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Introduction
The primary cause of chronic hepatitis, cirrhosis, and hepato-
cellular carcinoma (HCC) is the hepatitis C virus (HCV). 
Approximately 3% of the global population have a chronic 
HCV infection, and for 10 to 30 years, 30% of carriers are pre-
dicted to experience significant liver-related illnesses, such as 
HCC.1 The number of cases of acute hepatitis C that have 
been reported has increased by 129% since 2014.2

HCV is an enveloped +ssRNA hepacivirus of the 
Flaviviridae family with 7 known genotypes and unknown 
genotypes with several subtypes that mostly affect the liver. Its 
9.6 kb genome is flanked by 5′ and 3′ UTRs with a single ORF 
that encodes for a polyprotein with 3000 amino acids3 and is 
post-translationally processed by cellular and viral proteases to 
yield 11 viral proteins composed of 7 nonstructural proteins 
(NS) which are the 2 proteins necessary for the formation of 
the virion (p7 and NS2), as well as 5 proteins that make up the 
cytoplasmic viral replication complex (NS3, NS4A, NS4B, 
NS5A, and NS5B), and 3 structural proteins (1 nucleocapsid 
protein and 2 envelope proteins). Also encoded by the core 
region is an alternative open reading frame protein (ARFP) or 
F protein, whose function is still unknown4 even though some 

roles have been proposed including; regulation of Viral 
Translation, induction of apoptosis, interaction with host fac-
tors, and in viral morphogenesis.

NS5B is a 66 kDa heart-shaped catalytic component of the 
HCV replication complex, and owing to selectivity and non-
toxicity, it makes a good therapeutic target due to the lack of 
mammalian counterparts. Like other polymerases, it has the 
palm, thumb, and finger domains surrounding the enzyme 
active site in the palm domain.5 Many anti-HCV Direct 
Acting Antivirals (DAAs) that are either nucleotide inhibitors 
(NIs) or non-nucleotide inhibitors (NNIs) targeting NS5B are 
in development.6,7 At least 4 allosteric inhibitory sites have 
been reported (thumb site I or II, palm site I or II)8 with their 
mechanisms of action detailed elsewhere.5,9-13 However, these 
allosteric inhibitors have several drawbacks including low 
potency in enzymatic assays,14 lack of cellular potency during 
an HCV sub-genomic replicon assay,15 high lipophilic charac-
ter, and low genetic barrier to resistance.15 It is possible for dis-
tinct forms of HCV with various amino acid changes that 
confer treatment resistance to coexist inside the same host in 
the context of quasispecies. While some alterations are not 
linked to drug resistance, others can result in a phenotypic 
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decrease in susceptibility to 1 or more antiviral drugs.16 docu-
mented several substitutions with no discernible antiviral 
resistance to Dasabuvir and Sofosbuvir. Multi-drug-resistant 
RAASs variants of NS3/4A in GP1 and GP5 along with 
DAA-specific NS3/4A, NS5A, and NS5B were identified 
pan-genotypically.17 Resistance to daclatasvir and sofosbuvir 
was conferred by L2003M and S2702T of NS5B, respectively. 
D1194A NS3/4A was triple DAA (simeprevir, faldaprevir, and 
asunaprevir) resistant. Double-drug resistant variants included 
R1181K (faldaprevir and asunaprevir), A1182V and Q1106K/R 
(faldaprevir and simeprevir), T1080S (faldaprevir and tel-
aprevir), while single drug-resistant variants were V1062L (tel-
aprevir), D1194E/T (simeprevir), D1194G (asunaprevir), 
S1148A/G (simeprevir), and Q1106L (Boceprevir) of NS3/4A 
were determined.17 Many NS5B RAASs in genotypes 1, 3, 4, 
and 5 have been reported.17 Other mutations in NS5B that 
were related to DAAs resistance include E237G, S282R, 
L320F, V321A, and V321I.18 S282T induces high sofosbuvir-
resistance, Q309R is a ribavirin-associated resistance, E237G 
was identified in the successfully amplified non-responder 
sample.19

With a multiverse of biochemical compounds (cannabi-
noids and non-cannabinoids (Phenolics, Terpenes, and 
Alkaloids)), cannabis spp. has been reported by several com-
munities to have medicinal activities against several disease-
causing pathogens20 including HCV. HCV Population had 
lower rates of diabetes and obesity when they consumed can-
nabis, however, whether this translates into lower mortality 
should be investigated.21 It has been observed to address key 
challenges like nausea, and depression in HCV Patients. Some 
individuals receiving therapy for HCV may benefit virologi-
cally and symptomatically from modest cannabis use by help-
ing them stick to the difficult medication regimen.22,23 Faster 
decay of HIV RNA among cannabis users who were HCV co-
infected and reduced risk of steatosis was observed.24,25 The 
advantages of using cannabis for treating HCV from a biologi-
cal and clinical standpoint, as well as the efficacy of this treat-
ment, should be investigated in bigger study populations. Since 
there is no known vaccine or treatment for this virus, there is an 
urgent need for effective ways to manage and eventually eradi-
cate this illness. This work aimed to investigate, using in-silico 
methodologies, if cannabis chemicals could block NS5B from 
HCV. Artificial intelligence (AI) was combined with tradi-
tional docking, binding energy, and simulation studies to vali-
date AI results, quantify protein-ligand binding, and forecast 
the stability of the complexes. This combination significantly 
decreases the time and increases the accuracy needed for drug 
development.

Molecular dynamics (MD) simulations have become an 
invaluable tool in the fields of biology and drug develop-
ment. These computational techniques allow researchers to 
study molecular systems at an atomic level over time, provid-
ing insights that are otherwise difficult to obtain through 

experimental approaches alone. By simulating the behavior 
of biomolecules, MD offers several key advantages in under-
standing biological processes and accelerating the drug dis-
covery pipeline.26-28 Molecular dynamics (MD) simulations 
offer critical advantages in biology and drug development. 
They provide atomistic insights into the behavior of biomol-
ecules, allowing researchers to observe dynamic processes 
like protein folding and conformational changes, which are 
difficult to capture experimentally.29 In drug discovery, it 
helps predict ligand binding affinities, guiding the identifi-
cation of potential drug candidates by simulating interac-
tions between drugs and target proteins.30 Additionally, MD 
is valuable for studying protein stability and misfolding, 
shedding light on diseases like Alzheimer’s.

