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Abstract: Topological materials with band-crossing points exhibit interesting electronic characteristics
and have special applications in electronic devices. However, to further facilitate the experimental
detection of the signatures of these band crossings, topological materials with a large linear energy
range around the band-crossing points need to be found, which is challenging. Here, via first-principle
approaches, we report that the previously prepared P6/mmm-type CrB2 material is a topological
metal with one pair of 1D band-crossing points, that is, nodal lines, in the kz = 0 plane, and one pair
of 0D band-crossing points, that is, triple points, along the A–Γ–A’ paths. Remarkably, around these
band-crossing points, a large linear energy range (larger than 1 eV) was found and the value was much
larger than that found in previously studied materials with a similar linear crossing. The pair of nodal
lines showed obvious surface states, which show promise for experimental detection. The effect of the
spin–orbit coupling on the band-crossing points was examined and the gaps induced by spin–orbit
coupling were found to be up to 69 meV. This material was shown to be phase stable in theory and
was synthesized in experiments, and is therefore a potential material for use in investigating nodal
lines and triple points.

Keywords: DFT; CrB2 material; linear band crossings; topological metal; spin–orbit coupling;
P6/mmm; electronic structures

1. Introduction

Topological semimetals/metals [1–15], including nodal point semimetals/metals, nodal line
semimetals/metals, and nodal surface semimetals/metals, with nontrivial band topologies,
have attracted significant attention in the area of condensed matter physics. Topological semimetals/
metals can be roughly classified based on the dimensionality of the band crossings. In nodal point
topological materials, the bands cross at isolated points. For example, in Weyl semimetals/metals [12],
the valence band and conduction band touch at an isolated nodal point in the momentum space of
solids. Around the isolated Weyl points, the low-energy quasiparticles are described using Weyl
fermions with a definite chirality. If the system is protected from proper crystal symmetry, the opposite
chirality of the two Weyl points can coincide at a certain point, resulting in a Dirac point. To date,
the investigation of nodal point semimetals/metals has not been limited to the cases of Weyl and Dirac
nodal point materials [16–20] with two-fold and four-fold degenerated band crossings. Some novel
nodal point materials with three-fold, six-fold, and eight-fold degenerated band crossings have also
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been predicted. Significant efforts have been devoted to the prediction of nodal-point materials that
can feature three-fold [21–25], six-fold [26,27], and eight-fold degenerated [28] band crossings.

In nodal line semimetals/metals [29–38] and nodal surface semimetals/metals [38–41], the band-
crossing points form one-dimensional (1D) nodal lines and two-dimensional (2D) nodal surfaces,
respectively, in the momentum space of solids. The nodal line materials were first predicted in
carbon-based networks [42]. Nodal line materials have recently emerged as an interesting research
topic due to their many interesting electronic and optical properties and their association with nontrivial
drum-head-like surface states. Research on topological nodal surface materials is still in the preliminary
stage, and many more in-depth physical problems still need to be solved [39].

Although some materials have been predicted to be nodal line or nodal point materials via
first-principle calculations, the number of predicted triply degenerate nodal point semimetals/metals
and the number of nodal line semimetals/metals is still limited. Importantly, for almost all of the
previously studied topological materials, the linear energy range of the band dispersion around
the band-crossing points is usually smaller than 1 eV [43]. It should be emphasized that this small
linear energy range for the band dispersion adds a certain degree of difficulty to the subsequent
experimental research.

In this work, by using first-principle approaches, we report a P6/mmm-type CrB2 topological
metal with one pair of 1D band-crossing points, that is, 1D nodal lines, in the kz = 0 plane, and one pair
of 0D band-crossing points, that is, triply degenerate points, along the A–Γ–A’ paths. CrB2, possessing a
P6/mmm crystal structure, is an existing material [44], where the structural stability has been examined
using phonon dispersion. Remarkably, a large linear band dispersion can be found around these
band crossings, which should facilitate further experimental investigations. If spin–orbit coupling
(SOC) is turned on, these band-crossing points become gapped; however, the gapped points have
energies up to 69 meV. It should be noted that the gaps induced by spin–orbit coupling are smaller
than other predicted topological materials with nodal line states. The CrB2 topological metal is a good
candidate for investigating the physical properties of nodal point and nodal line fermions, as well as
the relationship between them.

2. Methods and Materials

To calculate the electronic structure and the topological signature of the CrB2 material,
first-principle approaches were realized by using the Vienna ab initio simulation package [45].
The generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) [46] function
was adopted as the exchange-correlation potential. Moreover, the cutoff energy was set as 600 eV,
and the Brillouin zone (BZ) was sampled using a Monkhorst–Pack k-mesh with a size of 12 × 12 × 11.
To determine the nontrivial surface states in CrB2, the WANNIERTOOLS [47] package was used in
this study.

