and normal cells, i.e. 

a benign tumour;
	 (iii)	 unconstrained growth of cancer cells leading to the 

extinction of normal cells, i.e. invasive cancer.

In terms of therapy, it is important to know which trajec-
tory a particular carcinoma will follow because of tangible 
opportunities for drugs to reroute cellular fates towards the 
first or at least second outcome. These mathematical models 
have a distinct advantage over clinical observations and cell 
line-based experiments in that they are able to ‘explore’ the 
process of carcinogenesis from an early stage, provided that 
there is sufficient data at other time points to best-fit values 

Fig. 1   Predicted outcomes of Lotka–Volterra models. Cancer cells 
(red-crossed) and normal cells (blue circles) cohabit a tissue ecosys-
tem. With time, the interaction between these cells and their environ-
ment can lead to three trajectories that culminate in three different 
equilibrium points: (i) extinction of cancer, i.e. cancer remission, (ii) 
stable coexistence, i.e. benign tumour, (iii) cancer cells take over nor-
mal cells, i.e. invasive cancer
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to all necessary variables. Insight into this longitudinal pro-
cess is not normally available by studying patients because 
many cancers (particularly pancreatic ductal adenocarci-
noma [54]) are detectable only as they approach the equi-
librium state. In the laboratory, it is not normally possible 
to follow a system over a sufficiently long time for it to truly 
attain a steady state because of inherent limitations in the 
design of in vitro and animal experiments. Moreover, the cell 
lines established from patients capture the latter part of the 
carcinogenesis process, giving limited insight into how the 
cells got to that particular point. In the absence of empirical 
evidence, mathematical models have been consulted to give 
a steer on the best strategies to interfere with the early stages 
of cancer growth. Examples of interventions predicted by 
mathematical modelling to be effective include those that 
target one or more of the following (Fig. 2):

	a).	 growth-related interventions that restrict the host’s 
capacity to harbour cancer cells;

	b).	 host defences against cancer cells, such as the immune 
response;

	c).	 the negative effect that cancer cells exert on host cells, 
e.g. cancer cell activities that create a harsh microen-
vironment for the host tissue.

The clinical effectiveness of antiangiogenic therapies 
and immunotherapy can be explained in terms of their 
actions on the first and second targets, respectively [55, 
56]. The third target is recognised for its untapped ther-
apeutic potential that could be realised by studying the 
interplay between cell lines and their environment. Frus-
tratingly, the nature of this interplay is still inadequately 
characterised and, understandably, has not yet achieved 
the same level of success in clinical trials as antiangiogen-
ics or immunotherapy. Since mathematical models predict 
synergy between two or more of the above targets, all three 
targets merit balanced research efforts.

Mathematical models are also useful for predicting 
the long-term effectiveness of therapies formulated on 
the basis of promising preclinical results. These simula-
tions have often arrived at counterintuitive conclusions. 
For example, according to Lotka–Volterra models, thera-
pies that selectively kill the majority of cancer cells can-
not, in the end, change overall outcomes. This is because 
the ‘ecosystem’ eventually arrives at the same equilib-
rium point once the surviving population of cancer cells 
expands [57–59]. In other words, even a small number of 
surviving cells is able to repopulate tissues and continue 
along the prior trajectory.

Fig. 2   Effective strategies for 
cancer therapy predicted by 
mathematical models. Cancer 
cells (red-crossed) and normal 
cells (blue circles) cohabit a tis-
sue ecosystem. A Reducing the 
capacity of the tissue to carry 
cancer cells, e.g. with antian-
giogenic therapy. B Weakening 
cancer defence mechanisms 
against host activities, e.g. 
immunotherapy. C Preventing 
cancer cells from generating a 
harsh environment for the host 
cells, e.g. influencing the micro-
environment
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3 � The case for studying acidosis in cancer 
research