MD simulations also allow for the investigation of complex 
biological processes, such as enzyme catalysis, and help 
researchers explore how proteins function under different con-
ditions, like varying solvent environments. This flexibility 
enhances understanding of biological mechanisms and sup-
ports the design of drugs that better target disease processes. 
Furthermore, MD is cost-effective and accelerates research by 
reducing the need for exhaustive lab experiments. These bene-
fits make MD simulations indispensable for advancing biologi-
cal research and drug development.27

Materials and Methods
Structures

The protein structure was downloaded from pdb (PDB ID: 
3FQL) while cannabis small molecules were downloaded from 
the Cannabis Compound Database (CBD).

Geometric deep learning virtual screening

PDBbind database31 Protein-ligand complexes were used as 
inputs to train the model. Complexes that were also part of 
CASF-201632 and those that failed pre-processing likely due 
to errors such as incomplete structure data, missing ligand 
coordinates, or errors in molecular surface generation, were 
excluded. The remaining complexes were randomly divided 
into training (14 000) and test (2367) sets. The detailed repre-
sentation of ligand molecules is as in Méndez-Lucio et  al.33 
and the protein targets were processed using a pipeline 
described by Gainza et al.34 Two separate residual graph convo-
lutional neural networks with the same architecture, 1 for the 
ligand and the other for the target, were used to extract features 
to build the model, the extracted features were concatenated 
and used to build a mixed-density network (MND).

Initially, a linear layer is used to project the node and edge 
features to a 128-dimensional embedding. Each node and edge 
was updated using a series of 3 GNNs depending on the nodes 
that were next to them and the kinds of edges that connected 
them. The GNN initially updates each edge in the graph by 
using a multi-layer perceptron (MLP) on the concatenation of 
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the edge features and the features of the 2 connecting nodes 
and the updated edge features are used to update the node fea-
ture.33 The modified edge and node features can be utilized as 
input for a subsequent convolution round because they contain 
information about not only the core atom but also its surround-
ing neighbors. Three convolutions were used. The node and 
edge features were then processed by the remaining GNN 
blocks.33

After being pairwise concatenated, the node features recov-
ered by the GNNs and residual GNNs for the ligand and tar-
get are fed into an MND.35 Concatenated target and ligand 
node information are combined to construct a hidden repre-
sentation by the MND using an MLP. The MND’s outputs are 
computed using the hidden representation. Furthermore, by 
connecting neighboring nodes, the retrieved ligand node prop-
erties were utilized to forecast the type of bond and atom, aid-
ing in the learning of molecular structures and speeding up the 
training. Every MLP that is utilized consists of a linear layer, 
and an ELU activation function. The Exponential Linear Unit 
(ELU) was chosen over ReLU due to its benefits in stabilizing 
training by allowing for smoother gradients, especially in com-
plex networks like GNNs. ELU’s ability to output negative val-
ues helps combat the vanishing gradient problem, which can be 
crucial in deep architectures. Experimenting with the RELU 
Section has been added to future work. A dropout rate of 0.1 
was employed33 appropriate to prevent over-regularization 
while maintaining model generalization. The dropout rate of 
0.1 was determined based on previous studies and experimen-
tation with similar deep-learning models. Given the complex-
ity of GNNs and the molecular nature of the data, a smaller 
dropout rate was appropriate to prevent over-regularization 
while maintaining model generalization. Experimentation 
confirmed that 0.1 provided the right balance between reduc-
ing overfitting and maintaining predictive accuracy.

Training

The Adam optimizer was utilized to update the model 
weights at a learning rate of 0.002. The loss function was 
minimized during model training. 16 protein-ligand com-
plexes were used as the batch size for 150 epochs of training 
the model. The learning rate (0.002), batch size (16), and 
number of epochs (150) were primarily based on best prac-
tices from the literature on geometric deep learning models, 
including those for graph neural networks (GNNs). These 
values have demonstrated stable convergence with similar 
contexts, and they balance training time and performance 
and were refined based on preliminary runs and validation 
accuracy. A potential specific to a given target-ligand com-
plex was defined using the loss function. This potential was 
then used to score the target-ligand complex’s 3-dimensional 
structure by summing over all possible pairs, calculating the 
negative log-likelihood for each target-ligand node pair, and 

calculating the distances separating each target node from 
each ligand node in that particular conformation. This nega-
tive log-likelihood minimizes deviations between predicted 
and true binding conformations, making it ideal for the drug 
design domain where precision in ligand positioning is cru-
cial. The likelihood of finding the target-ligand combination 
in that particular conformation increases with a decreasing 
value.32,33

Benchmarking

The CASF-2016 benchmark,32 which includes 285 carefully 
chosen protein-ligand complexes, was used to evaluate this. 
The preprocessing of the structures from this benchmark was 
identical to that of the training set. The power of screening and 
scoring was assessed.33

Prediction of binding conformations

The relative location of the ligand in Euclidean space, the 
dihedral angles of all rotatable bonds in the molecule, and the 
Euler angles were used to represent the ligand conformation as 
a vector. Differential evolution36 was used to determine which 
ligand conformation would interact with the target binding site 
most likely following the model, that is, minimize the potential 
learned by the model for that particular complex. Using a pop-
ulation size of 150, the global optimization was performed up 
to 500 iterations with a recombination constant of 0.8 and a 
mutation constant randomly modified from 0.5 to 1.0 in every 
generation. Euler angles and the dihedrals of rotatable bonds 
were limited to values between −π and π without seeding.33 
The detailed geometric learning protocol can be accessed in 
the original publication.33 The deep neural network learns the 
parameters of a mixture model that is employed as a probability 
density function. This probability density function is used to 
determine the most likely distance separating a ligand atom 
from a specific point in the molecular surface of the binding 
site. The potential is determined as the combination of the 
negative log-likelihood of all pairwise combinations of ligand 
atoms and points in the molecular surface. The optimal confor-
mation is the one that minimizes the potential, that is, the 
ligand conformation in which every atom is separated from the 
target surface by the most likely distance.

