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The classical terms agonists and antagonists for G protein coupled receptors (GPCRs)
have often becomemisleading. Even the biased agonism concept does not describe all the
possibilities already demonstrated for GPCRs. The cannabinoid CB2 receptor (CB2R)
emerged as a promising target for a variety of diseases. Reasons for such huge potential
are centered around the way drugs sit in the orthosteric and/or exosites of the receptor. On
the one hand, a given drug in a specific CB2R conformation leads to a signaling cascade
that differs qualitatively and/or quantitatively from that triggered by another drug. On the
other hand, a given drug may lead to different signaling outputs in two different tissues (or
cell contexts) in which the conformation of the receptor is affected by allosteric effects
derived from interactions with other proteins or with membrane lipids. This highlights the
pharmacological complexity of this receptor and the need to further unravel the binding
mode of CB2R ligands in order to fine-tune signaling effects and therapeutic propositions.
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INTRODUCTION

G protein-coupled receptors (GPCRs) are the target of about 40% of current drugs (Hauser et al.,
2017). Although the potential of GPCRs as therapeutic targets is still considered to be high, there
have been only a few recent approvals of drugs targeting these receptors. The causes are
multifactorial, but perhaps the main one is the increased demands, in terms of efficacy and
safety, by regulatory bodies. Functional selectivity is a property of GPCRs that has recently
become relevant to overcome the issues related to the lack of success of GPCR-targeted drug
candidates (Chang and Bruchas, 2014; Franco et al., 2018). For therapeutic purposes, functional
selectivity of a given compound acting on the targeted receptor could achieve the desired effect(s)
while minimizing side effects. A simplified version of the full potential of functional selectivity is the
concept of biased agonism. Biased agonism is now considered across all platforms developing
therapeutic drugs in both industry and academia. A compound selectively modulating a signaling
pathway could offer a suitable therapeutic benefit compared to a another agonist that could, in
parallel, induce undesired signaling events. The structural features of the cannabinoid receptors
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(CBRs) offer more possibilities of biased signaling as the
orthosteric site is not open to the extracellular milieu. Here we
aim to review the multiple therapeutic possibilities resulting from
targeting the cannabinoid receptor type 2 (CB2R) orthosteric and/
or non-orthosteric sites. At present, CB2R appears as more
promising in drug discovery than the cannabinoid receptor
type 1 (CB1R) as some of CB1R agonists have psychotropic
effects and an antagonist approved for human use (for weight
control) was withdrawn due to serious side effects (Christensen
et al., 2007; Sam et al., 2011). In fact, ligands for CB2R seem to be
generally safe and irrespective of whether they are agonists or
antagonists. Safety however will not be considered in the present
article.

ORTHOSTERIC AND NON-ORTHOSTERIC
SITES IN THE CB2R
Modes of Ligand Binding to the Orthosteric
Site
The canonical Gα protein subunit for CB1R and CB2R is Gαi.
Therefore, activation of these receptors leads to inactivation of the
adenylate cyclase with the subsequent decrease in cAMP and
deactivation of protein kinase A-mediated signaling. However,
activation of CBRs may also lead to activation of the mitogen-
activated protein kinases (MAPK) signaling cascade, regulation of
ion channels, and recruitment of ß-arrestins, with subsequent
regulation of Tyr kinase activity among others (Alexander et al.,
2021).

