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Cancer stem cells: advances in knowledge and implications for
cancer therapy
Xianjing Chu1, Wentao Tian1, Jiaoyang Ning1, Gang Xiao1, Yunqi Zhou1, Ziqi Wang1, Zhuofan Zhai1, Guilong Tanzhu1✉,
Jie Yang1,2✉ and Rongrong Zhou1,3,4✉

Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead
to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the
past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to
develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain
extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction
of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-
κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes
and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated
therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In
summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying
regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
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INTRODUCTION
Due to advances in cancer early detection and cancer
treatments, cancer yearly mortality has been decreasing since
1995.1 However, cancers still caused more deaths than COVID-
19 and ranked as the second cause of death in the United
States in 2020 and 2021.1 The presence of cancer stem cells
(CSCs) can be an essential factor that leads to failure of cancer
treatments.
CSCs, first identified in 1990,2 are a small group of cancer cells

that possess properties of normal stem cells, such as self-renewal
and pluripotency.3 The CSC model, also known as the hierarchical
model, provides a paradigm for people to understand intratu-
moral heterogeneity, as they can differentiate into various
phenotypes of cancer cells and maintain their population.4 CSCs
are also characterized by enhanced ability to initiate tumor
growth, proliferate, invade, migrate, and resist therapeutic effects.3

This implies a crucial role of CSCs in cancer development and
makes CSCs an evaluable target for anti-cancer treatments.
Therapeutic agents, such as monoclonal antibodies, tyrosine
kinase inhibitors, chimeric antigen receptors (CAR) T cells, and
tumor vaccines, targeting CSCs have been developed and tested
in clinical trials.5

In recent years, studies have added knowledge in the origin,
features, and especially therapeutic aspects of CSCs. Here, we
summarize the research history, origins, properties, molecular
regulations, mechanisms for therapeutic resistance, and treatment
strategies of CSCs.

THE DEVELOPMENT OF THE CSCS THEORY
The discovery and controversy of the CSCs
As early as 1855, the work of pathologist Rudolph Virchow
illuminated that tumors stem from existing normal cells, sparking
a scientific discourse about the origin of tumors (Fig. 1). Julius
Cohnheim disagreed with that and contributed to his “embryonal
cell rests” hypothesis in 1867.6 This posited that dormant
embryonic cells within tissues could awaken into tumors.7

Spanning the 19th and 20th centuries, burgeoning research into
the genetic underpinnings of cancer has fostered the prevailing
notion that cancer arises from the accumulation of mutations in
susceptible cells. However, given the terminal differentiation and
quiescence of most body cells, their lifespan seldom permits the
accrual of the requisite mutations to become cancerous.8–10

Hence, cells endowed with the capacity for sustained proliferation
are the likely precursors of tumors. This hypothesis gained traction
and was bolstered with the discovery of Jacob Furth and Morton
Kahn in 1937, which leukemia could be recapitulated in mice from
single malignant cells.11

The understanding of this field deepened when James Till and
Ernest McCulloch, in 1961, observed clone formation in the spleen
during hematopoietic regeneration.12,13 Moreover, these clones
could form additional clones in other mice, laying the groundwork
for understanding the self-renewing and differentiative capabil-
ities of stem cells.14,15 Schofield introduced the definition of “stem
cell niche” in 1978, and further nuanced this, highlighting the role
of microenvironment in nourishing and directing stem cells.16,17
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From the 1960s to the early 1990s, debates about the origin of
tumors had oscillated between non-genetic “induction” or “niche
destruction” versus proliferative single-cell mutations.18–20

The landscape of stem cell research was revolutionized in 1997
when John and Bonnet first identified cells with extensive
proliferative potential in acute myeloid leukemia (AML) and
isolated CSCs characterized by the CD34+CD38− phenotype.2

This seminal breakthrough acknowledged the existence of
leukemia stem cells and paved the way for the theory of “CSCs”
in 2001.21 Tumors house a kind of rare cells with self-renewing
potential named CSCs that drive tumorigenesis, akin to normal
stem cells but with a role in cancer progression.22 The concept of
CSCs has since expanded to various solid tumors. In 2003, Al-Hajj
first isolated CD44+CD24−/low CSCs from breast tumors, capable of
significant tumorigenicity in mice. Their study had shown that 200
such cells could form transplanted tumors in recipient mice within
12 weeks. In the same culture time, 10,000 non-special breast
cancer cells cannot form tumors.23 In the same year, Sheila K Singh
purificated a CD133+ CSC population from diverse brain
tumors.23,24 The discovery of these potent CSCs across both
hematologic and solid malignancies has substantiated the CSC
theory, with subsequent findings in prostate, colorectal, pancrea-
tic, nasopharyngeal cancers, and so on.25–30