Conventional Docking
Structure preparation

The protein structure was cleaned and preprocessed by assign-
ing bond orders using the CCd database, adding Hydrogens, 
creating zero bond orders, and creating disulfide bonds as well 
as generation of het states using Epik37 (PH 7 ± 2 units), water, 
and ligands were removed and H-bond assignment was done 
using PROPKA in Maestro 12.8 in the protein preparation 
wizard. The ligands were prepared by Ligprep.38 Briefly, the 
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ligands were imported into the maestro workspace, and only 
those with a maximum of 300 atoms were subjected to OPLS4 
Force force field,39 and ionization was done using Epik37 to 
generate possible states at PH = 7±2 units.

Glide docking

The prepared structures were subjected to XP Glide40 with 
only ligands of atoms and rotatable bonds equal to or below 
300 and 100 respectively were selected with a Vander Waals 
scaling factor of 0.8 and a partial charge cutoff of 0.15. The 
receptor was rigid with flexible ligand sampling and to sample 
nitrogen inversions and ring conformations. Bias sampling tor-
sion was set for all predefined functional groups and Epik state 
penalties were added to docking scores. Post-docking minimi-
zation was performed with 10 poses per ligand with a threshold 
of rejecting minimized pose set to 0.5 kcal/mol.

Binding aff inity determination

SeeSAR 12.1.041 was used to perform binding affinity calcula-
tions. A binding site was defined by the co-crystallized ligand 
in the receptor PDB file and copied to the docking mode after 
the generated protein and docking library were loaded into the 
Biosolveit workspace.41 Docking calculations were done for 
each compound in a standard docking mode with defaulted 
settings and parameters. The affinity of the generated poses 
was then assessed and the best poses were selected based on 
these affinities.

Binding energy is calculated from the HYDE score func-
tion (equation (1)), which relies on intrinsically balanced terms 
of atom-specific desolvation, hydration, and hydrogen bonds 
based on the logP atomic increment system,42 while also taking 
into account the Torsion angle values to the binding conforma-
tion of the protein-ligand. The quotient of G and the number 
of non-hydrogen atoms in the molecule is used to define a 
ligand’s binding affinity (equation (2))43 and expressed as.

	 � �
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where ΔG = −RT ln Ki and N = number of non-hydrogen atoms.
The selection of the best poses was based on their visual 

HYDE scores while also considering a statistics-based tor-
sional analysis.

ADMET screening

All compounds were subjected to SeeSAR,41 AdmetLab2.0,44 
and QikProp.29,45 The protocol used for SeeSar is as in the 
Binding Energy determination above. The concatenated sdf file 
was uploaded to the AdmetLab2.0 website (https://admetmesh.

scbdd.com/) in the ADMET screening mode. It employs a 
Multi-task Graph Attention (MGA) framework made up of 
input, Relation graph convolution network (RGCN) layers, 
attention layer, and fully connected (FC) layers.

Molecular simulation dynamics

All simulations were done in GROMACS 2021.4.46 The pro-
tein topology was generated using AMBER99SB47 force field 
from pdb2gmx module while ligands were parametrized by 
using Generalized Amber Force Field (GAFF2)48 at ante-
chamber website. The complexes were placed in the hexahedral 
box using gmx editconf, solvation was done using gmx solvate, 
TIP3P water molecules were added to the systems, and Na+ 
and Cl− ions were added using genion to a concentration of 
0.15 m. Equilibration was done with steps set to 20 000 in 10 ns 
at 298 K and 1 atm with position restraints Force Constant set 
to 700 kJ/mol. This allowed water molecules and ions to move 
freely. Production MD simulations lasted for 100 ns and they 
were monitored by checking system energies during the simu-
lations. Pymol, vmd, and Gromacs binaries46 were used for the 
analysis of the results.

MM/G(P)BSA calculations

Three energetic terms are taken into account in the computa-
tion of binding energy when determining the free energy of 
complex formation in conjunction with MD simulations: (1) 
variations in the system’s potential energy in a vacuum; (2) 
polar and apolar solvation of the various species; and (3) the 
entropy related to complex development during the gaseous 
phase.

The Uni-GBSA-based tool unigbsa-traj was utilized to do 
MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface 
Area) calculations automatically for every simulated system.45,49 
The formula for estimation of free energy is explained in detail in 
Charles et al,45 Wang et al,50 and Gilson and Honig.51

Free energy perturbation (FEP) calculations

The CHARMM-GUI Free Energy Calculator and NAnoscale 
Molecular Dynamics (NAMD) were used to calculate abso-
lute free energy.29,52,53 The simulated ligands (docked pos-
tures) were uploaded as a single concatenated SDF file, and 
CHARMM General Force Field (CGenFF v1.x)54 was used 
for ligand parametrization and topology construction to build 
the NAMD inputs and post-processing scripts. Counter ions 
(KCl) were used to neutralize all of the systems that were col-
lected to produce input files and post-process scripts. Applying 
restraining potentials to limit the ligand’s location in a recep-
tor during FEP/MD allowed for the calculation of binding 
free energy using the double decoupling approach. With the 
resulting inputs, the TIP3P water model and Langevin piston 
pressure were applied to the system’s NPT ensemble at 300 K 

https://admetmesh.scbdd.com/
https://admetmesh.scbdd.com/
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and 1 atm. The FE values were captured in history files 
obtained via FEP lambda replica exchange MD (λ-REMD) 
using simple overlap sampling (SOS). By measuring the FE 
values throughout the last 6 ns, the final FE values from 10 ns 
FEP/λ-REMD simulations were computed.29 The sequence 
of the used methods is shown in Figure 1.

Results and Discussion
Geometric deep learning virtual screening

The results show that all optimal binding conformations had 
negative values (Figure 2 and Table 1) and only the best 100 
molecules were considered for further studies based on their 
potential scores, with malic acid having the best score of 
−286.78, however, the complexes of those ligands with many 
rotatable bonds (⩽10) could not achieve successful optimiza-
tions and terminated after 500 iterations (Figure 2), this is 

because an increase in rotatable bonds is associated with the 
inefficiency of the optimization algorithms when working with 
a large number of degrees of freedom. These ligands justified 
the need for conventional docking methods integration, all 
compounds having rotatable bonds above 10 underwent the 
same re-docking process55 and average potential scores were 
reported in Table 1.