It should be highlighted that the CrB2 was prepared previously via direct synthesis from the
elements using a method reported by Post et al. in 1954 [44]. The experimental lattice constants of CrB2

are reported to be a = b = 2.97 Å and c = 3.07 Å. The crystal structure of CrB2 was completely relaxed
and the optimized lattice parameters are a = b = 2.97 Å and c = 2.93 Å. These values match well with
those found in the experiment. The atomic positions are Cr at (0, 0, 0) and B at (0.66666, 0.333333, 0.5)
and (0.333333, 0.66666, 0.5), and the corresponding relaxed crystal models under different views are
shown in Figure 1a,b. Some information, including the elasticity, ICSD IDs, and the calculated X-ray
diffraction can be found in the Materials Project database [48].

Based on the crystal structure obtained for CrB2, the dynamical stability of CrB2 was examined
based on the calculated phonon dispersion along the Γ–M–K–Γ–A–L–H–A paths (see Figure 1c).
Usually, if the system does not contain imaginary frequencies in the phonon dispersion, it can be
regarded as having dynamic stability [49–51]. As shown in Figure 2, the absence of imaginary
frequencies in the first BZ reflects its dynamic stability.
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Figure 3a,b shows the calculated density of states (DOS) and the calculated band structure of the 
CrB2 material, respectively. As shown in Figure 3a, one can see an energy peak around the Fermi 
level, indicating that the CrB2 exhibited metallic properties. Moreover, based on the projected DOS, 
the total density of states in the energy range from −2 to 0 eV was mainly dominated by the Cr–d 
orbitals. 

Figure 3b shows the calculated band structure of CrB2 along the Γ–M–K–Γ–A–L–H–A paths. 
From Figure 3b, we can see three obvious band-crossing points, named P1, P2, and P3, located along 
the M–K path, K–Γ path, and Γ–A path, respectively. For P1 and P2, they were two-fold degenerated 
nodal points; however, for P3, they were triply degenerate nodal points. Surprisingly, around these 
three nodal points, the energy range of the linear band dispersion was more than 1 eV (see the areas 
with a yellow background in Figure 3b). This large linear energy range was much larger than most 
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Figure 2. Phonon dispersion curve for CrB2.

3. Electronic Structures

Figure 3a,b shows the calculated density of states (DOS) and the calculated band structure of the
CrB2 material, respectively. As shown in Figure 3a, one can see an energy peak around the Fermi level,
indicating that the CrB2 exhibited metallic properties. Moreover, based on the projected DOS, the total
density of states in the energy range from −2 to 0 eV was mainly dominated by the Cr–d orbitals.

Figure 3b shows the calculated band structure of CrB2 along the Γ–M–K–Γ–A–L–H–A paths.
From Figure 3b, we can see three obvious band-crossing points, named P1, P2, and P3, located along
the M–K path, K–Γ path, and Γ–A path, respectively. For P1 and P2, they were two-fold degenerated
nodal points; however, for P3, they were triply degenerate nodal points. Surprisingly, around these
three nodal points, the energy range of the linear band dispersion was more than 1 eV (see the areas
with a yellow background in Figure 3b). This large linear energy range was much larger than most
of the other proposed materials with a linear-type band dispersion [43]. Moreover, this large linear
energy range makes CrB2 a promising candidate for experimental studies on the interesting physics
related to band crossings.
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Figure 3. (a) The total and projected density of states (PDOS) of CrB2 without considering the spin–orbit
coupling (SOC) effect and (b) the calculated band structure of CrB2 without SOC. The energy at the
Fermi level was set to zero.

Based on the hybrid functional (HSE-06) method [52], we further examined the band structure
of CrB2 along the M–K–Γ–A paths. The HSE-06 method is usually used to obtain an accurate large
range of the linear band dispersion and band-crossing points for topological materials. The results are
given in Figure 4a, where one can see that all of the nodal points, that is, the two two-fold degenerated
points and a triply degenerate point, were retained. In addition, the large energy range of the band
dispersion was found close to these band-crossing points.
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Figure 4. (a) The band structure of CrB2 calculated using the hybrid functional (HSE06) method and
(b) the band structure of CrB2 using the generalized gradient approximation (GGA) method under
experimental lattice constants.

The band structure at the experimental lattice constants [44] was also calculated based on the GGA
method, and the results are given in Figure 4b. By comparing Figures 3b and 4b, we found that there
was only a small difference between the two cases. In the linear band dispersion range, the energy
bands of the two cases were basically consistent (see the areas with a yellow background in Figure 3b
and the areas with a green background in Figure 4b).

4. Topological Signatures

In this section, we discuss the topological signatures of the three band-crossing points. The three
band-crossing points can be classified into two types: (i) two-fold degenerated nodal points P1 and
P2 and (ii) the triply degenerate nodal point P3. Based on the arguments made by Weng et al. [53],
these doubly-degenerated crossings (i.e., P1 and P2) should belong in a line and these band-crossing
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points cannot be seen as isolated points. However, for the triply degenerate nodal point, this can occur
both in isolation and at nodal line connections.