Despite widespread support and experimental evidence for the
theory of CSCs, xenotransplantation success rates and actual CSC
percentages have fallen short of expectations.31 For instance, only
a small fraction (<5%) of leukemia transplants in mice, as seen in
Jacob Furth’s studies, successfully engrafted.11 Hewitt’s research
further corroborates the scarcity of successful transplantation,
with colony formation in murine spleens documented at a mere
1% to 4%.32 Moreover, Park et al. in vitro clonal cultures from
myeloma cells extracted from murine ascites exhibited clonal
colony formation in only 0.01% to 1%.33 Analogous low successful
frequencies of tumorigenic cells are reported in vitro cultures of
lung, ovarian, and neuroblastoma cancers.34 Concurrently, more
and more research reveals the diversity and instability of CSCs,
with variations in cell origin, proportion, genetic makeup, and
even phenotypic and functional traits.35–37 Initially, CSCs

exhibiting the CD34+CD38− phenotype were linked to the
etiology of AML. Subsequent findings, however, indicated that
CD34+CD38+ cells also possess tumor-initiating potential in NOD/
SCID mice lacking the Interleukin 2 Receptor Subunit Gamma
(IL2RG) chain, suggesting that such activity might be independent
of CD38 expression.2,38 This phenomenon is mirrored in solid
tumors, where certain CSC populations within the same tumor
display distinct and non-overlapping marker profiles. Ginestier
et al.‘s research in breast cancer revealed that cells exhibiting high
Aldehyde Dehydrogenase (ALDH) activity not only demonstrated
traits of tumorigenicity but also the capacity to self-renew and
replicate the heterogeneity of the original tumor.39 These cells
also displayed minimal overlap with the previously characterized
CD44+CD24−/low phenotype breast CSCs, constituting less than
1% of the cancer cell population.39 Research suggests that CD133
is a marker capable of identifying CSC populations across various
solid tumors, including different forms of brain cancer.40–43

However, subsequent studies have raised questions regarding
the reliability of using CD133 to distinguish and isolate CSCs,
indicating a degree of controversy in its application.44–46 Firstly,
CD133 may serve as a marker for glandular epithelium in certain
tissues, complicating the distinction between CSCs and non-stem-
like cancer cells. Secondly, research has demonstrated that
CD133+ cell populations fail to replicate the morphology of the
original upon xenotransplantation, suggesting the possibility of
expression of CD133 on normal differentiated cells. Lastly, studies
have shown that CD133−/low populations have been shown to
recapitulate the original tumor architecture, indicating that CD133
may not be the sole marker for identifying CSCs.47–49 Moreover,
plasma cells expressing the CD138 phenotype were found to only
induce multiple myeloma (MM) in SCID-hu mice, failing to
generate comparable tumors in NOD/SCID mice.25,50–52 Similarly,
analyses of samples from AML patients revealed distinct genetic
and phenotypic characteristics of CSCs among individuals, high-
lighting the variability within the CSC population across different
models and patient samples.53,54 The proportion of CSCs within
primary tumors is also highly variable, ranging from 0.2% to
82.5%.35 For instance, CSCs with the CD34+ phenotype constitute

Fig. 1 The Development of the CSC Theory. As early as 1855, in the discourse on the origins of tumors, Cohnheim posited that tumors
stemmed from embryonic cells. Subsequent decades of genetic research concluded that tumor formation necessitates the accumulation of
susceptibility genes, implying that the cells causing tumors must possess self-renewal capabilities. It wasn’t until 1937 that Furth
demonstrated the potential of single malignant cells to induce tumors. This revelation spurred researchers to delve into the characteristics of
such cells, encompassing self-renewal, aberrant differentiation, interaction with the microenvironment, and heightened plasticity. In 1997,
John Dick identified leukemia stem cells. Since then, the theory of CSCs has basically taken shape. And people have begun to continuously
isolate and prove CSCs from different tumor types
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less than 1% of AML cases, yet represent 82.5% in B-cell precursor
acute lymphoblastic leukemia (ALL).2,38,55 Conversely, the propor-
tion of CSCs expressing the CD133+ phenotype in lung cancer
ranges from a mere 0.4% to 1.5%, while in brain tumors and
colorectal cancer, it can escalate to as high as 20%.24,56,57

Furthermore, the frequency of CSCs may increase during tumor
progression. Pece’s study found a higher proportion of CSCs in
stage III breast cancer compared to stage I about 3 to 4 times on
average.58 The origins of CSCs remain elusive, with evidence from
myeloid leukemia and brain tumors suggesting they may arise
from normal stem cells, while findings from MM and ALL suggest
alternative origins.2,24,42,59,60 The definition of CSCs becomes
increasingly nebulous, raising doubts about the model itself.
However, the methods used at that time could not account for
cellular heterogeneity and proliferative potential within different
tumor cell populations.61,62 Moreover, there was heterogeneity in
the analytical methods used.63,64 Thus, debates over the CSCs
model will persist until direct empirical evidence is presented.
Nonetheless, the validity of the model should not be discounted
due to the diversity and complexity that continue to emerge in
experimental evidence.

