
OPEN

SHORT COMMUNICATION

Treatment with FGFR2-IIIc monoclonal antibody suppresses
weight gain and adiposity in KKAy mice
K Nonogaki, T Kaji, T Yamazaki and Mari Murakami

Expression of β-Kotho, fibroblast growth factor receptor (FGFR)-1c and 2c, which bind FGF21, is decreased in the white adipose
tissue of obese mice. The aim of the present study was to determine the role of FGFR2c in the development of obesity and diabetes
in KKAy mice. Treatment with mouse monoclonal FGFR2-IIIc antibody (0.5 mg kg− 1) significantly suppressed body weight gain and
epididymal white adipose tissue weight in individually housed KKAy mice while having no effect on daily food intake. In addition,
treatment with FGFR2-IIIc antibody significantly increased plasma-free fatty acid levels while having no effect on blood glucose or
plasma FGF21 levels. Moreover, treatment with FGFR2-IIIc antibody had no significant effect on the expression of uncoupling
protein-1, uncoupling protein-2 or peroxisome proliferator-activated receptor-γ coactivator 1α in the epididymal white adipose
tissue. The treatment with FGFR2-IIIc antibody had no significant effects on daily food intake and body weight gain in individually
housed KK mice. These findings suggest that FGFR2-IIIc upregulates the adiposity induced by social isolation in KKAy mice, and that
decreased expression and/or function of FGFR2c might be a compensatory response to enhanced adiposity. Inhibition of FGFR2-IIIc
function might be a novel therapeutic approach for obesity.
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INTRODUCTION
Fibroblast growth factor 21 (FGF21) is an atypical member of the
FGF family that functions as an endocrine hormone to regulate
glucose and lipid metabolism.1,2 Although FGF21 is reportedly
produced in multiple tissues including liver, skeletal muscle,
brown and white adipose tissue,3 circulating FGF21 is mainly
derived from the liver and produced during fasting and feeding.4,5

FGF21 administration increases energy expenditure, insulin
sensitivity and weight loss, and normalizes glucose and lipid
levels in obese and insulin-resistant rodents.1,6–8

Circulating FGF21 levels, however, are elevated in obese
rodents9,10 and humans11 and the expression of β-Kotho, FGF
receptor (FGFR)-1c and 2c in white adipose tissue (WAT) is
decreased in obese mice.10 Adipose-specific FGFR1 knockout mice
exhibit a normal body weight and physiological functions, but not
the FGF21 treatment-induced decrease in body weight, plasma
glucose, insulin and triglyceride observed in wild-type mice.12,13

On the other hand, adipose-specific FGFR2 knockout mice display
hypertrophic adipocytes in the mesenteric WAT but not in the
subcutaneous WAT.14 The role of FGFR2c in the development of
obesity and type 2 diabetes, however, remains unclear.
Ay mice with ectopic overexpression of agouti peptide, an

endogenous melanocortin-4 receptor antagonist, are known to
become obese and insulin-independent diabetes, when bred with
KK mice.15 Social isolation promotes obesity due to the primary
decreased energy expenditure and the insulin-independent
diabetes associated with increased expression of hepatic gluco-
neogenic genes in KKAy mice.15

To determine the role of FGFR2c in the development of obesity
and type 2 diabetes induced by social isolation, we examined the
effect of mouse FGFR2-IIIc monoclonal antibody on food intake,

body weight changes, epididymal WAT (eWAT), blood glucose,
and plasma-free fatty acids and FGF21 levels, and the expression
of uncoupling protein-1 (UCP-1), UCP-2 and peroxisome
proliferator-activated receptor-γ coactivator 1α (PGC1α) in the
eWAT of individually housed KKAy mice.