Binding to GPCRs using radiolabeled compounds leads to
detect one or two sites. Two sites reflect two different populations
that, in the well-studied adenosine A1 GPCR, correspond to the
receptor uncoupled or coupled to the G protein. Uncoupled
receptors display low affinity for agonists whereas G-protein
coupled receptors display high affinity. These two affinity sites
for the A1 receptor can only be detected using agonists, i.e.
antagonists have similar affinities for G-protein coupled and
uncoupled A1 receptors (see (Casadó et al., 1990) and
references therein). To our knowledge radioligand binding to
the CB2R results in the detection of one single population. The
two radioligands frequently used for measuring the binding to
cannabinoid receptors, [3H]WIN55,212-2 and [3H]CP 55,940,
are considered very potent orthosteric agonists of both CBRs,
CB1R and CB2R. Competition assays using radioligands and non-
labeled compounds in heterologous cells expressing CB2R
showed that affinities were consistent, i.e., WIN55,212-2
competed with similar low nanomolar affinity the binding of
[3H]WIN55,212-2 and of [3H]CP 55,940. In similar conditions, a
naturally occurring cannabinoid, cannabigerol, competed for the
binding of [3H]WIN55,212-2 or [3H]CP 55,940 with a Ki in the
micromolar range (Navarro et al., 2018b; Navarro et al., 2020b).
This result did not fit with the decrease in cytosolic cAMP
concentration obtained by nanomolar amounts of the
compound. The main difference in the experimental setup was
the use of isolated membranes for radioligand binding and of
living cells for cAMP level measurements. The availability of
novel approaches to obtain reliable receptor binding data in living

cells is fortunately increasing, indeed, these methods do not
require radiolabeled compounds. On using the SNAP-tag
technology in cells expressing the tagged CB2R and a validated
“hot” compound (Martinez-Pinilla et al., 2016), the Ki for
cannabigerol competition was 152 nM (Navarro et al., 2018b;
Navarro et al., 2020b). These results show that the measured
affinity of a given compound depends on the probe used for
binding and allows identification of different states of the receptor
or different modes to accommodate the ligand within the
orthosteric center. In the case of the CB1R, differences are
more extreme as, in radioligand binding assays, natural
cannabinoids may compete for the binding of [3H]
WIN55,212-2 but not of [3H]CP 55,940. For instance,
cannabigerol binding to CB2R is similar if measured using
[3H]WIN55,212-2 or [3H]CP 55,940, whereas there is no
significant competition of binding to the CB1R when [3H]CP
55,940 is used. In summary, cannabigerol binds to a
subcompartment of the orthosteric site of the CB1R, i.e., the
orthosteric site of this receptor may be simultaneously occupied
by cannabigerol and [3H]CP 55,940. These relatively recent
findings add useful information to understand the variety of
actions that different cannabinoids exert and also the
experimental diversity between laboratories in the values of
affinity and potency. This diversity may also underlie the
enormous potential of cannabinoid receptors to combat a wide
variety of diseases (see (Franco et al., 2020) and references
therein).

Identification of Non-Orthosteric Sites
Cannabidiol, one of the main components of Cannabis Sativa L.
has been instrumental to detect non-orthosteric centers in CBRs.
This phytocannabinoid exerts physiological effects via a variety of
receptors, located both in the cell surface and inside cells. Apart
from interacting with CBRs, it may interact with serotonin and
peroxisome proliferator-activated receptors (Banerjee et al., 1975;
Russo et al., 2005; O’Sullivan et al., 2009; O’Sullivan and Kendall,
2010; Espejo-Porras et al., 2013; Fernández-Ruiz et al., 2013; De
Gregorio et al., 2019; Franco et al., 2019b; Franco et al., 2020;
Echeverry et al., 2021). At first cannabidiol was considered an
orthosteric ligand able to partially activate cannabinoid receptors
although with low potency (McPartland et al., 2007). Recent
results in two different laboratories have shown that this
compound can interact in an allosteric mode with the two
CBRs (Laprairie et al., 2015; Martínez-Pinilla et al., 2017). For
both receptors, CB1R and CB2R, it acts as a negative allosteric
modulator (NAM) when co-administered with an orthosteric
ligand. At CB2R it minimized the effects of JWH133 on the MAP
kinase signaling pathway (Martínez-Pinilla et al., 2017). Thus,
cannabidiol binds to an allosteric site at nanomolar
concentrations while micromolar concentrations are required
for significant binding to the orthosteric site. Accordingly, the
in vitro results depend on the concentration while the in vivo
actions at moderate doses should be mainly due to its binding to
the allosteric site that has been very recently suggested to be close
to the receptor entrance (Navarro et al., 2021) (See section:
“Structural Insights into CB2R Binding Modes”). As would be
expected from an allosteric mode of action, the binding of the
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compound to the allosteric site causes conformational changes in
such a way that biases the effect of orthosteric agonists (Navarro
et al., 2018a). A more recent report shows that structural changes
in the molecule shifts negative to positive modulation (of the
CB2R) thus confirming its allosteric nature (Navarro et al., 2021).