Advances in key technologies: from sorting to sequencing
The hypothesis of CSCs offers a pivotal theoretical framework for
understanding tumor initiation and progression. Initially consid-
ered rare and dormant, forming a unidirectional hierarchy within
tumors, CSCs were thought to generate all cell types within a
tumor, occupying the apex of the tumor cell hierarchy.65 However,
further research has revealed the model of CSCs to be more
complex and dynamic. CSCs exhibit phenotypic plasticity,
transforming in response to the microenvironment, leading to
genetically heterogeneous tumors.66–68 Competitive interactions
among various related but distinct subclones within tumors favor
subpopulations with enhanced self-renewal capabilities and
therapeutic resistance.35 Initial research propelled by traditional
cell sorting techniques, advancements, especially in sequencing
technologies, have continually enriched and evolved our under-
standing of the CSC model. The evolution of cell sorting
technologies has progressed from utilizing physical properties of
cells, such as size, density, adhesiveness, and refractivity, to
targeting cell surface antigen phenotypes and functional char-
acteristics like dye efflux, calcium ion concentration, and pH.69

Techniques include density gradient centrifugation, fluorescence-
activated cell sorting (FACS), magnetic-activated cell sorting
(MACS), and side population (SP) cell sorting (Table 1).
While density gradient centrifugation was initially designed for

isolating mononuclear peripheral blood cells, its application
quickly extended to stem cell separation.70,71 Compared with a
single-layer density gradient, the method of using a multi-layer
discontinuous density gradient can separate CSCs more effec-
tively. Percoll, a colloidal silica coated with polyvinylpyrrolidone
(PVP), is preferred, though the toxicity of PVP in percoll limits its
clinical safety.72

In isolating CSCs, methods based on cell surface markers are
prevalent, notably FACS and MACS.73 MACS employs antibodies

attached to magnetic beads to target cell membrane antigens,
using magnetism to retain cells bound to beads within a column
while unbound cells are washed away.74 Despite its minimal
impact on cell viability and suitability for large-scale sorting, MACS
is limited by its reliance on single antigens, complex operation,
and high costs.75 FACS, on the other hand, utilizes fluorescently
labeled antibodies to distinguish between CSCs and non-CSCs,
offering higher specificity by screening multiple markers simulta-
neously. FACS can assess intracellular pathways and protein
interactions and overcome the specificity challenges of CSC
membrane antigens.76 However, FACS requires stringent experi-
mental conditions and precise cell pretreatment to maintain cell
viability, posing challenges in terms of equipment cost and
operational requirements.75

The SP cell sorting method identifies CSCs using the Hoechst
33342 dye, capable of penetrating cell membranes.77 Since the
discovery of Goodell et al. in bone marrow studies in 1996, this
technique has proven effective across various tumor cell lines.78–80

SP cells, capable of asymmetric division and self-renewal, align
with the characteristics of CSCs, suggesting SP sorting as a viable
CSC enrichment strategy. Despite its simplicity, requiring only
microscopy or flow cytometry to detect unstained cells, challenges
include low separation efficiency and dye cytotoxicity. None-
theless, its utility in sorting drug-resistant CSCs offers valuable
insights for novel drug research. Researches indicated that when
the activity of ABC transporters, such as ATP-Binding Cassette
Transporter G2 (ABCG2), was inhibited, the SP phenotype cells
decreased.81,82 Conversely, an increase in expression lead to an
augmentation of the SP phenotype cells.83 Consequently, some
researchers suggest that SP cells are not CSCs but rather a subset
of cells capable of evading the cytotoxic effects of Hoechst dye.84

Beyond the aforementioned methods, alternative approaches
for isolating and identifying CSCs exist.85 Drug selection separa-
tion gradually evolves cells towards drug resistance, isolating
those capable of stable growth and passage, believed by some
researchers to be CSCs.86,87 Western blot analysis serves as a
traditional identification method, prized for its simplicity, univers-
ality, and cost-effectiveness, though it risks false positives or
negatives if improperly executed, typically serving as a technique
for validation. In 2021, Han et al. developed a novel label-free,
microfluidic technology for CSC sorting based on physical
characteristics like size, elasticity, and adhesiveness, enabling
stable, rapid, and efficient CSC selection and enrichment, offering
a new platform for targeted drug screening and functional
identification.88

The integration of CSC sorting techniques with sequencing
studies offers new insights into tumor complexity and hetero-
geneity. High-throughput technologies like RNA sequencing
facilitate the monitoring of tumor microenvironment interactions
and key gene expression dynamics. For instance, Chen discovered
that under specific Trimethylation Of Lysine 4 On Histone H3
Protein Subunit (H3K4Me3) epigenetic modifications, the tran-
scription factor MYC upregulates histidine decarboxylase, endow-
ing glioblastoma stem cells (GSCs) with the ability to synthesize
and secrete histamine. Histamine secreted by GSCs acts on the

