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Abstract

RA is a chronic, debilitating disease in which articular inflammation and joint destruction are accompanied

by systemic manifestations including anaemia, fatigue and osteoporosis. IL-6 is expressed abundantly in

the SF of RA patients and is thought to mediate many of the local and systemic effects of this disease.

Unlike a number of other cytokines, IL-6 can activate cells through both membrane-bound (IL-6R) and

soluble receptors (sIL-6R), thus widening the number of cell types responsive to this cytokine. Indeed,

trans-signalling, where IL-6 binds to the sIL-6R, homodimerizes with glycoprotein 130 subunits and

induces signal transduction, has been found to play a key role in acute and chronic inflammation.

Elevated levels of IL-6 and sIL-6R in the SF of RA patients can increase the risk of joint destruction

and, at the joint level, IL-6/sIL-6R can stimulate pannus development through increased VEGF expression

and increase bone resorption as a result of osteoclastogenesis. Systemic effects of IL-6, albeit through

conventional or trans-signalling, include regulation of acute-phase protein synthesis, as well as hepcidin

production and stimulation of the hypothalamo-pituitary-adrenal axis, the latter two actions potentially

leading to anaemia and fatigue, respectively. This review aims to provide an insight into the biological

effects of IL-6 in RA, examining how IL-6 can induce the articular and systemic effects of this disease.
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Introduction

RA is a chronic inflammatory disease characterized by

articular inflammation leading to joint destruction. RA

pathogenesis involves complex humoral and cellular

reactions including IC formation, vascular reactions and

infiltration of lymphocytes and monocytes into the syno-

vium. These infiltrating cells and synoviocytes release pro-

inflammatory mediators, including IL-6, which perpetuate

inflammation and destruction through effects on other cell

types in the synovium and peri-articular structures (Fig. 1).

It is thought that RA is linked initially to immunity against

an unknown antigen and later to self-maintained inflam-

matory processes [1]. The presence of autoantibodies

such as anti-cyclic citrullinated peptide [2] and increased

CRP levels [3] many years before the appearance of

clinical symptoms suggests a role for dysregulation of

the immune response in the pathogenesis of this disease.

Since IL-6 is important in B-cell maturation and therefore

production of autoantibodies, as well as the direct

stimulation of CRP from hepatocytes, it may play a

significant role in RA pathogenesis [4]. In animal models

of autoimmune diseases, IL-6 plays a critical role in the

generation of Th17 pro-inflammatory lymphocytes, thus

increasing this possibility further [5]. In patients with

established RA, many of the articular and systematic

manifestations could be explained by the effect of IL-6.

The combination of articular and systemic effects of

IL-6 makes inhibition of the IL-6R a logical target for

treatment of patients with RA. This review will provide

a perspective on how IL-6 induces the articular and

systemic symptoms of RA.

IL-6 biology

Multi-target cytokine

IL-6 is a 26-kDa glycopeptide whose gene is found

on chromosome 7. It has previously been known as
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hepatocyte-stimulating factor, cytotoxic T-cell differentia-

tion factor, B-cell differentiation factor, B-cell stimulatory

factor 2, hybridoma/plasmacytoma growth factor,

monocyte granulocyte inducer type 2 and thrombopoietin.

The many names reflect the pleiotropism of IL-6. The IL-6-

like family of cytokines has more than 10 members,

including IL-11 and leukaemia inhibitory factor [4, 6].

Receptor binding

IL-6 signals primarily through a protein complex including

the membrane-bound, non-signalling a-receptor subunit

(IL-6R) and two signal-transducing gp130 subunits

(Fig. 2A) [4]. While gp130 is expressed ubiquitously,

IL-6R is predominantly expressed on hepatocytes,

neutrophils, monocytes/macrophages and some lympho-

cytes [4]. However, IL-6 can also signal via a soluble

receptor (sIL-6R) that lacks transmembrane and cytoplas-

mic components. Activated sIL-6R binds to membrane-

bound gp130 subunits in a process known as trans-

signalling (Fig. 2B) [4, 7]. sIL-6R is generated either by

limited proteolysis of the membrane-bound IL-6R or

by alternative mRNA splicing. sIL-6R is transported in

bodily fluids and increases the variety of cells able to

FIG. 1 Inflammatory pathways activated by IL-6. At joint level, IL-6 induces pannus formation, osteoclast activation and

mediates chronic synovitis.