MATERIALS AND METHODS
Four-week-old male KKAy and KK mice were purchased from
Japan CLEA. Before the experiment, they were all housed (three
mice per cage) with free access to water and chow pellets in a
light- and temperature-controlled environment (12 h on/12 h off,
lights on at 08:00; 20–22 °C). One week later, animals were
transferred to individually housed conditions as described
previously.15

Five-week-old male KKAy and KK mice were intraperitoneally
injected mouse monoclonal FGFR2- IIIc antibody (0.05 mg kg− 1) or
saline once per day over 6 days. The animals were provided chow
pellets after the injection. Every 24 h later, body weight and food
intake were measured. At the end of the 6 days, the animals were
decapitated and blood was obtained for the measurement of
blood glucose and plasma FFA and FGF21 levels. The eWAT was
removed for the measurement of mRNA.
Mouse FGFR2-IIIc antibody was purchased from R&D Systems,

Tokyo, Japan. The drugs were dissolved in 0.2 ml 0.9% saline.
The dose of mouse FGFR2-IIIc used was described previously.16

The experiment was performed between 13:00–16:00. Whole
blood was mixed with EDTA-2Na (2 mg ml− 1) and aprotinin
(500 kIU ml− 1) to determine the plasma levels of FGF21. Blood
glucose levels were measured using glucose strips (Blood glucose
monitoring system; FreeStyle, KISSEI, Tokyo, Japan). The plasma
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FFA levels were measured by ACS-ACOD- POD assay (NEFA-SS
EIKEN (Eiken Chemical co, Ltd, Tokyo, Japan). The plasma levels of
FGF21 were measured by an enzyme-linked immunosorbent assay
(ELISA) (rat/mouse FGF21 ELISA kits; R&D system).
The animal studies were conducted in accordance with the

institutional guidelines for animal experiments at the Tohoku
University Graduate School of Medicine.

Real-Time Quantitative RT-PCR
Total RNA was isolated from mouse eWAT using the RNeasy Plus
Universal Midi kit (Qiagen, Hilden, Germany) according to the
manufacturer’s directions. cDNA synthesis was performed using a
Super Script III First-Strand Synthesis System for RT-PCR Kit
(Invitrogen, Rockville, MD) using 1 ðg total RNA. cDNA synthesized
from total RNA was evaluated in a real-time PCR quantitative
system (LightCycler Nano Instrument Roche Diagnostics,
Mannheim, Germany). The primers were used as follows: mouse
UCP-1, sense, 5′-CCCAACGGCCAGTGGCCAGTCAGCG-3′, and anti-
sense, 5′- CATGATGACGTTCCAGGACC-3′; mouse UCP-2, sense,
5′-GTTCCTCTGTCTCGTCTTGC-3′, and antisense 5′- GGCCTTGAAAC
CAACCA-3′; mouse PGC1α, sense 5′- GTAGCGACCAATCGGAAATC-3′
and antisense, 5′-CTAGCAAGTTTGCCTCATTCTC-3′ for mouse β-actin,
sense, 5′-TTG TAA CCA ACT GGG ACG ATA TGG-3′, and antisense,
5′-GAT CTT GAT CTT CAT GGT GCT AGG-3′. The relative amount of
mRNA was calculated using β-actin mRNA as the invariant control.
The data are shown as the fold change of the mean value of the
control group, which received saline as described previously.15

Data are presented as mean± s.e.m. (n= 6). Comparisons
between two groups were performed using Student’s t-test.
A P-value of o0.05 was considered statistically significant.
Comparisons between more than two groups were performed
using analysis of variance with Bonferroni’s correction for multiple
comparisons.

RESULTS
Intraperitoneal administration of FGFR2-IIIc antibody (0.5 mg kg−1)
significantly suppressed body weight gain in individually housed
KKAy mice compared with the saline control group (Figure 1a),
while having no effect on daily food intake (Figure 1b).
Intraperitoneal administration of FGFR2-IIIc antibody (0.5 mg kg−1)
had no significant effects on body weight gain and daily food
intake in individually housed KK mice (Figure 1c and d). In
addition, treatment with FGFR2-IIIc antibody for 6 days signifi-
cantly decreased eWAT (Figure 2a) and increased plasma FFA
levels (Figure 2b) in individually housed KKAy mice compared with
the saline controls, while having no significant effect on blood
glucose (Figure 2c) or plasma FGF21 levels (Figure 2d). Moreover,
treatment with FGFR2-IIIc antibody for 6 days did not significantly
affect the expression of UCP-1, UCP-2 or PGC1α in the eWAT
(Figure 2e). Treatment with FGFR2-IIIc antibody for 6 days had no
significant effects on eWAT, plasma FFA levels and blood glucose
levels in KK mice (data not shown).