Table 1. Methods of isolating cancer stem cells

Technologies Principle Limitations

Density gradient centrifugation Differences in size and density70,71 The toxicity of medium72

FACS Antigen–antibody hybrid73 Requiring a lot of cells75,76

MACS Antigen–antibody hybrid73 Complex operation74,75

SP cells sorting Hoechst 33342 dye & Microexamination/flow cytometry77 Low separation efficiency84

RNA-sequencing Transcription Overlooking signals from crucial cells102

Single-cell sequencing Transcription Overlooking spatial differences103
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Histamine Type I Receptor (H1R) of vascular endothelial cells,
activating the H1R/Ca2+/Nuclear Factor Kappa-B (NF-κB) signaling
pathway to promote angiogenesis and advancing glioblastoma
progression.89 The combination of advanced imaging, short
hairpin RNA (shRNA) technology, and subgroup analysis tools
has also highlighted the critical role of tumor-associated antigens
in GSC differentiation.90,91 The development of multi-channel
optical imaging systems has made it feasible to simultaneously
monitor cell chemotaxis, proliferation, and NF-κB activity.92 In
breast cancer, CSCs hyperactivate the Nuclear Respiratory Factors
2 (NRF2) pathway via the epigenetic reader Zinc Finger MYND-
Type Containing 8 (ZMYND8), enhancing antioxidative capacity
and evasion from oxidative damage and ferroptosis.93

Erythropoietin-Producing Hepatocellular Carcinoma Receptor B2
(EPHB2) and Lysine-Specific Histone Demethylase 1 (LSD1) are
noted for their roles in promoting CSC generation and drug
resistance in hepatocellular carcinoma and thyroid cancer,
respectively. The sequencing technology found that they interact
with the T Cell Factor 1(TCF1)/EPHB2/β-Catenin signal pathway
and Wingless-Type MMTV Integration Site Family (WNT)/β-Catenin,
respectively.94,95 Whole-genome sequencing of circular RNAs like
circSLC4A7 has unveiled their interaction with Heat Shock Proteins
90 (HSP90), activating the Notch1 pathway and influencing gastric
CSC progression.96 In addition to solid tumors, leukemia stem cells
have also been found to undergo specific ribosomal RNA
methylation (2’-O-methylation) modifications. This methylation
pattern can reshape ribosome function and protein translation,
allowing leukemia stem cells to preferentially translate amino acid
transporters, which facilitates the cells’ uptake of amino acids in
the environment, thus improving the self-renewal and function of
leukemia stem cells.97 Sequencing studies were typically used to
purify CSCs, focusing on molecular markers, which are involved in
asymmetrical division, migration, and signaling pathways. Among
them, MYC, Octamer-Binding Transcription Factor 4 (OCT4), Sex
Determining Region Y 2 (SOX2), and ALDH are several key genes
related to CSCs that are often focused on in research.98–100

The complexity of tumors transcends single malignant cells,
encompassing a diverse array of cell types such as immune and
stromal cells, thereby exhibiting significant intra- and inter-
tumoral heterogeneity.101 While traditional transcriptomic ana-
lyses have provided valuable insights into tumor growth and
evolution, they may overlook signals from crucial cell groups or
states.102 These pivotal cellular states, including CSCs and immune
cells relevant to treatment responses, are essential for under-
standing and treating tumors. To surmount this limitation,
scientists are adopting advanced technologies like single-cell
RNA analysis (scRNA-seq) and spatial transcriptomics. These
methods offer a refined understanding at the cellular and
molecular levels, unveiling new dimensions of complex interac-
tions and heterogeneity within tumors, thereby opening new
avenues for cancer research and therapeutic strategy
development.103

Research into malignant gliomas has been at the forefront of
single-cell analyses of brain tumor.104 Utilizing scRNA-seq,
researchers have uncovered a spectrum of stemness and
differentiation potential in primary glioblastoma cells, revealing
the importance of expression programs like POU domain, class 3,
transcription factor 2 (POU3F2), Nuclear Factor I A (NFIA), and NFIB
in regulating stem-like phenotypes.105 Similar analyses of IDH
mutant oligodendrogliomas and astrocytomas have disclosed
comparable developmental hierarchies and gliogenic differentia-
tion lineages, supporting the CSCs model. The model posits that
the majority of cancer cells are well-differentiated, maintaining
oligodendrocyte-like or astrocyte-like lineages, with a subset of
undifferentiated cells exhibiting stem/progenitor traits.106,107