FIG. 2 IL-6 signalling mechanism. IL-6-mediated signal transduction through classical (A) and trans-signalling

(B) pathways. In IL-6 trans-signalling, sIL-6R is generated either by limited proteolysis of the membrane-bound IL-6R

or by alternative mRNA splicing. In both classical and trans-signalling, responses are elicited through engagement with

membrane-bound gp130.
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respond to IL-6 [4]. For example, endothelial cells and

synoviocytes express gp130 but not IL-6R, and can there-

fore only respond to IL-6 in the presence of sIL-6R.

Indeed, IL-6 and sIL-6R induce tubule formation in fibro-

blast-like synovial cells from RA patients, an effect not

observed with IL-6 alone or indeed TNF-a [8].

The key role of trans-signalling in RA has been demon-

strated recently in a murine experimental arthritis model in

which blocking IL-6 trans-signalling using a variant soluble

gp130 molecule resulted in a marked clinical improvement

in systemic arthritis [9]. These findings support earlier data

showing restoration of experimental arthritis disease

activity in an IL-6 knock-out mouse model when adminis-

tered with an sIL-6R–IL-6 fusion protein [10].

Receptor activation

The increase in IL-6 and sIL-6R in SF increases the risk of

joint destruction in RA [11]. Once IL-6 binds its receptor

and gp130 homodimerization occurs, a signalling cascade

is triggered. The Janus kinases are activated, followed by

the recruitment of signal transducers and activators of

transcriptions (STATs). Phosphorylated STATs translocate

to the nucleus where they activate gene transcription

[12, 13]. IL-6 also activates the mitogen-activated protein

kinase cascade, which is upstream of various molecules

involved in cell survival and stress responses [14]. IL-6R

stimulation also recruits other signal transduction

molecules, including SH2 domain-containing tyrosine

phosphatase (SHP2) and suppressor of cytokine signal-

ling (SOCS). Both SHP2 and SOCS may subsequently

down-regulate IL-6 signalling [12].

The role of IL-6 in the adaptive immune
response

RA is characterized by an increase in IgM and IgG RFs

and antibodies to citrullinated peptides in both serum and

joints. B-cell depletion is of therapeutic benefit in RA and

demonstrates the impact of B-cell activity on synovial

inflammation and joint damage in this disease. IL-6 was

originally identified as a B-cell differentiation factor;

it plays an important role in the development of anti-

body-producing plasma B cells [15]. IL-6 induces B-cell

differentiation through its action on plasmablasts [16] and

more recently has been shown to induce B-cell antibody

production indirectly by promoting the B-cell helper

properties of CD4þ T cells via the production of IL-21 [17].

In addition to B-cell development, IL-6 influences T-cell

development. When activated, naı̈ve T cells develop into

either effector or regulatory T cells [18]. Effector T cells are

further subdivided into Th1, -2 and -17 cells, all of which

have pro-inflammatory properties. Animal studies have

shown that Th17 cells are important mediators in autoim-

mune diseases and the host defense against extracellular

pathogens. Th17 cells produce IL-17, -12 and -22.

In murine models of autoimmune diseases, differentiation

of Th17 is regulated by the cytokine milieu. In the

presence of TGF-b alone, naı̈ve T cells differentiate into

regulatory T cells and development of Th17 cells is

suppressed. When IL-6 is present together with TGF-b,

naı̈ve T cells develop into Th17 cells through activation

of STAT3 and induction of the transcription factor retinoic

acid-related orphan receptor (RORgammat). IL-23, which

also activates STAT3, is important in the maintenance of

Th17 cells. In humans, however, it appears this pathway,

and is driven by IL-6 in combination with IL-1b and -23

rather than TGF-b [5, 19, 20]. In addition, in vitro activated

monocytes as well as in vivo activated monocytes from

the rheumatoid joint drive Th17 induction from memory

T cells via the production or expression of inflammatory

mediators [21, 22].