Conventional docking and binding aff inity 
determination

The results of docking and binding affinity determination are 
shown in Table 1 and they agree with the results of geometric 
learning, validating the compounds under investigation. Phytyl 
diphosphate had the best score of −12.275 kcal/mol, but iso-
citric acid had the best ligand efficiency of −3.100. The com-
pounds had acceptable values of Binding affinities41 with 
Isovitexin having the highest value of 619 407 to 61 541 783 nM 
(Table 1).

ADMET screening

The results for some important selected properties are pre-
sented in Table 1, and the summary of all properties is shown 
in Figure 3 and Supplemental File 2, because the presence of 
PAINS alert is not enough to justify the elimination of a hit 
candidate,45 Compounds with pain alerts were only elimi-
nated if at least other 4 ADMET properties were out of range 
(except the number of bonds, which was not considered as an 
ADMET property). The Synthetic Accessibility Score (SA 
Score) quantifies how simple it is to synthesize drug-like com-
pounds. A score of less than 6 indicates that the compound is 
simple to synthesize.29,44 An estimate of the hazardous dosage 
threshold of substances in humans can be obtained from the 
maximum recommended daily dose (FDAMDD). The likeli-
hood of being toxic is the output value, and it ranges from 0 to 
0.3 for excellent (less likely to be harmful); 0.3 to 0.7 for 
medium; and 0.7 to 1.0 for poor (more likely to be toxic).44 
The mutagenicity test is the Ames test. The most used test for 
determining a compound’s mutagenicity is the mutagenic 
effect, which closely correlates with carcinogenicity. The num-
bers indicate the probability of being harmful; 0 to .3 indicates 
excellent (less likely to be mutagenic), .3 to .7 indicates 
medium, and .7 to 1.0 indicates poor (more likely muta-
genic).44 A fathead minnow LC50FM is defined as the con-
centration of the test chemical in water which results in 50% 
of the minnows dying after 96 hours. For LC50FM, the unit is 
−log10[(mg/L)/(1000 × MW)].44 One reliable sign of DNA 
damage and other cellular stressors is the activation of p53. 
The output values of SR-p53 are the probabilities of being 
active, with 0 to 0.3 representing excellent (likely inactive), 0.3 
to 0.7 representing medium, and 0.7 to 1.0 representing poor 
(most likely active).44 The rest of the computed ADMET 
properties are presented in Supplementary File 241,44 and their 
tSNE distribution is in Figure S1.

Figure 1.  The sequence of the steps followed in this study.

Figure 2.  The results of geometric deep learning showing the distribution 

of some key parameters. Fun: statistical potential, nit: number of 

iterations, rmsd: root mean square deviation.



6	 Biomedical Engineering and Computational Biology ﻿
Ta

b
le

 1
. 

T
he

 s
um

m
ar

y 
of

 th
e 

re
su

lts
 o

f v
ir

tu
al

 s
cr

ee
ni

ng
, m

ol
ec

ul
ar

 d
oc

ki
ng

, a
nd

 A
D

M
E

T
 s

tu
di

es
. F

un
: A

 p
ot

en
tia

l s
pe

ci
fic

 to
 a

 g
iv

en
 ta

rg
et

-li
ga

nd
 c

om
pl

ex
, S

A
 S

co
re

: 
S

yn
th

et
ic

 A
cc

es
si

bi
lit

y 
S

co
re

, L
C

50
F

M
: 9

6-
h 

fa
th

ea
d 

m
in

no
w

 L
C

50
, F

D
A

M
D

D
: m

ax
im

um
 r

ec
om

m
en

de
d 

da
ily

 d
os

e,
 A

m
es

: M
ut

ag
en

ic
ity

 te
st

, S
R

-p
53

: P
ro

ba
bi

lit
y 

of
 b

ei
ng

 p
53

 
ac

tiv
es

.

G
eneric







 name





F
un


D

ocking






 

score






 

(kcal



/

mol


)

G
lide




 ligand






 

efficienc









y

 ln


G
lide




 
X

P
 

H
bond






Q
ik

P
rop




 
stars





B

inding





 affinit






y

 
range







 (
m

M
)

S
A

 
score







LC
50

F
M

F
D

A
M

D
D

A
mes




S
R

-p
53

P
hy

ty
l d

ip
ho

sp
ha

te
r

−1
97

.8
7

−1
2.

03
8

−
2.

81
1

−
2.

0
0

0
3

0.
19

8
-1

9.
69

9
4.

85
1

5.
10

2
0.

9
05

0.
0

0
4

0.
0

0
4

A
pi

ge
ni

n-
7-

o
-p

-
co

um
ar

yl
gl

uc
os

id
e*

**
−

25
6.

98
−1

2.
03

8
−

2.
54

1
−

4.
42

7
5

1.
2E

6
-1

.2
E

9
4.

08
1

5.
81

8
0.

12
2

0.
6

86
0.

9
69

Is
oc

itr
ic

 a
ci

d
−

20
4.

56
−1

1.
05

0
−

3.
10

0
−

2.
48

0
3

1E
3

-1
E

5
3.

35
6

3.
26

1
0.

0
0

6
0.

02
1

0.
0

0
4

LP
A

 (1
8:

0/
0:

0)
*r

−1
87

.4
5

−1
1.

05
0

−
2.

53
0

−
2.

3
84

3
13

9
-1

3 
83

5
3.

46
3

3.
18

0.
76

5
0.

01
5

0.
0

0
9

G
lu

ca
ri

c 
ac

id
−

26
3.

76
8

−1
0.

66
7

−
2.

93
1

−
2.

66
4

2
57

-5
62

8
4.

0
92

2.
55

6
0.

0
0

4
0.

02
0.

0
0

4

LP
A

 (1
8:

1(
11

Z
)/

0:
0)

*r
−

24
2.

98
−1

0.
62

1
−

2.
43

2
−

2.
10

2
3

70
 9

86
-7

 0
52

 8
8

4
3.

6
6

4
2.

8
05

0.
88

7
0.