Novel approaches to achieve signaling diversity and
addressing success in drug discovery are attempting the design
of bitopic ligands that bind the orthosteric site and an allosteric
site (Lane et al., 2013; Mohr et al., 2013; Bradley and Tobin, 2016).
By combining experimental and in silico approaches an allosteric
site was identified at the entrance of the orthosteric binding site of
the ß-adrenergic GPCRs (González et al., 2011). This site has been
termed the -extracellular- vestibule (Dror et al., 2011) or entrance
(Wang et al., 2013), also metastable (Fronik et al., 2017) or
secondary (González et al., 2011) binding site. Exosite is also
used to describe such non-orthosteric sites when they are located
at the lipidic-receptor interface (Masureel et al., 2018). Bitopic

ligands designed according to these findings improve subfamily
selectivity (Medina et al., 2014; Masureel et al., 2018); they also
offer signaling bias and better off-rates (Valant et al., 2012; Lane
et al., 2013). Knowing that unlike GPCRs for polar compounds,
CBRs do not have the orthosteric center accessible from the
extracellular milieu, we designed bitopic ligands able to enter into
the CB2R orthosteric site but also able to interact with amino
acids located at the receptor transmembrane portals (Morales
et al., 2020). Signaling assays in the CB2R wild-type and specific
mutants led us to discover the first CB2R bitopic ligands. These
compounds, which consist of two chromenopyrazole moieties
linked by methylene spacers of different lengths, can bind to the
orthosteric site and to an exosite. Bitopic ligands showed to be
CB2R selective and, as depicted in Figure 1, may likely extend
from the orthosteric site, the vestibule and an “allosteric exosite”
able to accommodate the same moiety that sits in the
orthosteric site.

STRUCTURAL INSIGHTS INTO CB2R
BINDING MODES

As previously mentioned, in recent years, the CB2R has been
resolved in its active (Hua et al., 2020; Xing et al., 2020) and
inactive (Li et al., 2019) states, enlightening the structural
knowledge of crucial domains for G protein activation as well
as ligand binding. Not only CB2R but also CB1R and other class A
lipid GPCRs have structural features that determine the lipophilic
nature of their ligands (Hua et al., 2016; Hua et al., 2017; Krishna
Kumar et al., 2019; Shao et al., 2019). On the one hand, the
extracellular loops and the N-terminus of these receptors are
generally structured over the orthosteric binding pocket
occluding ligand entrance from the extracellular milieu.
Moreover, transmembrane openings have been detected in
these receptors acting as portals for lateral access of ligands to
the binding crevice. Therefore, hydrophobic ligands such as
phytocannabinoids need to diffuse through the lipid
membrane to target binding sites. Figure 1A,B shows these
features in the recently released structure of CB2R in complex
with Gαi.

Class A GPCR allosteric sites are widely distributed in
different receptor domains including intracellular, intrahelical
or exosites. For instance, the CB1R has been resolved bound to the
NAM ORG27569 and the agonist CP55940 (Shao et al., 2019).
This crystal structure revealed the ability of ORG27569 to target
an extrahelical exosite within the inner leaflet of the lipid bilayer.
Even though few CB2R allosteric modulators have been reported
and none resolved in complex with the receptor, molecular
dynamic and mutagenic studies have recently shown the
potential allosteric site of CBD in CB2R (Navarro et al., 2021).
This report shows that CBD can bind to an allosteric cavity close
to the receptor entrance in a transmembrane portal defined by
transmembrane helices 1 and 7. As aforementioned, concomitant
binding at orthosteric and allosteric/exosites has been shown at
CB2R with chromenopyrazole bitopic ligands (Morales et al.,
2020). Site-directed mutagenesis and molecular dynamic studies