Mathematical predictions highlighting the therapeutic 
potential of targeting the cell-(micro)environment inter-
play have reinvigorated efforts to understand how cancer 
cells influence their surrounding milieu and how this feeds 
back on cancer and normal cells growing alongside one 
another. Historically, the two aspects of the harsh tumour 
microenvironment that have garnered considerable scien-
tific attention are hypoxia and acidosis, ostensibly because 
of their direct relationship with mitochondrial respiration 
and glycolytic metabolism, respectively. Cancers cannot 
grow without an adequately high metabolic rate, thus some 
combination of lactic acidosis and hypoxia is expected in 
solid tumours [36, 60–62]. Of these two chemical vari-
ables, it is more conceivable to exercise experimental or 
therapeutic control over the extracellular pH of tumours 
(pHe), as compared to pO2; for example, by means of pH 
buffering [63] described later. Another argument in favour 
of targeting pHe is that the remit of such interventions is 
largely restricted to the extracellular compartment. This 
selectivity has the beneficial effect of protecting intracellu-
lar pH (pHi) in noncancerous cells, although some degree 
of pHi-pHe coupling is inevitable [64]. In contrast, O2 gas 
permeates freely across membranes; thus, any manipula-
tion to extracellular pO2 will seamlessly transmit across 
to the intracellular compartment of both cancerous and 
noncancerous cells [65].

Some of the earliest experiments investigating the effect 
of pHe on cancer cells were performed by Harry Eagle in 
the 1970s [66]. His results, using readouts such as prolif-
eration, introduced the concept of a pHe optimum range. 
A key observation borne from this and many subsequent 
studies was the steepness of pHe survival curves for many 

cancer cell lines [67]. The reason underpinning this exqui-
site sensitivity relates to the multitude of protein targets 
for H+ ions. The significance of this observation is that 
only a small change in pHe is sufficient to produce a mean-
ingful effect on cell behaviours. Thus, among competing 
cell populations, the shape of their pHe sensitivity curves 
can have a profound impact on survival prospects. For 
example, a cell with a broader pHe optimum range would 
be more successful during fluctuating pHe, as compared 
to a cell with a narrow pHe optimum range (Fig. 3A). 
There are also various adaptive strategies based on pHe 
sensitivity that could give a competitive advantage to a 
particular subpopulation of cells. For instance, cancer cells 
could gain a selective advantage over host cells if their 
pHe optimum range is shifted towards a more acidic level 
and, concurrently, their glycolytic output is increased. This 
combination is expected to reduce pHe to a level that is 
harsh for host cells but conducive for the adapted cancer 
cells (Fig. 3B). This strategy relies on the ability of can-
cer cell populations to change beyond the normal con-
straints imposed on noncancerous cells. Critically, only 
minor adjustments to pHe sensitivity may be sufficient to 
change the trajectory of cancer towards invasive behav-
iour. By the symmetrical argument, only a small degree 
of alkalinisation, such as that attainable with therapeutic 
buffering [68], may be required to steer away from the 
malignant phenotype.

Changes in pHe can produce a myriad of consequences 
on cell biology [69–72] because protonation is a form of 
posttranslational modification that affects virtually all pro-
teins [73]. Notwithstanding the breadth of potential targets, 
a subset of proteins has been described as bona fide pHe 
sensors, whose primary role is to transduce a pHe signal into 
a measurable cell response [72]. The discovery process for 
these sensors has typically taken the approach of mapping 

Fig. 3   Examples of pH sensitivity curve for proliferation. A Cell X 
has a broader pH optimum compared to cell Y, therefore its survival 
prospects are higher during fluctuations in pH. Such dynamic changes 
in pH have been described in tumours. B Cell X has an acid-shifted 