02
4

0.
0

0
8

LP
A

 (1
8:

2(
9Z

,1
2Z

)/
0:

0)
*r

−
21

4.
19

−1
0.

21
0

−
2.

33
8

−1
.3

10
3

0.
76

8
-7

6
3.

8
46

3.
58

0.
94

7
0.

0
0

4
0.

01

S
at

iv
ic

 a
ci

dr
−1

94
.5

0
−1

0.
0

62
−

2.
40

8
−1

.7
77

3
19

-1
93

3
3.

52
4

3.
0

41
0.

01
9

0.
02

8
0.

01
7

LP
A

 (1
8:

1(
9Z

)/
0:

0)
r

−
21

6.
31

−
9.

97
8

−
2.

28
5

−
2.

56
8

3
1.

51
5

-1
50

3.
6

6
4

3.
25

7
0.

88
9

0.
0

0
6

0.
0

0
9

C
yn

ar
os

id
e*

*p
−1

9
6.

45
−

9.
93

5
−

2.
22

5
−

3.
69

5
2

29
-2

86
8

3.
92

4
4.

8
4

5
0.

03
1

0.
75

7
0.

83
5

C
an

na
bi

si
n 

A
p

−
22

2.
58

−
9.

87
3

−
2.

0
6

4
−

2.
55

8
5

3
4 

04
1-

3 
3

82
 1

3
4

2.
81

7
4.

11
6

0.
49

3
0.

49
4

0.
8

0
9

Q
ue

rc
et

in
-o

-g
lu

co
si

de
**

p
−

27
7.

72
−

9.
62

1
−

2.
14

0
−

5.
51

1
4

61
79

-6
13

 9
39

4.
0

0
8

4.
78

5
0.

02
0.

8
0

9
0.

78
1

G
lu

co
ni

c 
ac

id
−

26
8.

92
−

9.
60

2
−

2.
69

4
−

3.
60

0
2

33
93

-3
37

 0
72

4.
0

6
−

0.
39

2
0.

0
02

0.
05

3
0.

0
03

C
an

na
bi

tr
io

l
−

26
4.

72
−

8.
9

08
−

2.
11

2
−1

.1
84

0
27

28
-2

 7
10

 0
0

0
3.

79
9

5.
26

8
0.

82
0.

11
3

0.
56

8

M
al

ic
 a

ci
d

−
28

6.
78

−
8.

80
8

−
2.

75
5

−1
.6

28
4

59
6

-5
9 

22
8

2.
89

3
2.

57
9

0.
01

1
0.

02
0.

0
0

4

Q
ui

ni
c 

ac
id

−
22

2.
48

−
8.

73
6

−
2.

45
0

−
3.

3
0

0
2

15
 3

9
6

-1
 5

29
 7

05
3.

59
8

0.
8

07
0.

01
6

0.
03

1
0.

0
03

ca
nn

ab
is

in
 d

r
−

22
2.

08
−

8.
72

2
−1

.8
0

6
−

2.
75

4
4

73
98

-7
35

 0
0

4
3.

41
2

5.
41

8
0.

94
6

0.
79

1
0.

81
1

O
ri

en
tin

p
−

25
6.

86
−

8.
62

7
−1

.9
32

−
4.

61
3

5
94

7-
94

 0
4

5
4.

07
2

5.
01

4
0.

01
2

0.
82

2
0.

71
4

Is
oc

an
nfl

av
in

 B
−

20
4.

54
−

8.
54

0
−1

.9
88

−1
.5

67
0

31
03

-3
08

 2
92

2.
72

4
5.

88
4

0.
3

03
0.

52
1

0.
89

3

A
pi

ge
ni

n-
7-

o
-g

lu
co

si
de

**
−

25
6.

76
−

8.
52

2
−1

.9
22

−1
.7

9
0

1
83

 7
08

-8
 3

16
 9

33
3.

8
0

4
4.

8
0

4
0.

01
9

0.
69

3
0.

87
1

N
-t

ra
ns

-C
af

fe
oy

lty
ra

m
in

ep
−

26
6.

49
−

8.
49

9
−

2.
07

7
−1

.9
12

0
8.

24
0

-8
19

2.
0

61
4.

61
1

0.
6

4
0.

3
86

0.
82

3
-[

2-
(3

-I
so

pr
en

yl
-4

-h
yd

ro
xy

-
5

-m
et

ho
xy

-p
he

ny
l)

et
hy

l]-
5

-m
et

ho
xy

ph
en

ol

−
20

9.
68

−
8.

45
6

−
2.

0
04

−1
.2

9
6

1
26

9
-2

6 
72

2
2.

4
54

5.
3

0.
82

7
0.

01
7

0.
8

4
5

(C
on

tin
ue

d
)



Charles and Edgar	 7

G
eneric







 name





F
un


D

ocking






 

score






 

(kcal



/

mol


)

G
lide




 ligand






 

efficienc









y

 ln


G
lide




 
X

P
 

H
bond






Q
ik

P
rop




 
stars





B

inding





 affinit






y

 
range







 (
m

M
)

S
A

 
score







LC
50

F
M

F
D

A
M

D
D

A
mes




S
R

-p
53

C
an

na
bi

st
ilb

en
e 

I
−1

9
6.

04
−

8.
37

8
−

2.
02

6
−

0.
13

6
0

5.
13

5
-5

10
2.

3
61

5.
54

5
0.

91
7

0.
02

3
0.

46
5

Q
ue

rc
et

in
p

−
20

1.
67

−
8.

3
60

−
2.

04
3

−
2.

40
0

0
9.

59
3

-9
53

2.
54

5
5.

22
2

0.
31

0.
65

7
0.

88
8

C
an

na
bi

di
ol

ic
 a

ci
d

−
22

8.
47

−
8.

28
2

−1
.9

45
−1

.1
80

0
18

5
-1

8 
3

68
3.

62
6

5.
69

9
0.

78
7

0.
02

3
0.

51
3

A
ra

ch
id

ic
 a

ci
dr

−1
48

.8
7

−
8.

23
7

−
2.

01
3

−1
.1

58
5

10
.4

-1
03

7
1.

6
65

4.
74

3
0.

01
4

0.
0

05
0.