FIGURE 1 | (A) Lateral view of the CB2R/AM12033 complex from the
entrance portal formed by transmembrane helices (TMs) 1 and 7 (shown in
orange and blue, respectively). (B) View from the outside of the cell of the
CB2R in complex with the agonist AM12033 (PDB-ID 6KPF); ligand
access from extracellular is blocked by the N-terminus and the EC loops. (C)
General view of the binding mode of a CB2R bitopic ligand [molecule 22 in
(Morales et al., 2020)] into the orthosteric site and the vestibule of the CB2R-Gi
complex (depicted as cylinders for CB2R and grey surfaces for Gi). (D)
Detailed view of the binding mode of ligand 22 into the receptor vestibule
obtained during the MD simulations. TMs 1 and 7 are shown in orange and
blue, respectively; and the pharmacophore units and spacer of bitopic ligands
are shown in green and yellow tubes, respectively. (C,D) have been
reproduced from our previously reported article (Morales et al., 2020);
permitted reproduction under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/
licenses/by/4.0/).
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determined key interacting residues at transmembrane helices 1
and 7 which define the entry portal for these ligands
(Figures 1C,D).

The CB2R structural understanding gained in the past few
years will likely accelerate the rational drug design of CB2R
modulators with optimal activity to address specific
physiopathological conditions.

BIDIRECTIONAL INFORMATION
EXCHANGE BETWEEN LIGAND AND
CB2RS
On the one hand, functional selectivity can result from different
agonists that activate different populations of receptors, but also
from agonists that produce different conformational changes in
the receptor that allow different qualitative and/or quantitative
signaling outputs. On the other hand, a given agonist can give rise
to different signaling outputs depending on the conformation of
the receptor’s orthosteric site, which can vary depending on the
cell type and the fate of the cell (Fuxe et al., 1998; Urban et al.,
2007; Kenakin and Miller, 2010; Rajagopal et al., 2011; Fuxe et al.,
2014; Ladarre et al., 2014; Navarro et al., 2020a; Franco et al.,
2021).

By definition, allosterism produces conformational
changes that alter the binding of agonists to the
orthosteric site and, consequently, also modify
(qualitatively or quantitatively) signal transduction.
Important to highlight is that allosterism is bidirectional,
i.e. an orthosteric compound binding to a receptor leads to
conformational changes that likely alter the affinity of the binding of
the allosteric compound to the receptor (Christopoulos and
Kenakin, 2002; May and Christopoulos, 2003; Smith et al., 2011).
In practice this means that if an allosteric compound is suspected on
the basis of changes in affinity of radiolabeled compound to the
orthosteric site, the orthosteric compound shouldmodify the affinity
of the binding of the allosteric compound to the allosteric site. In the
field of GPCR, this requirement has made difficult the identification
of allosteric compounds, as there are few to none radiolabeled
compounds designed to measure binding to allosteric sites. In the
case of CB2R, the discovery of bitopic ligands together with the
structure of the receptor leaves no doubt about the possibility of
regulating the functionality of the receptor by “touching” allosteric/
exosites.

Different Macromolecular Environments of
the CB2R Impact agonist Binding and Effect
Can a given compound be more efficacious at targeting a cell that
expresses CB2R in a particular conformation? and/or can a CB2R
in a particular cell type be more likely to respond to the challenge
of a given compound?

The pharmacology of cannabinoid receptors is complex. As
discussed above, binding data can depend on the radioligand used
as the probe, and the effects of a given compound on a given
receptor are not always consistent across laboratories. At present
we have enough data to realize that there are many possibilities

for CB2R-mediated responses that may turn into novel and
powerful possibilities for drug discovery.