pH optimum compared to cell Y. If cell X also has a higher metabolic 
rate, it is likely to drive tissue pHe to a lower level. This would have 
the effect of giving cell X a survival advantage over cell Y 
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the pHe sensitivity of downstream readouts. For example, 
the first H+-sensing G-protein-coupled receptor OGR1 was 
discovered by screening for effects on the second messen-
ger IP3 [74]. These, and many other studies, were biassed 
by design, in the sense that the hypothesis was testing the 
pHe sensitivity of an a priori defined target, rather than tak-
ing a more agnostic approach towards the identity of the 
putative H+ sensor. To address this concern, recent stud-
ies have sought evidence for pHe-sensitive pathways using 
unsupervised discovery pipelines, such as transcriptomics 
[75, 76], proteomics [76, 77], or metabolomics [78, 79]. The 
general conclusion from these studies is that a decrease in 
pHe triggers a multifaceted response that involves a change 
in phospholipid composition [79], increases glutaminoly-
sis and fatty acid synthesis [78], induces autophagy [80, 
81], remodels the extracellular matrix [75, 82], modulates 
the cell cycle [75], affects DNA repair [75], promotes epi-
thelial-mesenchymal transition (EMT) [83], and increases 
alternative splicing [84]. However, when interpreting these 
results, it is important to consider the precise level of pHe 
attained during measurements and how this change was 
made experimentally. Since pH is a continuous variable, 
the measured response must refer to the specific ‘test level’. 
This becomes problematic if pHe is not noted when data are 
collected or when pHe is poorly controlled, e.g. is drifting 
because of ongoing metabolism or if ambient CO2 levels are 
changed between incubators and bench side assays. There 
are multiple options for changing the pHe of media, and it 
is important to relate these to the physiological scenario. 
Normally, a fall in pHe arises from an increase in CO2 par-
tial pressure (so-called respiratory acidosis) or a decrease 
in [HCO3

−] due to a buildup of nonvolatile (i.e. non-CO2) 
acids or renal loss of HCO3

− ions (so-called metabolic aci-
dosis) [85]. Metabolic acidosis must be accompanied by an 
increase in the concentration of the anion that stoichiometri-
cally accompanies H+ ions (the so-called conjugate base), 
for example, lactate anions. This organic component may, 
on its own right, produce cellular responses; indeed, some 
metabolic responses appear to depend on whether they are 
evoked by lactic acidosis or acidification paired with a dif-
ferent anion [78]. Thus, the interpretation of acid responses 
becomes difficult if the study write-up did not explain how 
pHe was reduced. Substantial differences in the experimental 
process for changing pHe can make comparisons between 
studies difficult or even impossible, especially when appar-
ently contradictory findings are postulated [86, 87]. To avoid 
these issues, adherence to recently published guidelines is 
recommended [46].

A large number of studies have documented the actions 
of acidity on cancer cells. However, many of these reports 
have not consistently described the method by which pH had 
been manipulated or provided a justification for a particular 
choice of pHe [70, 71, 88–91]. This is problematic because 

different strategies for manipulating pH can produce distinct 
responses, even if the final pHe is matching. Table 1 presents 
a selection of pH-related studies alongside information on 
how pHe had been changed. The most common way of creat-
ing acidic conditions is to exchange NaHCO3-based media 
with formulations containing nonvolatile buffers, as HEPES 
and PIPES, followed by titration with strong acids or bases. 
This can be problematic because media titrated outside CO2 
incubators will inevitably acidify in an atmosphere of 5% 
CO2, thus compromising pH control. In a smaller subset of 
studies, pHe was adjusted by changing the concentration 
of NaHCO3, a strategy that we argue is most physiologi-
cal, predictable, and stable. In half of the primary literature 
reviewed herein, the technique used for adjusting pH was not 
reported with adequate detail. The lack of consistent report-
ing standards continues to be problematic for establishing a 
unifying model of how acidosis affects cancer cells.

Historically, tumours have been considered acidotic and 
hypoxic, but this does not imply that regions of low pO2 
also have low pHe. Indeed, recent evidence argues for dis-
tinct areas of acidosis or hypoxia, each associated with dis-
tinct cellular behaviours in situ [84]. At the cellular level, 
responses to hypoxia tend to be different to those evoked 
by acidosis, which is consistent with the unique molecular 
transducers of low pHe or low pO2 responses [104, 105]. 
Very few studies have offered insight on how responses to 
pHe are subservient to pO2 [97], and vice versa [94, 106]. 
This interaction is highly relevant to our understanding of 
cancer responses at the interface between two selection 
pressures, a niche that may favour the most invasive of 
phenotypes.