03
4

E
to

fe
no

pr
ox

−1
76

.9
3

−
8.

22
0

−1
.8

97
0.

0
0

0
2

0.
4

40
-4

4
2.

02
5

6.
48

5
0.

78
2

0.
18

6
0.

0
05

D
el

ta
-9

-t
et

ra
hy

dr
o 

ca
nn

ab
in

ol
ic

 a
ci

d 
A

−
27

9.
84

−
8.

20
2

−1
.9

26
−1

.3
8

0
1

10
28

-1
02

 1
45

3.
61

7
5.

55
0.

6
89

0.
01

2
0.

41
3

R
es

m
et

hr
in

*
−

23
2.

3
4

−
8.

05
3

−1
.9

09
0.

0
0

0
1

11
-1

13
3

3.
31

7
7.

82
6

0.
63

1
0.

02
2

0.
0

02

A
st

ra
ga

lin
**

−
22

2.
78

−
8.

01
6

−1
.7

95
−

2.
56

4
2

32
25

-3
20

 3
74

3.
88

4
4.

73
2

0.
01

1
0.

77
5

0.
85

3

Is
ov

ite
xi

n
−1

97
.2

3
−

8.
0

02
−1

.8
05

−
2.

4
46

3
61

9 
40

7-
61

 5
41

 7
83

4.
08

1
5.

81
8

0.
12

2
0.

6
86

0.
9

69

S
of

os
bu

vi
rr

−
20

1.
60

−
6.

88
7

−1
.5

03
−

0.
49

4
0

6
4

-6
3

68
4.

37
5

4.
03

6
0.

9
0.

37
1

0.
02

*T
hi

s 
co

m
po

un
d 

ha
s 

an
 e

st
er

 a
nd

 m
ay

 u
nd

er
go

 h
yd

ro
ly

si
s 

at
 h

ig
h 

or
 lo

w
 p

H
.

**
T

hi
s 

co
m

po
un

d 
co

nt
ai

ns
 a

n 
ac

et
al

/a
m

in
al

-li
ke

 g
ro

up
 (

X
-C

H
(R

)-
Y

 w
he

re
 X

, Y
 a

re
 N

, S
, o

r 
O

) 
th

at
 m

ay
 b

e 
ac

id
/b

as
e 

la
bi

le
, r

el
ea

si
ng

 a
n 

al
de

hy
de

.
**

*B
ot

h 
es

te
r 

an
d 

ac
et

al
/a

m
in

al
-li

ke
 g

ro
up

s.
r R

ot
at

ab
le

 b
on

ds
 a

bo
ve

 1
0.

p P
A

IN
S

 a
le

rt
 (

1)
.

Ta
b

le
 1

. (
C

on
tin

ue
d)



8	 Biomedical Engineering and Computational Biology ﻿

Molecular dynamics simulation studies

The potential of 6 protein-ligand complexes as NS5B inhibi-
tors was demonstrated by the formation of stable complexes by 
each of the simulated complexes. The analysis of Root Mean 
Square Deviation (RMSD) evaluates the long-term structural 
stability of biomolecular simulations. It estimates the typical 
difference between an atom’s location in a molecular structure 
and its reference structure.29,56 The RMSDs of each system 
show that during the experiment, every simulated complex 
reached stability (Figure 4A and S2A). Comparatively, the glu-
caric acid complex was more stable than the other compounds. 
The observed RMSD differences between the complexes and 
their corresponding proteins exhibit a variation that is driven 
by the ligand. When utilizing 1D RMSD, it is easy to believe 
that 2 structures that have the same RMSD from a reference 
frame are similar, but in practice, they can differ significantly. 
Alternatively, significantly more information can be obtained 
by computing the RMSD of each frame in the trajectory to all 
other frames in the other trajectory to give 2D RMSD.45 
Pairwise RMSDs of each trajectory were calculated to itself 
and the results are shown in Figure S5, the diagonal represents 
0 (RMSD of a structure to its self ), and all the structures had 
RMSDs ⩽ 1.8 Å, over simulation showing that the complexes 
were stable over simulation and had nearly same states but not 
identical except Phytyl diphosphate complex had more re-vis-
ited states than other complexes (Figure S5). These results 
agree with 1D RMSD results and show that the glucaric acid 
complex was more stable evidenced by lower RMSD values.

Root Mean Square Fluctuation (RMSF) analysis is another 
way to understand the flexibility and dynamic behavior of indi-
vidual atoms or residues within a biomolecular system as well 
as their contribution to the flexibility of the whole mole-
cule.26,30,57 The main interacting residues have minimum 
RMSF values during simulation time compared to the ligand-
free protein, supporting their stability and interactions with the 

simulated compounds, while the RMSF of non-interacting 
residues shows somewhat greater oscillations (Figure 4C). The 
distribution of the rmsf further supports the stability of all 
complexes (Figure S4D).

The Radius of Gyration (Rg) is a measure of the compact-
ness or spread of a biomolecular structure in 3-dimensional 
space is valuable for analyzing the overall shape and structural 
fluctuations of biomolecules.30,45 A relatively constant Rg value 
fundamentally signifies a stably folded structure and a reduc-
tion in Rg signifies an increase in stability.29,30,45 All of the 
simulated systems had Rg values between 23.7 and 24.2 Å, 
indicating their stability. The simulation revealed a fairly pro-
gressive reduction in the gyration radius over time, indicating a 
gradual increase in the compactness and stability of all systems 
(Figure 4D). The distribution of Rg also shows that the 
Glucaric acid complex is more stable relative to other com-
plexes (Figure S3C).

Solvent Accessible Surface Area (SASA) is a measure of the 
surface area of a biomolecule that is accessible to solvent mol-
ecules.58 It plays a crucial role in analyzing the interactions 
between biomolecules and their surrounding solvent environ-
ment.45 A higher value suggests an increase in the protein’s vol-
ume, indicating lower stability, whereas stable proteins typically 
exhibit minimal fluctuation throughout the simulation. The 
binding of a small molecule can alter the solvent-accessible 
surface area (SASA) and significantly impact the protein’s 
structure.28,45,59 The SASA consistently decreased across all 
systems during the 100 ns simulation (Figure S2B). This 
decrease in SASA indicates a rise in compactness, consequently 
indicating enhanced stability across all systems. The parallel 
patterns observed in both SASA and Rg affirm the validity of 
the molecular dynamics simulation outcomes.45 Their distribu-
tion also shows that all systems were stable over simulation 
with the glucaric acid complex being more stable than others 
(Figure S3C and S3D).