The complex pharmacology of the CB2R has likely delayed the
identification of CB2R-containing macromolecular complexes,
whose occurrence has been demonstrated in natural sources
(i.e. not only in heterologous expression systems). Such
interactions modify binding and/or function. Current data
suggest that the receptor environment modifies the
conformation and, accordingly, the binding and effects of
orthosteric and non-orthosteric ligands. Interaction of the
CB2R with other GPCRs may be searched in http://www.gpcr-
hetnet.com/ (using the gene name: CNR2) (Borroto-Escuela et al.,
2014). Figure 2 shows the STRING analysis of the interactions of
the receptor which indicates mandatory interactions with G
proteins, and interactions with the CB1R and with other
GPCRs. In www.gpcr-hetnet.com and in Figure 2 interactions
of CB2R with further GPCRs are not yet included (they have not
yet been incorporated into the STRING database). Also missing
are the recently described interactions of the CB2R with glutamate
N-Methyl-D-Asp (NMDA) ionotropic receptors (Rivas-
Santisteban et al., 2021). From a therapeutic perspective, the
fact that CB2R may interact with other receptors that are also
targeted by cannabinoids, for instance with GPR18 and GPR55, is
of high interest (Balenga et al., 2014; Reyes-Resina et al., 2018;
Martínez-Pinilla et al., 2019; Martínez-Pinilla et al., 2020; Rivas-
Santisteban et al., 2021).

So far, no major change has been detected concerning the
nature of the G protein coupling of CB2R in a macromolecular
environment as it occurs for D1 and D2 dopamine receptors.
Whereas the D1 is coupled to Gαs and D2 to Gαi, the
macromolecular complex formed when the two receptors are
co-expressed in the same neuron couples to Gαq (Rashid et al.,

FIGURE 2 | Interactions involving the CB2R according to STRING
database for functional protein association networks. Abbreviations/gene
products are: CNR2, CB2R; CNR1, CB1R; MTNR1A/1B, Melatonin GPCRs
1A/1B; OXGR1, Alpha-ketoglutarate receptor (a GPCR); SUCNR1,
Succinate receptor 1 (a GPCR); GPR18 and GPR183 are orphan GPCRs;
GNAl1, Guanine nucleotide-binding protein G(i) subunit alpha-1; GNB1,
Guanine nucleotide-binding protein G(i) subunit ß-1; GNG2, Guanine
nucleotide-binding protein Gi/Gs/Go subunit gamma-2.
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2007; Hasbi et al., 2009; George et al., 2014; Perreault et al., 2015).
Notwithstanding, conformational changes that affect the binding
and signaling outputs produced by a given agonist have been
shown in the interactions with the Gαi-coupled CB1R (Callén
et al., 2012; Sierra et al., 2015; Angelats et al., 2018), the Gαs-
coupled adenosine A2A receptor (Franco et al., 2019a), and the
ionotropic NMDA receptor (Rivas-Santisteban et al., 2021).

In one of the first studies of biased agonism in GPCR heteromers
(CB1R/CB2R), Navarro and co-workers showed that the allosteric
effect of CBD was particularly noteworthy for the endocannabinoid
anandamide but also that the effect tested using different agonists was
smaller in the heteromer (Navarro et al., 2018a). These results
confirmed that CBD acts as an allosteric modulator (for both
receptors) also suggesting that the formation of the heteromer
leads to conformational changes that make it less sensitive to the
action of this phytocannabinoid. There are several examples of
conformational changes induced by receptor-receptor interactions,
i.e. by heteromer expression (Franco et al., 2007; Ferré et al., 2009;
Franco et al., 2016). In the case of the CB2R, indirect evidence is
provided by potentiation of receptor-mediated signaling when
forming heteromers with the adenosine A2A receptor (Franco
et al., 2019a).

Can Ligands Affect Conformation via
Regulation of the CB2R Context?
The binding of orthosteric and non-orthosteric ligands alters the
conformation of the receptor, but can ligands alter the environment?
The answer to this question will take time as there is little
background on the regulation of, for instance, heteromer formation.

Defining the target in the right context and delineating
contextual changes due to ligand-induced regulation of the

structure of the CB2R-contaning macromolecule, may further
improve the rational design of therapeutic drugs (orthosteric and
non-orthosteric) targeting the CB2R.
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