4 � Acid‑driven selection versus adaptation

While the pHe sensitivity of cancer cell biology is undis-
puted, a more controversial issue concerns the level of pHe 
that should be considered ‘typical’ for tumours. Unlike most 
normal tissues that maintain their interstitial pHe near 7.4 by 
means of good capillary perfusion, there is no single value 
of pHe that could be considered representative of tumours. 
MR imaging modalities, ranging from 3-aminopropylphos-
phonate spectra [107] to CEST [108] have reported tumour 
pHe to be as low as 6.3 [109], although the spatial resolution 
of these techniques may inadvertently smoothen steep gra-
dients of pHe and therefore mask small pockets of profound 
acidity. A compendium of pHe measurements using imaging 
and electrodes is provided in Table 2. This meta-analysis 
shows that most intratumoural pHe measurements have been 
in the range 6.4–7.4, with a median value of 6.8 [110–113]. 
Accordingly, experiments using cell lines under culture con-
ditions should avoid exceeding these limits. Despite aware-
ness of this concern, there has been a tendency for in vitro 
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studies to undershoot the pHe range in tumours (Fig. 4A). To 
understand what level of pHe is appropriate for a cancer cell 
line, it is first important to recognise the factors responsible 
for setting the level of acidosis in a tumour and the degree to 
which this could be manipulated therapeutically.

pHe is ultimately set by the rate of metabolic acid produc-
tion, working against the capacity to clear this with blood 
perfusion. These two processes are coupled together by the 
diffusion of H+ ions across the extracellular compartment. 
In well-perfused tissues – where cell capillary distances are 
typically no more than a few microns – diffusive coupling 
is excellent. In this scenario, perfusion is expected to keep 
pHe close to 7.4, even if the metabolic rate is very high 

(e.g. as is the case in the myocardium). The situation can 
be radically different in tumours that have abnormal vas-
cular penetration. Here, diffusion distances can expand to 
hundreds of microns, generating pHe gradients across the 
extracellular space. The molecular pathways responsible for 
these expanded diffusional distances relate to the extent of 
vascular penetration and are typically guided by hypoxia and 
evoked by factors such as vascular endothelial growth fac-
tor (VEGF) [122–127]. These processes become deranged 
in tumours, leading to inadequate and often fluctuating 
perfusion [128–130] and can be manipulated with drugs 
such as anti-VEGF therapies [131–134], which may exert 
at least a part of their action via a change in pHe. In such 

Table 2   Extracellular 
pH reported in tumours. 
Measurement methods are 
chemical exchange saturation 
transfer (CEST), magnetic 
resonance imaging (MRI), 
biosensor imaging of redundant 
deviation in shifts (BIRDS), 
paramagnetic chemical 
exchange saturation transfer 
(PARACEST), 13C-labelled 
zymonic acid (ZA), variable 
radio frequency proton-electron 
double-resonance imaging 
(VRF PEDRI), electron 
paramagnetic resonance (EPR), 
and pH microelectrode

Model Method pHe Reference

Breast cancer (MMTV-Erbb2 transgenic mice) CEST-MRI 6.30–6.90 [109]
Hepatoma (McA-RH7777) CEST-MRI  ~ 6.80 [109]
Glioblastoma BIRDS 6.90 ± 0.01 [110]
Bronchial tumours pH-microelectrode 6.46 ± 0.35 [111]
Nonmetastatic breast cancer (TUBO) CEST-MRI 6.84 ± 0.03 [114]
Triple negative breast cancer (4T1) CEST-MRI 6.79 ± 0.02 [114]
Metastatic breast cancer (TS/A) CEST-MRI 6.80 ± 0.03 [114]
Spontaneous lobular carcinoma (BALB-neuT) CEST-MRI 6.96 ± 0.03 [114]
Hepatic carcinoma CEST-MRI 6.66 ± 0.19 [115]
Hepatic hemangioma CEST-MRI 7.34 ± 0.09 [115]
Glioma (U87) CEST-MRI 7.00 ± 0.1 [116]
Glioma (U87) CEST-MRI 6.60 ± 0.1 [116]
Breast cancer (MCF-7) PARACEST-MRI  ~ 6.50 [117]
MATB III adenocarcinoma ZA-MRI 6.82–7.11 [118]
Breast cancer (C57Bl/6 Met-1) VRF PEDRI 6.80 ± 0.10 [119]
Pancreatic cancer (MIA-PaCa-2) EPR  ~ 7.05 [120]
Pancreatic cancer (SU.86.86) EPR  ~ 6.90 [120]
Pancreatic cancer (Hs766t) EPR  ~ 6.91 [120]
Prostate cancer (LNCap) CEST-MRI 6.78 ± 0.29 [121]
Prostate cancer (PC-3) CEST-MRI 7.23 ± 0.10 [121]