Interestingly, higher tumor grades are associated with an
enrichment of proliferative stem-like glioma cells, suggesting a
significant role for a minority of cancer cells in the growth and

progression of IDH mutant gliomas.108,109 However, in primary
H3K27M gliomas, lower differentiation correlates with a higher
proportion of stem-like cells, indicating greater tumorigenic
potential.110 Copy number variation (CNV) subclones and expres-
sion profiles inferred from scRNA-seq can also be used to study
the relationship between genetic subclones and cellular state
diversity within tumors.111,112 In IDH1 or IDH2 mutant human
oligodendrogliomas, different CNV subclones exhibit similar
cellular hierarchies, suggesting that cellular status is primarily
determined by developmental programs.106 In contrast, IDH wild-
type glioblastomas are characterized by four plastic and highly
malignant cellular states, including neural progenitor cells (NPC-
like), oligodendrocyte precursor-like cells (OPC-like), astrocytes like
(AC-like) and mesenchymal-like (MES-like), and these states are
not strictly determined by the CNV pattern.113

Beyond gliomas, CSCs-like subpopulations have been identified
in other solid tumor types. In advanced prostate cancer, the
growth of CSCs correlates with diminished androgen response
and enhanced expression of cell cycle-related genes, promoting
androgen-independent plasticity.114 In breast cancer, mesenchy-
mal/stem-like tumor cells are present in patients who respond to
Epidermal Growth Factor Receptor (EGFR) inhibitors, and an EGFR-
high-expressing subpopulation displays enhanced stem-like char-
acteristics, reflecting an EGFR-dependent hierarchy.115 Chung
et al. found characterized expression features promoting meta-
static progression in rare subgroups of primary triple-negative
breast cancer via scRNA-seq, uncovering pronounced epithelial-
mesenchymal transition (EMT) and stemness traits driving tumor
advancement and metastasis.116 Similarly, metastatic breast
cancer cells display overarching EMT and stemness characteristics,
though with distinct marker gene expressions.117 The scRNA-seq
analysis of hepatocellular carcinoma also reveals heterogeneity in
phenotype, function, and transcriptome of CSCs.118 Velten et al.
combined scRNA-seq with lineage tracing using nuclear and
mitochondrial somatic mutations to identify leukemia stem cell
gene expression programs in AML, marked by transcriptional
dysregulation and co-expression of stem and myeloid priming
genes.119 Differentiated AML cells express various immunoregu-
latory genes, inhibiting T-cell activity in vitro.120 In chronic
myelogenous leukemia (CML), researchers identified unique
molecular features of CSCs, revealing heterogeneity. A CSC
subgroup in CML, characterized by distinct molecular traits,
persists selectively during prolonged tyrosine kinase inhibitors
(TKI) treatment, featuring quiescence-related gene expression and
dysregulated genes and pathways.121 These insights deepen the
understanding of cellular and molecular mechanisms underlying
CML treatment resistance. Unlike other tumor cells, CSCs in head
and neck tumors show extreme genomic instability, including
chromosomal gains and losses.122 Ren et al. proposed a
differentiation trajectory from CSC-like ductal cells to invasive
ductal cells in pancreatic cancer, identifying five genes signifi-
cantly associated with CSC prognosis.123 Wu et al. found common
mutations in signaling pathway genes in different colorectal
cancer cell clones, providing evidence for monoclonal CRC origin
and subsequent subclonal evolution.124,125 Leung et al. demon-
strated, through single-cell sequencing, exome sequencing, and
targeted deep sequencing, that colorectal cancer metastasis
follows a late dissemination model, with tumor cells evolving
and acquiring mutations that enable clonal spread at the primary
site.126

Research into CSCs is an evolving and deepening field. Despite
challenges such as the lack of a clear definition for CSCs and the
need for integrating various experimental methodologies, con-
tinuous research and technological advancements hold promise
for a deeper understanding of cancer’s essence. This progress is
anticipated to unveil novel strategies for cancer treatment,
navigating through the complexities of tumor biology to
illuminate new pathways for intervention.
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OVERVIEW OF CANCER STEM CELLS
Origin hypothesis of cancer stem cells
Differentiated cells. Dedifferentiation is a reversed process by
which differentiated cells return to a less differentiated stage
within the same lineage.127 Dedifferentiation represents a
common biological phenomenon in several physiological pro-
cesses, such as cardiac regeneration and wound healing.128 By
dedifferentiation, cells can gain stem-like properties, such as self-
renewal and pluripotency, so this process also implies CSC
formation and tumorigenesis (Fig. 2).128 Taking advantage of
scRNA-seq and lineage tracing techniques, a study reveals a
trajectory of dedifferentiation that PROM-1+ hepatocellular CSC
follows, which strongly supports the role of dedifferentiation in
CSC formation.129