Non-bonded Molecular Mechanics (MM) interaction 
energy between the Ligands and their receptor was calcu-
lated to evaluate the magnitude of the interaction between 
the ligand and the protein.60,61 The total interaction energy 
for all the systems was negative over 100 ns simulation with 
the complex of phytyl-diphosphate having the lowest energy 
values (Figure 4B and S3B). Vander Waals forces are short-
range interactions that include London dispersion forces and 
dipole-dipole interactions, they enable the close interaction 
between the nonpolar regions of the ligand and the protein, 
ensure complex shape complementarity, predict the strength 
of the protein-ligand interaction with higher energy indicat-
ing stronger binding.62 Apigenin coumaryl glucoside had the 
best values while that of Isocitric acid was the worst, a fact 
justified by their size and proximity to the protein groups 
(Figure S9). The stability of the complex and total binding 
energy can be enhanced by the long-range electrostatic inter-
actions, which can direct protein molecules toward their 

Figure 3.  The K-means cluster analysis of ADMET properties.
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pre-binding orientations.63 Phytyl Diphosphate had the best 
values of electrostatic energy while apigenin coumaryl gluco-
side had the worst values since the former has phosphate 
groups which results in strong electrostatic interaction 
energy. These energies are good predictions of binding affin-
ity since they are considered while computing those affini-
ties. The simulated complexes remained stable throughout 
the simulation according to this data (Figure S2C and S2D). 
But it’s crucial to remember that this quantity is neither a 
binding energy nor a free energy.60 Figure 5 displays the spe-
cifics of the molecular interactions that occur in the middle 
of the simulation. The summary and distribution of all these 
energy terms are shown in Figures S3B, S4A, S4B, and S4C.

During the simulation, the minimum distances between 
active site residues and ligands were calculated. Since most of 
the time, these minimum distances were less than 3 Å, a con-
ventional hydrogen bond can still form as long as the acceptor 
and donor are orientated correctly (Figure S3A).

PCA (Principal Component Analysis)27,64,65 was performed 
particularly on alpha carbon data from the last 25 ns to acquire 
insights into the dynamic behavior of both the complexes, 
incorporating structural and energy data. This analysis aimed 
to explore the conformational range of the complexes, distin-
guishing various regions within the energy landscape explored 
during the MD simulation. The complexes defined discrete 
conformational clusters and suggested stability by occupying 
compact subspaces. A graph illustrating the motion and dis-
placement of atomic fluctuations within the complexes was 
created by utilizing eigenvectors 1 and 2. The first few eigen-
values had greater values, and the remaining eigenvalues were 
in a declining order.45 All complexes showed PC ranging from 
~15 to ~−15 (Figure S6). The simulation results of the apo-
protein are shown in Figure S10. Interacting residues have 
increased positive correlation, as indicated by the Dynamic 
Cross-Correlation (DCC) data, indicating that they are inter-
acting with the target. Residues located in the active site 

Figure 4.  The molecular dynamics simulation results: (A) illustrates the RMSD variation for proteins across different complexes, (B) displays the total 

interaction energy for each system throughout the simulation, (C) shows the RMSF variation over time, and (D) presents the changes in the radius of 

gyration (Rg) during the simulation.
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showed slightly elevated positive cross-correlation peaks upon 
ligand binding, suggesting a high occupant binding affinity 
(Figure S8).45

The average binding free energy of simulated hits was esti-
mated using MM/P/GBSA calculations, and the outcomes are 
in good agreement with other studies. Since all energies were 
negative, proteins and ligands were strongly bound together 
(Table 2). Additionally, FEP/MD simulations were performed; 
Table 2’s results show that these ligands have sufficient binding 
affinities, making them eligible for in-vitro research. To evalu-
ate the convergence and dependability of the findings, the FE 
values were averaged using the standard error of the mean 
(SOS). The SEM of all data is less than 0.5 kcal/mol, indicat-
ing that all systems have converged in less than 10 ns.29,52,66

Because of many RAASs in HCV proteins, reported DAAs 
resistance-enhancing RAASs were introduced in this protein 

with several combinations as shown in Table S1 and these 
mutants were re-docked with the identified compounds. 7 
ligands still had significant docking scores with Glucaric acid 
having the highest values (Figure 6 and Table S2). Paired two-
tailed t-tests to compare the wild type and mutants are also 
shown in Tables S4, S5, S6, and S7. These results show that 
the docking scores of many ligands are significantly reduced 
except for the 7 ligands. This may suggest that some of these 
compounds, with glucaric acid leading, may still bind the 
resistant phenotypes. While these docking results provide 
valuable insights, they alone are insufficient to fully demon-
strate the efficacy of the identified ligands against the mutant 
proteins. Additional investigations, such as molecular dynam-
ics simulations of the mutant complexes, will be necessary to 
further validate and understand their interactions and poten-
tial effectiveness.26,57,64,67

Figure 5.  An overview of the interactions between the selected compounds and the target protein. The interacting residues and compounds are shown in 

licorice representation, with the residues highlighted in green and the compounds in pink, while the rest of the protein is displayed in a cartoon format.
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Studies have demonstrated the hepatoprotective, anti-
inflammatory, cholesterol-lowering, anti-oxidant, and anti-
carcinogenic properties of glucaric acid and its derivative 
D-saccharic acid-1,4-lactone.68

With the pan genomic approach to HCV therapy, the can-
didates were also docked with NS3/4 protease (PDB ID: 
3P8N), and the results are presented in Table S3, 4 ligands 
including Glucaric acid had docking scores better than 
−7.00 kcal/mol. Having inhibitors inhibiting both proteins 
will be a bonus for drug development. To further discover the 
global therapeutic world of glucaric acid, insight into the com-
pound’s potential pharmacological targets and associated bio-
logical pathways was determined. This was done using Swiss 
Target Prediction to predict other possible targets of Glucaric 
Acid. Results (Figure 7) show that this compound may be 
active against several targets including the Neuronal acetyl-
choline receptor protein alpha-7 subunit (Probability = .765) 
and Squalene synthetase (Probability = .103). Inhibiting the 
former means that this compound can also be a competitive 
antagonist at a neuromuscular junction and hence can com-
petitively compete with bungarotoxin minimizing its blockade 
activities at the junction69 while inhibiting the latter is a 
potential therapeutic strategy for lowering cholesterol levels in 
individuals with hypercholesterolemia, as well as Anti-Cancer 
Potential Since cholesterol, is essential for the formation of 

lipid rafts and cell signaling pathways involved in cancer cell 
proliferation and survival, inhibiting squalene synthase can 
potentially inhibit tumor growth and metastasis.68,70 The 
identified hits are shown in Figure S11.