Let us first consider the two-fold band-crossing points P1 and P2. Based on the bulk BZ, as shown
in Figure 1c, one can see that the P1 and P2 nodal points were all located in the kz = 0 plane. To prove
that P1 and P2 reside on a nodal line, the K-centered three-dimensional (3D) plotting of the two bands
in the kz = 0 plane is given in Figure 5. The white line in Figure 5 shows the intersections between the
two bands, namely, an obviously closed line. As shown in Figure 5, we can see that the band-crossing
points belonging to the nodal line are in the kz = 0 plane, and this nodal line had a slight energy
variation. More importantly, from this figure, we can conclude that there should be a series of two-fold
degenerated nodal points, similar to P1 and P2, and around these points, there appeared to be a large
energy range for the linear band crossings. It should be noted that this property should facilitate the
experimental detection of the signatures of these band crossings. To capture the nature of the nodal
lines, we calculated their Berry phase, as shown in Supplementary Materials Figure S1. From these
calculations, we found that the Berry phase hosted a jump around the nodal line in the kz = 0 plane.
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Figure 5. 3D band dispersion around the K point in the kz = 0 plane. The white line shows the profile
of the nodal line.

The 2D plane figure of the K-centered nodal line (located in the mirror-invariant kz = 0 plane) is
shown in Figure 6a. For the CrB2 system, there were two independent mechanisms that protected the
nodal line in the kz = 0 plane. The first was the mirror symmetry, as the CrB2 hosted a horizontal mirror
plane; the other was the inversion symmetry and time-reversal symmetry. As the CrB2 hosted the
time-reversal symmetry, one more nodal line could be found around the K’ point, as shown in Figure 6b.

We shall now discuss the triply degenerate nodal point, P3, along the Γ–A direction. These triply
degenerate nodal points were formed by the crossing of a two-fold degenerated band and a
non-degenerated band, which corresponded to the E1 and A1 irreducible representations, respectively,
of the C6v symmetry. The 3D band dispersion along the A’–Γ–A paths in the ky = 0 plane is shown in
Figure 7a, reflecting the occurrence of the triply degenerate nodal points. The arrows show the profile
of the triply degenerate points. As the CrB2 system featured time-reversal symmetry, one pair of triply
nodal points could be found, where one was located along the Γ–A path and the other was located
along the Γ–A’ path. The position of the triply degenerate points in the 3D BZ is shown in Figure 7b.
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profile of the triply degenerate points and (b) the position of the triply degenerate points in the 3D
Brillouin zone (BZ). The triply degenerate nodal points are highlighted using red balls.

Finally, it should be highlighted that the CrB2 system co-exhibited the 0D band crossing point,
for example, the triply degenerate nodal points, and the 1D band-crossing points, that is, the nodal
line states. Therefore, this material can be seen as having good potential prospects for studying the
entanglement between the nodal point fermions and the nodal line fermions in the future.

5. Surface States and the Effect of Spin–Orbit Coupling

Usually, 1D nodal lines enjoy nontrivial surface states. The K-centered nodal line in the kz = 0 plane
was projected onto surface (001) (see Figure 8a), where the result is given in Figure 8b. From Figure 8b,
we can observe that the nontrivial surface states (highlighted by the arrow) appeared around the
band-crossing points (highlighted using yellow balls). These clear nontrivial surface states show
promise for being detected in future experimental studies.
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Finally, it should be further emphasized that topological materials with a 1D nodal line, 0D triply
degenerate points, and a large energy range (>1 eV) for the linear band dispersion around band crossings
have very rarely been reported in realistic materials [43]. Therefore, experimental confirmation of the
novel properties proposed here is urgent.
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6. Conclusions

Using first-principle approaches, we report that P6/mmm CrB2 was found to be a perfect topological
metal with many interesting properties, where the conclusions of this study are summarized as follows:

1. CrB2 is an existing material and was confirmed to be dynamically stable based on the calculated
phonon dispersion.

2. CrB2 featured two types of topological elements: (i) one pair of 1D nodal lines in the kz = 0 plane
and (ii) one pair of 0D triply degenerate nodal points along the A’–Γ–A paths.

3. These band-crossing points were very robust against the effects of spin–orbit coupling.
4. The energy range of the linear band dispersion was very large around the band-crossing points.
5. The nontrivial surface states were around the band-crossing points and were very clear.
6. The large linear energy range, 0D and 1D band crossings, and obvious nontrivial surface states

observed in CrB2 will facilitate the experimental detection of potential topological elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/19/4321/s1,
Figure S1: The Berry phase along the M–K–Γ k-path for closed nodal line.
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