Genetic or post-transcriptional alteration can lead to dediffer-
entiation of normal cells into CSCs. The combined loss of p16INK4a

and p19ARF along with EGFR activation triggers the dedifferentia-
tion of astrocytes and the genesis of glioblastoma.130 Besides
astrocytes, terminally differentiated neurons can also undergo
dedifferentiation to neural stem cell following shNF1-shp53 virus
injection and induce gliomas.131 In intestinal crypts, ablation of
Leucine-Rich Repeat-Containing G-Protein Coupled Receptor 5
(LGR5+) stem cells leads to dedifferentiation of daughter crypt
cells and replenishment of stem cells, which is dependent on the
transcription factor Achaete-Scute Homolog 2 (ASCL2).132 Mature
pigment-producing melanocytes can also dedifferentiate into
tumor progenitors of cutaneous melanoma induced by mutant
BRAF.133 PGC7 induces promoter demethylation of transcription
factors, such as GLI1 and MYCN, and facilitates dedifferentiation of
hepatocellular cancer cells.134 Downregulation or loss of Bcl3 leads
to dedifferentiation of pancreatic cancer cells and expansion of
the CSC population.135 A study shows that RNA slicing also plays
an important part in tumor cell dedifferentiation, as the splicing
factor SRSF1 maintains stemness in colorectal cancer.136 Also,
downregulated miR-613 expression is associated with liver cell
dedifferentiation and CSC formation, which is mediated by
increased SOX9 expression.137

Several signaling pathways are involved in the regulation of
dedifferentiation in terms of CSC formation. For instance,
activation of the WNT pathway and loss of Sterile Alpha Motif
Domain (Smad4) drive differentiated intestinal epithelium to stem
cell-like status and initiate colon cancer growth.138 The WNT
pathway is also associated with the dedifferentiation of breast
cancer bone metastases into CSCs.139 Activation of NF-κΒ leads to
enhancement of the WNT signaling, which further supports
dedifferentiation of intestinal villus cells and acquisition of stem
cell markers and tumor-initiating capabilities of these cells.140 The
activation of the Transforming Growth Factor β (TGF-β) signaling
pathway can also convert colorectal cancer cells into CSCs, which
is dependent on the transcription factor Twist-Related Protein 1
(TWIST1).141 The activation of Hypoxia-Inducible Factor 1α (HIF-
1α)/Notch pathway leads to dedifferentiation of pancreatic cancer
cells and formation of stem-like cells.142 Extracellular Signal-
Regulated Kinase (ERK) inhibition promotes cancer cell dediffer-
entiation and expands the CSC population in non-small cell lung
cancer (NSCLC).143 Fibroblast-released IL-6, activin-A, and Granu-
locyte Colony-Stimulating Factor (G-CSF) induce Signal Transducer
And Activator Of Transcription (STAT3) and Smad activation, which
consequently activate the WNT, Notch, and hedgehog pathways
and induce dedifferentiation of lung carcinoma cells.144

Environmental factors, including hypoxia, cytokines, and NO,
also relate to the dedifferentiation in CSC formation. Under
hypoxia, glioma, lung cancer, and hepatoma cells express high
levels of stemness-associated transcription factors and CSC
markers.145 In lung adenocarcinoma, CSCs can be formed through
dedifferentiation induced by Insulin-Like Growth Factor-II (IGF-II)
secreted from cancer-associated fibroblasts, where the transcrip-
tion factor Forkhead Box M1 (FOXM1) is involved.146,147 In
nasopharyngeal carcinoma cells, Epstein-Barr virus (EBV) latent
protein Latent Membrane Protein 1 (LMP1) induces dedifferentia-
tion to form stem-like cells through transcriptional inhibition of
CCAAT Enhancer Binding Protein Alpha (CEBPA).148 Exposure to
progranulin leads to dedifferentiation of breast cancer cells and
expansion of the CSC population.149 Exosomes from GSCs can

Fig. 2 Origin, formation and/or maintenance of CSCs. CSCs originate from differentiated normal/cancer cells, stem/progenitor cells, or cell-cell
fusion of cancer cells with stem cells or cancer cells with differentiated cells. The microenvironment of the CSC niche plays an essential role in
the formation and maintenance of CSCs. MSCs, TAMs, MDSCs, and CAFs can secrete cytokines and chemokines that induce and/or maintain
stem-like properties of cancer cells. Besides, CAFs can also modulate stemness by secreting EVs, and MSCs can regulate stemness through
direct contact with CSCs. Finally, hypoxia and high nitric oxide (NO) concentration also support the CSC niche
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cause dedifferentiation of surrounding non-CSCs by activating the
Notch1 pathway.150 Finally, by stabilizing OCT4, a crucial
transcription factor in CSCs, NO can induce the formation of lung
or endometrial CSCs from differentiated cells.151,152