Fig. 4   Analysis of literature 
related to acidity and cancer. 
A Comparison between the 
extracellular pH reported within 
solid tumours (red) and pHe 
values selected for in vitro stud-
ies (blue). B Time under acidic 
conditions in studies using 
cultured cancer cell lines. The 
primary literature referred to 
these as long or short exposure, 
as indicated by empty and filled 
circles, respectively. References 
used in these analyses are listed 
in Tables 1 and 2
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diffusion-limited environments, pHe can be driven down-
wards by metabolism, particularly by glycolysis because 
lactic acid is a stronger acid of slower mobility compared to 
mitochondrially generated CO2. The balance between these 
fluxes can be altered by inhibitors. For example, blockers of 
oxidative phosphorylation force cells to rely more on gly-
colysis [135]. Conversely, inhibitors of glucose uptake can 
lessen glycolytic rate and hence lactic acid production [136], 
as would inhibitor of monocarboxylate transporters (MCT), 
the main route of lactic acid efflux from cells [137, 138]. 
The effective diffusion coefficients of these acidic products 
will depend on the equilibration state of CO2/HCO3

−, as 
this depends on the activity of exofacial carbonic anhydrases 
(CAs), such as CAIX or CAXII [139–145]. As described 
previously [146], the effect of CA activity on pHe depends 
on the nature of the disturbance. Net release of CO2 drives 
equilibrium towards hydration and thus CA activity would 
support further acidification [139]; in contrast, the release of 
H+ ions, such as in the form of lactic acid via monocarboxy-
late transporters (MCTs) would drive the reverse reaction, 
and CA catalysis would tend to raise pHe [146].

Metabolism will drive pHe to a lower level until it stabi-
lises at a steady state. This scenario is reached when meta-
bolic flux generated by cancer cells comes into balance with 
the diffusive flux across the poorly perfused tumour inter-
stitium. As pHe falls, the diffusive gradient becomes steeper, 
which drives a larger diffusion flux of H+ ions. Eventually, 
this diffusive flux will match metabolic output and result in 
a steady-state pHe. The steady-state pHe could be attained at 
a less acidic level if metabolic rate became curtailed at low 
pHe; indeed, this is the case for glycolysis which is inhibited 
under acidic conditions [147]. Since glycolysis essentially 
ceases below pHe 6, tumour pHe is unlikely to fall below 
this level, as there is no obvious alternative source of acid 
that would drive pHe any lower. To summarise, tumour pHe 
depends on the rate of perfusion, diffusion distance, meta-
bolic rate and its pH-dependence. It is important to consider 
these variables in the context of a particular tumour before 
designing experiments on cell lines that probe responses to 
acidosis.

Once an appropriate target pHe is determined for a par-
ticular investigation, the next step is to consider how to attain 
this acid–base balance experimentally. Various strategies for 
reducing pHe have been used in previous studies, ranging 
from an abrupt drop to the target pHe [98], to a more graded 
change over an extended period of time [82] (Fig. 4B). An 
alternative approach is to allow cancer metabolism itself to 
gradually acidify the milieu until the target pHe is attained 
[79, 102]. Although slow to reach its target, this method has 
the advantage that the source of acidity is endogenous and 
the final pHe is within the scope of the cell’s capacity to 
acidify its milieu. These three distinct pHe manoeuvres may 
produce radically different responses, even if the same end 

point pHe is reached because various degrees of acid selec-
tion and acid adaptation may take place. The interpretation 
of experimental outcomes must carefully consider the nature 
of the acid–base intervention.