Th17 cells are also involved in the host defense

response against bacteria and fungi, suggesting that

IL-6 may contribute indirectly to fighting infection through

Th17 cell development [5, 23]. For example, IL-6-induced

activation of STAT proteins is important in the recruitment

of neutrophils during Escherichia coli pneumonia infection

[24]. Differences between pro-inflammatory cytokines

have been observed in a number of infections. For exam-

ple, although TNF-a has been found to be involved in

the formation and maintenance of granulomas during

infection with Mycobacterium tuberculosis, there is little

evidence to suggest involvement of IL-6 in granuloma

preservation [25–28]. Overall, these findings demonstrate

that IL-6 has an important role in the development of the

adaptive immune response and may be involved in the

pathogenesis of RA.

The effects of IL-6 at joint level

The role of IL-6 in the shift from acute to chronic
inflammation

Neutrophils are important mediators of inflammation and

joint destruction in RA due to their ability to secrete

proteolytic enzymes and reactive oxygen intermediates.

IL-6 acts directly on neutrophils through membrane-

bound IL-6R. When endothelial cells were co-cultured

with fibroblasts isolated from the synovium of RA patients,

IL-6 levels increased and neutrophils adhered [29]; anti-IL-

6 antibodies prevented this neutrophil adhesion. In vivo,

IL-6-negative transgenic mice show defective leucocyte

recruitment into the air pouch [30]. Similarly, in wild-type

mice, introduction of an anti-IL-6 antibody reduced

leucocyte infiltration to levels observed in the transgenic

mice. Other reported effects of IL-6 on neutrophils include

survival, activation of proliferation through inflammatory

cytokines, mobilization of marginated neutrophils into

the circulation and transit of neutrophils from the bone

marrow [31–35].

During acute inflammation in RA, monocytes, macro-

phages and endothelial cells release IL-6, accompanied

by an increase in neutrophils in SFs. As disease pro-

gresses, IL-6 is thought to influence the shift from acute

to chronic inflammation [36], marked by an increase in the

recruitment of monocytes.

The release of sIL-6R is thought to play a key role in

the regulation of acute and chronic inflammation. Indeed,

sIL-6R release from neutrophils as they reach the site of
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inflammation results in local recruitment of leucocytes

through activation of adjacent endothelial cells and sub-

sequent chemokine release [30, 37–39]. This may be an

important rate-limiting step for inflammation. In particular,

sIL-6R signalling increases the amounts of monocyte-

specific, but not neutrophil-specific chemo-attractants

secreted by endothelial cells [40]. Thus, activation of

endothelial cells through trans-signalling results in a

shift from neutrophil to monocyte infiltration.

The role of IL-6 in extracellular matrix turnover

Extracellular matrix is the target of proteinases such as

MMPs and disintegrin-metalloproteinases with thrombos-

pondin motifs. Proteinases in RA are produced by

synovial lining cells, sublining fibroblasts and infiltrating

leucocytes and macrophages [41–48]. Several studies

have shown a correlation between articular cartilage

destruction and the expression of MMPs [49–51].

Cells lining the synovium in RA have been shown to

overproduce MMPs, with plasma levels of MMP-2 and

-9 higher in RA patients than controls [41, 44, 45, 47,

52]. Both IL-6 and sIL-6R increased collagenase-3

mRNA and protein levels in rat osteoblast cultures [53,

54]. However, this situation has not been demonstrated

in humans. Although some studies suggest that IL-6 does

not stimulate proteinase production or activity [55, 56],

correlations between IL-6 and CRP, as well as CRP and

proMMP-3, have been identified in patients with early RA

[57]. These findings suggest a link between proteinase

activity and IL-6 levels.

Tissue inhibitors of MMPs (TIMPs) are endogenous

inhibitors of MMPs. IL-6, in the presence of sIL-6R,

induced TIMP-1 mRNA and protein expression in cultured

human chondrocytes and synovial fibroblasts [58]. The

ability of culture supernatants from IL-6/sIL-6R-stimulated

cells to inhibit collagen digestion in IL-1-stimulated syno-

vial cells further supports IL-6-induced TIMP production

and the role of IL-6 in extracellular matrix turnover [58].