Non-malignant stem/progenitor cells. CSCs are generally func-
tionally and structurally like normal stem cells, such as the ability
of self-renewal and multipotent differentiation and similar
transcriptional profiles.128 For instance, prostate CSCs share a
conserved transcriptional program with normal prostate basal
stem cells.153 Also, based on results from immunohistochemistry
and double-fluorescence immunostaining, hepatocellular cholan-
giocarcinoma shares a similar set of markers with hepatic
progenitor cells.154,155 These observations indirectly support that
these CSCs can derive from tissue-resident stem/progenitor cells
(Fig. 2).
Several studies have succeeded in the transformation from

induced pluripotent stem cells (iPSCs) to CSCs. When cultured in a
conditioned medium of mouse Lewis lung cancer,156,157 pancrea-
tic carcinomas,158,159 hepatocellular carcinomas,160 or prostate
cancer cell lines,161 iPSCs obtained CSC features and higher
tumorigenicity in vivo. Similar results can be obtained by culturing
iPSCs with Lewis cell-derived extracellular vesicles162 or recombi-
nant human Fibroblast Growth Factor 2 (FGF2).163 Moreover,
mouse embryonic stem cells can also get converted into CSCs in
conditioned medium from mouse Lewis lung cancer or melanoma
cells.164 These studies provide evidence that CSCs can be induced
from normal stem cells, although iPSCs are not equivalent to
normal somatic stem cells. Ewing Sarcoma Breakpoint Region 1
(EWS)-Friend Leukemia Integration 1 (FLI-1) fusion gene and miR-
145 in human pediatric mesenchymal stem cells drive their
reprogramming into CSCs by increasing the expression of
SOX2.165 Although iPSCs do not fully represent adult stem cells,
these studies show a possibility that CSCs can be induced from
normal stem cells.
Some studies give more direct evidence that CSCs may

originate from non-malignant adult stem cells. For instance,
following Adenomatous Polyposis Coli (Apc) depletion, LGR5+

intestinal stem cells transform into CSCs, fueling the unimpeded
growth of adenomas.166 Hepatocellular CSCs are found to derive
from hepatic progenitor cells when the TGF-β or the WNT
pathway is constantly activated in mice.167,168 Mouse primary
hepatic stem/progenitor cells, when transduced with oncogenic
genes, acquire CSC markers, self-renewal ability, and pluripo-
tency.169,170 It is also notable that lineage-committed hepato-
blasts and differentiated adult hepatocytes also gain stemness
after the process.169 Finally, following deletion of Brca1, mouse
mammary epithelial luminal progenitors get the ability to
generate basal-like breast tumors.171

Cell-cell fusion. Cell-cell fusion is commonly involved in several
physiological processes, including fertilization, muscle maturation,
development of bones and placenta, and immune
responses.172,173 For instance, a sperm and an egg fuse into a
fertilized egg, a set of mononucleated myoblasts form a string of
muscle fibers, trophoblasts fuse to form syncytiotrophoblasts, and
several macrophages combine to make giant cells.172,173 Bone
marrow cells can adopt the phenotype of other cells, such as
embryonic stem cells, through cell-cell fusion.174 Similarly, cancer
cells can also fuse with other cancer cells or non-malignant cells,
forming tumor hybrid cells.175,176 Particularly, fusion of cancer cells
with non-malignant cells often gives rise to their malignancy and
potentiates tumor heterogeneity.172 For instance, melanoma cells
can gain phenotypes of fibroblasts and monocytes by cell-cell
fusion,177 and co-grafting of bone marrow-derived mesenchymal/
stromal stem cells (BM-MSCs) and murine prostate cancer cells
in vivo leads to enhanced tumor growth by cell-cell fusion.178

Clinically, a study suggests that the number of tumor hybrids

(fusion of cancer cells and leukocytes) in peripheral blood
correlates with cancer stage and patients’ survival.179

Given these properties of tumor hybrid cells, several studies
support that cell-cell fusion can be one of the origins of CSCs
(Fig. 2). MSCs have been recognized as an essential component in
the tumor microenvironment and actively participate in tumor
progression.180 Fusion between BM-MSCs or embryonic stem cells
and cell lines of breast cancer, NSCLC, liver cancer, ovarian cancer,
or gastric cancer upregulated their stem cell markers and
enhanced tumorigenicity abilities in vitro.181–186 Similarly, hybrids
from human/mice liver cancer, breast cancer, or lung cancer cells
and BM-MSCs exhibited mesenchymal features and demonstrated
enhanced stemness and metastatic capabilities in vivo.187–189

Besides solid tumors, cells of hematological malignancies, such as
multiple myeloma, can also fuse with BM-MSC to gain stemness
and stronger resistance to treatments.190 However, the fusion of
BM-MSCs with cancer cells does not always produce CSCs, such as
esophageal CSCs,191 indicating that cell fusion is not the only
mechanism of CSC formation at least in certain tumor types. Plus,
human umbilical cord MSCs can also fuse with gastric cancer cells
to enhance cancer proliferation, migration, and stemness.192