A treatment will result in selection if it is survived by a 
subpopulation of cells only. This scenario would be favoured 
by large and abrupt pHe changes [148], such as those arising 
from a single medium change [98]. Although acid selection 
has been discussed at length in theoretical models of cancer 
[149–156], it is poorly characterised experimentally. Part of 
the reason is that the surviving cellular subpopulations may 
be very sparse and therefore inadequate for certain types 
of measurements. In contrast, adaptation will take place 
when the pHe change is slower because it gives cells time to 
respond. A dominance of acid adaptation over acid selection 
is most likely when metabolism is responsible for acidifica-
tion because negative feedback circuits acting on metabolic 
rate protect against unmanageably fast pHe changes. The 
interpretation of experimental results must carefully con-
sider the time line over which pHe was changed and include 
this information in the methodological write-up. Many of 
the experimental descriptions of acid responses may, in fact, 
relate to a combination of early-onset acid selection, fol-
lowed by acid adaptation in the surviving cells. Some insight 
into these processes can be obtained by running parallel 
experiments that differ in the rate of pHe change, relative 
to cell doubling time. This is a worthwhile exercise because 
the distinction between acid selection and acid adaptation 
has implications on the phenotypic landscape of a tumour, 
and hence susceptibility to therapies. In principle, it would 
be feasible to vary tumour pHe dynamically or even impose 
bespoke waveforms that alter the balance between selec-
tion and adaptation and influence the evolution of cancer 
populations.

5 � Exploiting acidosis in cancer therapies

It is conceivable that some of the pro-oncogenic conse-
quences of low pHe could be reversed by raising the pHe 
of solid tumours in vivo. This strategy is among the three 
predicted to have anticancer efficacy by evolution models 
(Fig. 2). The most thoroughly studied approach to increas-
ing the pH within the tumour microenvironment is the sys-
temic administration of bicarbonate. This so-called buffer 
therapy decreased metastasis formation [157], restored 
immune function [158], reduced tumour growth [159], and 
extended overall survival [160]. However, the issue with oral 
supplementation of bicarbonate in humans is the required 
dose, which is too high for comfortable administration thus 
severely limiting patient adherence [161]. To circumvent this 
compliance issue, a recent study replaced systemic adminis-
tration with local delivery [162]; this significantly enhanced 
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the efficacy of therapeutic transarterial chemoembolization, 
yielding 100% response in the combination-treated group. 
Some studies tested alternative buffering formulations, 
including Tris [163] and IEPA [164], but these are yet to be 
tested in a clinical setting. Another proposed way of rais-
ing pHe is the injection of urease, an enzyme that produces 
NH4

+ and HCO3
− from urea, and thereby increases buffering 

locally. This intervention reduced tumour load and elevated 
the efficiency of chemotherapeutics in a mouse model of 
breast cancer [165].

An attractive therapeutic strategy that exploits pH 
combines the effect of pH changes on cancer cells and on 
immune surveillance. This approach targets two methods 
predicted to curtail cancer growth (Fig.  2). The effects 
of acidosis on immune function have been summarised 
by Damagaci et al. [166]. Briefly, extracellular acidity is 
deemed an immunosuppressor as it is associated with T-cell 
anergy [167]. The function of tumour-specific CD8+ T lym-
phocytes is impaired under acidic conditions, which mani-
fests in decreased cytokine secretion and cytolytic activity 
[168]. Intriguingly, acidic niches in lymph nodes have a 
physiological role in suppressing resident T cells [169], and 
this mechanism is believed to be hijacked by solid tumours. 
Recent results confirmed the negative effects of acidosis on 
dendritic cells in terms of reduced migration, membrane, 
and cytoskeletal properties [170]. Similarly, high extracel-
lular lactate concentrations, as an inseparable component to 
lactic acidosis, reduce migration and cytotoxicity of CD4+ 
and CD8+ lymphocytes [171]. Moreover, both lactate and 
H+ ions limit the function of macrophages by suppress-
ing inflammasome formation [172] and promoting mac-
rophage polarization [173]. It was reported that prolonged 
lactic acidosis leads to monocyte differentiation into pro-
inflammatory macrophages of pro-tumour phenotype [174]. 
A detailed description of the interplay between lactate and 
immunity was recently reviewed by Caslin et al. [171].