The roleof IL-6 in the development ofarticular symptoms
of RA

IL-6 is abundantly expressed in the synovium in RA [59].

Levels of IL-6 and sIL-6R in SF correlate significantly with

local joint measures of chronic synovitis and the severity

of joint destruction in patients with RA [60], as does sIL-6R

with leucocyte infiltration [61]. Moreover, the sIL-6R:IL-6

ratio is significantly higher in patients with Stage 1 and 2

disease, according to Mallya and Mace [62, 63] assess-

ment of disease activity, compared with patients with

Stage 4 disease.

IL-6 can also promote joint inflammation and damage

through its effect on VEGF levels in RA patients. VEGF is

a potent angiogenic factor that promotes the migration

and proliferation of endothelial cells, as well as inducing

vascular permeability and mediating inflammation [64, 65].

Significant increases in VEGF levels in RA patients

correlate with disease activity, suggesting that VEGF is

implicated in RA pathogenesis, particularly in pannus

formation [66]. IL-6, in the presence of sIL-6R, increased

VEGF levels in cultured synovial fibroblasts from RA

patients [67]. In these cell cultures, anti-IL-6R antibody

significantly reduced VEGF concentration.

Effects of IL-6 on erosion

Joint damage in RA is characterized by erosions and joint

space narrowing indicating destruction of bone and

articular cartilage. In human and animal studies, osteo-

clasts have been identified as the key cell type-mediating

erosions in inflammatory arthritis [68]. IL-6 increases

osteoclast recruitment by acting on haematopoietic

stem cells from the granulocyte–macrophage lineage

[69–71].

A number of in vitro and in vivo studies have looked

at the effects of IL-6 and sIL-6R on osteoclastogenesis

and bone resorption. In an in vitro study, IL-6-induced

osteoclast differentiation is indirect and appears to be

mediated via interaction with osteoblasts through the

sIL-6R, resulting in PGE2 synthesis. PGE2 acts in an

autocrine manner to induce the RANK-ligand expression

and down-regulate osteoprogerin expression leading to

enhanced osteoclastogenesis [11, 72, 73]. In mouse

calvarial bone cultures, IL-6, in the presence of sIL-6R,

induced bone resorption, which was decreased by osteo-

clast inhibitors, suggesting that sIL-6R trans-signalling

influences osteoclastogenesis [72]. In vivo, a reduction in

the severity of antigen-induced arthritis was observed in

IL-6-deficient mice compared with wild-type mice [73].

In addition, the IL-6-deficient mice had markedly reduced

osteoclast recruitment to the sites of joint disease, as well

as lower IL-17 levels. In humans, however, the effect of

IL-6 on PGE2 production is not established. Moreover, it

has recently been suggested that, under normal con-

ditions, IL-6 suppresses bone resorption by specifically

inhibiting the RANK signalling pathway. In RA, IL-6 and

sIL-6R induced osteoclastogenesis in osteoclast-like

multinucleated cells obtained from RA patients, at the

concentrations found within the SF of RA patients.

This process was inhibited by anti-IL-6 [11].

IL-6 also exerts effects on the components of the

articular cartilage. Proteoglycans are the principal com-

ponent of articular cartilage and the depletion of these in

RA contributes to cartilage degradation. In cultures of

human articular chondrocytes from patients with RA

[74], either IL-6 or sIL-6R alone induced a small inhibitory

effect on proteoglycan synthesis. However, the combina-

tion of sIL-6R and IL-6 markedly increased the inhibition,

again suggesting a key role for IL-6 in causing joint

damage in RA.

The role of IL-6 in the development of
systemic symptoms of RA

Acute-phase response

The acute-phase response, one of the body’s first reac-

tions to injury, is characterized by a number of systemic

changes. These include the release of pro-inflammatory

cytokines and alterations in the level of acute-phase

proteins in the plasma [75, 76]. Acute-phase proteins are
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produced in the liver and are classed as either positive or

negative, depending on whether their concentrations

increase during inflammation (e.g. CRP and TIMPs) or

decrease (e.g. apolipoprotein A1 and transferrin). IL-6 is

a principal stimulator of acute-phase protein synthesis

through hepatocyte stimulation. In patients with RA,

serum IL-6 levels correlate with CRP levels [59]. As IL-6

is easily measured in biological fluids, it can be used as

a biomarker of inflammation and disease activity [59, 77]

(Fig. 3).