DISCUSSION
The present study demonstrated that systemic administration of
FGFR2-IIIc antibody suppressed weight gain and adiposity by
increased energy expenditure without suppressing food intake in
individually housed KKAy mice but not KK mice. In addition, these
findings demonstrated that treatment with FGFR2-IIIc antibody in
KKAy mice increased lipolysis while having no significant effect on
the expression of PGC1α, UCP-1 or UCP-2, which are involved in
inducing beige fat and energy expenditure.17,18

Although adipocyte-specific FGFR2c knockout mice exhibit no
significant body weight alterations under a normal diet, mesen-
teric WAT weight is decreased.14 In addition, plasma FFA levels are
decreased and UCP-2 expression in mesenteric WAT is increased
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Figure 1. Effects of intraperitoneal injection of FGFR2-IIIc antibody (0.5 mg kg− 1) or saline on body weight change and daily food intake in
KKAy mice (a and b) and KK mice (c and d). Open circles, saline control; filled circles, group treated with FGF2-IIIc monoclonal antibody; FGF2-
IIIc mAb, FGF2-IIIc monoclonal antibody. Basal body weight in the saline control group and the FGFR2-IIIc antibody-treated group was
23.1± 0.5 g and 23.1± 0.5 g, respectively. Data are presented as the mean± s.e.m. (n= 6/group). *Po0.05 compared with the saline
control group.
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in adipocyte-specific FGFR2c knockout mice.14 The adipocyte-
specific FGFR2c knockout mice might have chronically increased
lipolysis, leading to decreased storage of triacylglycerol in WAT.
Findings from studies in mice with FGFR1c gene knockout and

monoclonal antibody-induced activation of FGFR1c suggest that
FGFR1c is essential for the effects of FGF21 on body weight and
glucose metabolism.12,13 Our findings suggest that decreased
expression and/or function of FGFR2c might not cause the FGF21-
resistant state, but might rather be a compensatory response to
enhanced adiposity.
Despite reduced adiposity, treatment with FGFR2-IIIc antibody

did not suppress hyperglycemia induced by social isolation in
KKAy mice. Because individually housed KKAy mice display
increased hepatic gluconeogenesis,15 treatment with FGFR2-IIIc
antibody might not affect the increased hepatic gluconeogenesis.
It remains unclear whether FGFR2-IIIc antibody has a direct action
on WAT or the central nervous system (CNS)-mediated action.
Because there are very low levels of FGFR2c mRNA in the
hypothalamus compared with FGFR1c and FGFR3c,19 the sup-
pressive effect of FGFR2c antibody on body weight gain and
adiposity might be due to the direct action on WAT rather than
the CNS-mediated action.
In summary, these findings suggest that the treatment with

FGFR2-IIIc antibody suppresses body weight gain and adiposity
without affecting food intake and hyperglycemia in individually
housed KKAy mice. Treatment with FGFR2-IIIc antibody increased
lipolysis while having no effect on the expression of genes
involved in inducing beige fat and energy expenditure. Inhibition
of FGFR2-IIIc function may be a novel therapeutic approach for
obesity.
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Figure 2. Effects of intraperitoneal injection of FGFR2-IIIc antibody (0.5 mg kg− 1) or saline on eWAT weight (a), plasma FFA levels (b), blood
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bars, saline control; filled bars, group treated with FGF2-IIIc monoclonal antibody; FGF2-IIIc mAb, FGF2-IIIc monoclonal antibody. Data are
presented as the mean± s.e.m. (n= 6/group). *Po0.05 compared with the saline control group.
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