6 � Evolution, fitness, and heterogeneity

The discussion thus far has been limited to a notional popu-
lation of ‘cancer’ and ‘normal’ cells forming a binary soci-
ety in a tissue. However, an inalienable feature of cancer is 
its ability to evolve and pass on favourable characteristics 
to daughter cells, without being subject to the checks and 
controls that constrain normal cells. This process resembles 
the evolution of species in ecosystems, and its applicabil-
ity to cancer was recognised by Peter Nowell in the 1970s 
[175]. The mathematical framework used to understand evo-
lution is called game theory because a cell (player) takes on 
a strategy (phenotype) tailored to the strategies of other cells 
(co-players), with the aim to increase occupancy in the host 

tissues (assets) [176]. Evolution can be quantified in terms 
of phenotypic change over time [177]. This process can be 
described mathematically as the product of two components:

•	 The slope of the fitness/phenotype curve. This describes 
how the cell’s ability to survive a particular scenario 
is altered by a change in its phenotype. Changes to a 
phenotype that do not affect cell fitness will not drive 
evolution. In contrast, fitness that is conferred only by a 
narrow range of phenotypes will drive rapid evolution 
(Fig. 5A).

•	 The degree of variation in phenotype within the popula-
tion of cells. Populations that show no heterogeneity will 
evolve slowly, whereas those with substantial diversity 
provide the substrate for evolution (Fig. 5B).

A faster pace of evolution is expected for populations that 
manifest broader phenotypic variation and for which even a 
small change in phenotype can meaningfully impact fitness 
to survive. Cancers that manifest these properties are more 
challenging to control therapeutically because a constant 
drug regime will eventually enrich the tumour in resistant 
cells. This situation is likely in tumours of high histological 
grading, wherein undifferentiated cells with stem-like prop-
erties have unlimited options to differentiate in response to 
selection pressures [178–181]. Despite the elegant simplic-
ity of the equation governing the rate of phenotypic change, 
concepts such as ‘fitness sensitivity’ or ‘phenotypic hetero-
geneity’ are difficult to articulate in biological terms and 
interrogate experimentally. In the specific context of acido-
sis, many questions remain about the relationship between 
pHe, phenotype, fitness, and heterogeneity.

Phenotype  The emphasis on phenotype, rather than geno-
type, in somatic evolution is justified because selection 
favours particular functional outcomes, rather than their 
genetic instruction [177]. In the context of cancer cells, 
phenotype could refer to ensemble measures such as the 
proliferative rate or more elementary features such as gly-
colytic rate. For most normal cells in the body, it would 
be appropriate to quantify these phenotypes at pHe 7.4, i.e. 
the interstitial pHe of most tissues. The situation becomes 
more complicated in tumours, where pHe can be displaced 
from 7.4 and meaningfully influence phenotype. This raises 
the question of whether pHe sensitivity should be included 
in the definition of cancer phenotypes. Although pHe is 
ultimately influenced by the tissue’s genetic blueprint for 
metabolic acid production, extracellular buffering and vol-
ume, and blood perfusion, it is not normally considered an 
inheritable property in the same way that enzyme activity 
would be. Notwithstanding these questions, it is inevitable 
that mathematical representations of cancer will become 
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more comprehensive and mechanistic and eventually include 
pHe sensitivity.

Fitness  The canonical approach to exploring the relation-
ship between cellular fitness and phenotype has been phar-
macological (e.g. inhibitors to block a specific process) or 
genetic (e.g. using overexpression or ablation to manipulate 
gene expression). In most studies, these investigations have 
been binary, e.g. comparing control with the inactivated 
state. While this approach has made way for some major 
discoveries, it actually contributes little to our understand-
ing of somatic evolution. This is because the phenotype is 
a continuous variable, and its effect on cellular fitness can 
be highly nonlinear. As a result, probing fitness at only two 
phenotypic states sheds little light on fitness over the whole 
range of possible phenotypes. For example, the relationship 
between fitness and phenotype may produce optimal sur-
vival at an intermediate phenotype that would go undetected 
with the canonical pharmacological or genetic approach 
(Fig. 5C). Thus, measurements of fitness in the context of 
evolution must take into account that phenotype is a continu-
ous variable and use appropriate methods to explore pheno-
typic responses with the necessary granularity. One method 
for smoothly grading phenotype exploits pHe sensitivity. 