Anaemia of chronic inflammation

Anaemia is the most common systemic manifestation of

RA. Defined as haemoglobin (Hb) levels <13 g/dl in men

and <12 g/dl in women, anaemia is present in more than

a third of RA patients and in a quarter of patients within

the first year of disease [78, 79]. Patients with RA and

anaemia have more severe physical disability compared

with non-anaemic patients (Hb >14 g/dl) [78].

The peptide hepcidin is produced by hepatocytes and

regulates iron metabolism by preventing iron transport

and the release of iron from macrophages [80]. In vitro,

IL-6 stimulation of human hepatoma cells induced

hepcidin expression [81]. In wild-type mice, turpentine

stimulation of the inflammatory response resulted in

marked increase in liver hepcidin expression accom-

panied by a decrease in serum iron, whereas in IL-6

knock-out mice, hepcidin levels were below baseline

levels and iron levels increased slightly [81]. Moreover,

IL-6 infusion resulted in a rapid 7.5-fold increase in

hepcidin secretion in healthy volunteers [81]. Thus, the

IL-6–hepcidin axis has a vital role in the anaemia

of inflammation observed in many RA patients.

Systemic osteoporosis

Osteoporosis, a common systemic manifestation of RA,

is also linked with IL-6. Bone remodelling requires a

careful balance between the actions of bone-resorbing

osteoclasts and bone-forming osteoblasts. Dysregulation

of this process can lead to overall bone loss. Transgenic

mice over-expressing IL-6 have been shown to have

decreased osteoblast and increased osteoclast numbers

[82]. Accelerated bone resorption, reduced bone forma-

tion and defective ossification were also reported, sug-

gesting that IL-6 over-expression results in osteopaenia

due to osteoclast and osteoblast dysregulation.

Fatigue and hypothalamo-pituitary-adrenal (HPA) axis

Fatigue is a commonly reported problem in patients with

RA, with 41% experiencing clinically important levels of

fatigue [83–85]. For a number of years, IL-6 has been

known to influence fatigue and sleep, with healthy volun-

teers recording increased fatigue, inactivity and lack of

concentration following IL-6 administration vs placebo

[86]. These IL-6-induced effects were found to correspond

with HPA axis function. More recently, IL-6 production has

been correlated with reports of fatigue in patients with RA,

providing further evidence of the link between IL-6 and

fatigue [87].

IL-6, lipids and inflammation

Patients with RA are at increased risk of cardiovascular

disease. The atherogenic effects of systemic inflammation

manifest themselves at different levels, including endothe-

lial dysfunction and dyslipidaemia [88–90]. Elevated CRP

levels are associated with increased risk of cardiovascular

disease [91], hospitalization and hospital mortality,

although more research is required to determine the

direct role of CRP [92, 93].

Inflammation through the effects of IL-6 reduces circu-

lating lipid levels. When IL-6 was administrated to normal

healthy volunteers [94], within 24 h of IL-6 administration,

total cholesterol, apolipoprotein B and triglyceride were

reduced. The exact mechanism by which IL-6 induces

these changes remains unknown. However, IL-6 has

been shown to affect lipid metabolism by stimulating

hepatic fatty acid synthesis and adipose tissue lipolysis.

In addition, IL-6 increases cholesterol synthesis while

decreasing cholesterol secretion [95, 96].

Independent of the effect on lipids, IL-6 and CRP have

been associated with increased cardiovascular risk in

apparently normal healthy males [97] and females [98].

Furthermore, IL-6 is associated with increased mortality

in patients with acute coronary syndromes [99]. Serum

IL-6 levels were significantly higher in patients with a

complicated in-hospital course, compared with those

demonstrating an uncomplicated course. In addition,

decreases in IL-6 within 48 h were associated with

uncomplicated outcomes, whereas increases in IL-6

were associated with complications. These data implicate

IL-6 in the development of coronary artery disease.