Some studies have also highlighted cannabis-delivered 
phytochemicals to inhibit this protein, 1 study highlights 
the use of terpenes, naturally occurring compounds found in 
plants including cannabis, as potential HCV NS5B poly-
merase inhibitors. The study identified several terpenes, 
such as mulberrofuran G, cochlearine A, and pawhuskin B, 
that demonstrated stable binding interactions with the 
NS5B enzyme. These terpenes were suggested as promising 
candidates for inhibiting viral replication, showing better 
docking results compared to traditional HCV drugs like 
sofosbuvir ,71 based on the distribution of molecular simula-
tion parameters of complexes, our complexes show more 
stability. Additionally, another study explored various phy-
tochemicals, including gallic acid, catechin, resveratrol, api-
genin, and silibinin, which have antiviral properties. These 
compounds were docked against the HCV NS5B enzyme, 
with silibinin showing the best binding affinity, suggesting 
it could be a potent antiviral agent against HCV ,72 the com-
pounds evaluated in this study exhibit superior docking 
scores and binding affinity ranges compared to compounds 
above from.72 These results emphasize the strong potential 

Figure 6.  The results of docking the ligands into the active sites of 

mutants.
Figure 7.  The results show other possible targets for glucaric acid.

Table 2.  The table shows the results of MM_G/PBSA and FEP/MD energy calculations.

Ligand MM_GBSA (kcal/mol) MM_PBSA (kcal/mol) ΔG FE (kcal/mol)

Phytyl Diphosphate −57.331 −31.784 −9.45

Apigenin Coumarylglucoside −46.342 −20.304 −8.24

Isocitric Acid −43.111 −29.160 −9.06

LPA (18:0/0:0) −60.753 −32.981 −8.64

Glucaric Acid −66.876 −35.834 −7.32

LPA (18:1(11Z)/0:0) −53.496 −28.507 −7.86
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of the studied compounds for effective target interaction, 
with simulations further supporting their viability, unlike 
the lower-performing compounds from previous studies, 
which lack binding affinity data and simulated validation 
(Table 3).

Future work and limitations

Molecular dynamics simulations will be essential to further 
investigate the impact of NS5B mutations at the molecular 
level, as well as studying these proteins under different solvent 
conditions, such as urea. While the docking results provide 
useful preliminary insights, they are insufficient to confirm the 
efficacy of the identified ligands against mutant proteins.65,73,74 
Additional studies, including molecular dynamics simulations 
of the mutant complexes, will be necessary to validate these 
findings and better understand ligand-protein interactions for 
potential therapeutic applications.26 Molecular dynamics 
(MD) simulations and in silico methods, including docking 
and AI models, offer powerful tools for studying biological sys-
tems and drug discovery, but they come with limitations. MD 
simulations are computationally expensive, especially for large 
systems or long timescales, requiring significant resources. The 
accuracy of these simulations depends on force fields, which 
may not always represent molecular interactions accurately. 
Additionally, simulations often oversimplify complex biologi-
cal environments, leading to less realistic results. Moreover, in 
silico findings require experimental validation to ensure their 
relevance. These methods are most effective when used along-
side laboratory experiments to complement and verify compu-
tational predictions.75,76 More hyperparameter tuning as well 
as experimenting with ReLU will be a future optimization step 
to see if it improves the model’s convergence.

Conclusion
We have used geometric deep learning to screen for possible 
HCV inhibitors of NS5B from cannabis sativa natural com-
pounds. These compounds’ data show that they may be 

potential DAAs against HCV. It is however very important 
to keep the RAASs in check, given that they represent the 
biggest challenge to HCV treatments, and screening them 
and recommending treatment post their identification will 
be a step ahead. The best hits identified were Glucaric acid 
and phytyl diphosphate, with the former retaining the abil-
ity to interact with mutants studied as well NS3/4 hence a 
possibility of polypharmacology and better than the used 
standard of sofosbuvir.

This work broadens the scope of cannabis research by shed-
ding light on the potential therapeutic applications of the plant 
beyond its well-known effects, improving our understanding of 
its pharmacological properties, and highlighting its potential as 
a source of novel antiviral compounds.

This study further guides in vitro and in vivo experimental 
studies for validation of the actual efficacy, safety, and inhibi-
tory mechanisms of these compounds. Cannabis-derived 
compounds may offer advantages such as natural sourcing, 
potentially fewer side effects, and diverse chemical structures 
for drug optimization and could also inform the design of 
more potent and selective HCV inhibitors.
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Table 3.  Comparison of docking scores, binding affinity ranges, and simulation data between compounds from this study and 
those from Shakya.72 The compounds from this study demonstrate stronger docking scores, broader binding affinity ranges, and 
simulation validation, highlighting their superior potential for target interaction.

Compound Docking score 
(kcal/mol)

Binding affinity 
range (mM)

Simulation 
conducted

Source

Phytyl diphosphate −12.275 0.198-19.699 Yes This study

Apigenin-7-o-p-coumarylglucoside −12.275 1.2 × 10⁶ to 1.2 × 10⁹ Yes This study

Isocitric acid −11.050 1 × 10³ to 1 × 10⁵ Yes This study

Silibinin −10.57 No data reported No Shakya72

Apigenin −8.75 No data reported No Shakya72

Resveratrol −8.14 No data reported No Shakya72
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