Cancers may use pHe to fine-tune phenotype to a level that 
maximises the rate of evolution. pHe may also change the 
shape of the fitness-phenotype relationship by imposing con-
straints on cells. For example, low pHe inhibits glycolysis, 
which forces cells to rely more on oxidative phosphoryla-
tion. In such circumstances, cellular fitness becomes steeply 
dependent on mitochondrial metabolism, as compared to the 
alternative scenario at physiological pHe (Fig. 5D).

Heterogeneity  Phenotypic heterogeneity is possibly the 
least understood aspect of cancer cells. While it is tempting 
to use genotypic heterogeneity as a surrogate for phenotypic 
heterogeneity, the nontrivial coupling between genes and 
function largely invalidates this shortcut [182]. The con-
ventional experimental approach of measuring phenotype 
has been to report its mean and standard error. This report-
ing convention focuses on conveying the average state of 
the population but fails to describe variation. Single-cell 
technologies, which have revolutionised transcriptomics 
[183–186], must now be extended for phenotyping. In real-
ity, few phenotypes can be recorded at the necessary single-
cell resolution. Moreover, a compounding issue is how to 
deconvolute experimental noise from genuine biological 
variance [187, 188]. Certain methods that have had a role in 

Fig. 5   Understanding somatic evolution in terms of fitness and phe-
notypic heterogeneity. A Example of a fitness-phenotype relationship, 
showing a highly nonlinear behaviour. Optimal fitness is associated 
with an intermediate phenotype. The fastest rate of evolution is pre-
dicted around phenotypes that produce the steepest change in fitness. 
B Wider phenotypic variation is associated with higher rates of evolu-
tion. C Experiments that compare a control phenotype with a phar-
macologically or genetically inactivated phenotype may miss impor-

tant information about fitness. In this example, optimal fitness was 
attained at an intermediate phenotype and would not be detected with 
the canonical experimental approach. D The relationship between a 
phenotype and fitness can change in response to constraints placed by 
the environment. In this example, low pHe inhibits glycolysis, which 
forces the cell to rely more on oxidative phosphorylation (OXPHOS); 
this manifests as a steeper fitness-OXPHOS curve and therefore a 
higher rate of evolution
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physiology research are compatible with single-cell meas-
urements (e.g. cell fluorescence-based assays [189–191]) 
and an ambitious upscaling of these techniques can provide 
the information required to describe heterogeneity at the 
population level.

7 � Summary

The effects of acidity on cancer cells have often been 
described in terms of ill-defined cytotoxicity, akin to the 
actions of a ‘dirty’ yet potent drug. However, the role of 
acidity in tumours is much more nuanced than that of a 
cytotoxic drug. Firstly, acidity is an intrinsic feature of the 
tumour that is present throughout much of the process of 
carcinogenesis, albeit at varying degrees of intensity. Thus, 
acidity can exercise a persistent effect on cancer cells, which 
could be exploited therapeutically to produce a sustained 
shift in the tumour’s phenotypic landscape away from the 
most invasive type. This is in contrast to cytotoxic drugs that 
may exert a selection pressure during treatment episodes, 
but this effect cannot be sustained in the long term and may 
result in cancer recurrence, as predicted by mathematical 
models. Secondly, pH can influence the interaction between 
cancer cells and their host tissue, which has been highlighted 
by mathematical models as a viable treatment strategy. For 
example, low pHe targets host defences by suppressing 
immune surveillance. Releasing this inhibitory effect could 
empower the host tissue to eliminate cancer cells. Thirdly, 
pH is a fundamental property of the chemical microenvi-
ronment that is directly influenced by cells and feeds back 
on their survival prospects. Under acid stress, the selection 
of a fitter cancer subpopulation or adaptation towards a 
more compatible phenotype can endow cancer cells with 
a competitive advantage over host cells. Attenuating these 
pHe-driven processes could steer the cancer/host system 
away from the invasive trajectory. In this review, we have 
highlighted areas related to the acidosis that require further 
research attention, namely the heterogeneity of pH-related 
phenotypes, the aspects of fitness that are most sensitive 
to pH, and how best to achieve control over pHe in vivo. 
We have also explained the importance of adequate report-
ing standards and how to translate mathematical concepts 
borne from models into biological terms that could be tested 
experimentally.
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