IL-6R inhibition in the treatment of RA

Recent advances in understanding of RA pathogenesis

have identified a number of potential targets for

FIG. 3 The systemic effects of IL-6. Systemically, IL-6

actions include stimulation of acute-phase proteins and

hepatocyte proliferation in the liver, induction of anaemia

and effects on lipids and lipid metabolism, impairment

of HPA axis and osteoporosis.
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intervention. Indeed, three TNF inhibitors are now

available in clinical practice. Other therapeutic targets

include the B cell, which is deleted by the anti-CD20

monoclonal antibody rituximab and the CD80/CD86–

CD28 co-stimulatory signal required for T-cell activation,

which is blocked by the recombinant fusion protein

abatacept. However, RA treatment is still far from satis-

factory as �20–40% of the patients do not respond to

TNF inhibitors administered either alone or in combination

with DMARDs [100].

Although there are few head-to-head comparisons for

TNF, IL-1 and -6 activity in the same biological system,

there is evidence of complex interactions between these

cytokines. Table 1 summarizes, in the authors’ opinion,

the characteristics that distinguish IL-6 activity from

other pro-inflammatory cytokines. Given these differences

and the multiple roles of IL-6 in the immune response and

inflammation, therapies that disrupt IL-6 signalling offer an

important treatment option for RA (Fig. 4). Indeed, results

from Phase III clinical trials of IL-6 inhibition with the

monoclonal antibody tocilizumab in patients with RA

are confirming this promise [101–103].

Summary

IL-6 is the most abundant cytokine in the serum and SF of

patients with RA and levels correlate with both disease

activity and joint destruction. IL-6 signalling occurs

through both membrane-bound and soluble receptors.

IL-6 is a multitarget cytokine with activity relevant to RA

TABLE 1 Summary of the characteristics that suggest a

distinctive role of IL-6 in RA (based on the authors’

extensive knowledge of the available literature)

Features IL-6 TNF IL-1

Levels in blood and SF þþþþ þ þ

Local effects

Endothelial activation þþ þþ þ

Polymorphonuclear cells
(neutrophil migration)

þþ þ þ

Proteases, MMP secretion þ þþ þþþ

Bone-derived cell activity
(osteoclast and osteoblast)

þþ þ þ

B-cell function and survival þþþ � þ

Th17 differentiation þþ � þþ

Systemic effects

Acute-phase protein production þþþ þ þ

Bone marrow (anaemia) þþ þ þ

CNS (fatigue) þþþ þþ þþ

The level of activity is represented by crosses, with an

increased number of crosses representing increased activity.

FIG. 4 Potential sites for intervention in RA. Based on the present knowledge of RA pathogenesis, therapeutic strategies

can influence the outcome of initial or late-phase processes. IL-6 inhibition can influence the initial autoimmune

reaction between antigen-presenting cells and T and B cells or the later stage in tissue destruction when synovial

cells, chondrocytes and bone-derived cells are involved.
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at joint and systemic levels. At the joint, IL-6 has a pivotal

role in the inflammatory process, in osteoclast-mediated

bone resorption and in pannus development through

increased VEGF expression. IL-6 is pro-inflammatory,

induces acute-phase proteins (including CRP) and

contributes to the systemic manifestations of RA though

hepcidin production (anaemia), its potent action on the

HPA axis (fatigue) and its impact on bone metabolism

(osteoporosis). In addition, IL-6 may contribute to the

induction and maintenance of the autoimmune process

through B-cell modulation and Th17 cell differentiation.

In combination, these findings make IL-6 activity a logical

target for inhibition in patients with RA. This observation is

supported by Phase III studies using an anti-IL-6R

antibody, which have demonstrated benefits of IL-6R

inhibition across a number of patient populations with RA.

Rheumatology key messages

. IL-6 is a pleiotropic cytokine.

. IL-6 plays a role in the local and systemic manifes-
tations of RA.

. The IL-6 receptor offers an important treatment
option for RA.
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