In addition to MSCs, cancer cells can also fuse with other types
of non-malignant cells and gain stem-like properties in the
process. CD34+ liver CSCs can be formed by fusion of
hepatobiliary stem/progenitor cells with CD34+ hematopoietic
precursor-derived cells,193 suggesting that tissue-resident stem
cells are also able to fuse with other cells and form CSCs. The
fusion of prostate cancer cells with muscle cells increased the
number of CD133+ stem-like cells.194 Hybrids from fusions of non-
malignant human breast epithelial cells and breast cancer cells
exhibit CSC properties,195 which is dependent on the transcription
factor Zinc Finger E-Box Binding Homeobox 1 (ZEB1).196 Hybrids
from tumor-associated macrophages and breast cancer cells also
exhibit CSC phenotype and promote cancer metastases in a
mouse model.197 Furthermore, CSCs can also fuse with other cells
and obtain higher malignancy. For instance, hybrids of CSCs and
monocytes gain highly invasive capacities,198 and those of BM-
MSCs and SU3-RFP human glioma stem cells (GSCs) exhibited
enhanced angiogenic effects compared to the parental cells.199

Additionally, a study shows that the fusion of two human lung
fibroblast cell lines, E6E7 and RST, results in hybrids with elevated
ALDH activity, which is a CSC marker.200 This study suggests that
hybrids from two non-malignant cells may also lead to CSC
formation.

Environmental factors in cancer stem cell formation and/or
maintenance. It is commonly believed that CSCs reside in niches
of tumors, and their microenvironment, which is generally
characterized by hypoxia, aberrant angiogenesis, and chronic
inflammation, has great impacts on the formation and main-
tenance of CSCs (Fig. 2).200

Hypoxia/angiogenesis. Hypoxia and aberrant angiogenesis have
been identified as two crucial features of the tumor microenvir-
onment.201,202 Tumor angiogenesis can be a consequence of
hypoxia since hypoxia serves as a potent stimulus of Vascular
Endothelial Growth Factor (VEGF) production, and disorganized
vessels in tumors can aggravate hypoxia and vice versa.203 Under
hypoxia, the HIF system is activated.204 And upregulated HIFs can
promote the dedifferentiation of pancreatic cancer cells by
activating the Notch pathway142 or that of melanoma cells by
upregulating OCT4 expression.205 Also, hypoxia induces upregula-
tion of SOX2, OCT4, KLF-4, Nanog, and Lin-28A, which are
transcription factors contributing to dedifferentiation, and forma-
tion of stem-like cells in glioma, lung cancer, and hepatoma
cells.145 Likewise, VEGF, an essential pro-angiogenic molecule, can
interact with the VEGFR family or the neuropilin (NRP) family and
promote stemness of skin/breast cancer cells and extend the CSC
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pool in the niche.206,207 Hypoxia can also indirectly regulate the
stemness of cancer cells by altering functions of surrounding
stromal cells, such as cancer-associated fibroblasts (CAFs)208,209

and myeloid-derived suppressor cells (MDSCs).210

Cancer-associated fibroblasts. CAFs are a group of interstitial cells
of a mesenchymal lineage that are not epithelial, endothelial, or
immune cells found in or adjacent to tumors.210 Compared to
normal fibroblasts, CAFs are hyperproliferative and have a unique
secretion pattern that contributes to tumor angiogenesis and
metastases.211 Some believe that CAFs can also promote
dedifferentiation and CSC formation by activating the WNT or
the Notch pathway.4 WNT5a from surrounding CAFs induce
dedifferentiation of ovarian cancer and gastric cancer cells and
maintain the undifferentiated state of ovarian CSCs by activating a
noncanonical WNT pathway.212,213

Moreover, several studies show that secretomes from CAFs
promote the stemness of cancer cells. Head and neck squamous
cell carcinoma and scirrhous gastric cancer cells express higher
CSC markers when cultured in a CAF-derived conditioned medium
compared to that from normal fibroblasts.214,215 CAFs secret IL-6,
activin-A, G-CSF, and IGF-II that mediate the dedifferentiation of
lung cancer cells into CSCs.144,146 Periostin from podoplanin-
positive CAFs facilitates stem-like properties of gastric cancer cells
by activating the Focal Adhesion Kinase (FAK)/Yes-Associated
Protein (YAP) signaling.216 Leukemia Inhibitory Factor (LIF) and
Gremlin 1 from CAFs can promote Nanog and OCT4 expression
along with stem cell markers CD24−/CD44+ in breast cancer
cells.217,218 CAF-derived HGF and IL-6 enhance the stemness of
CD24+ liver cancer cells by activating the STAT3 pathway,219 and
IL-6 from CAFs also induce Chromobox 4 (CBX4) expression, which
is a CSC phenotype regulator, in skin squamous cell carcinoma.220

Additionally, Matrix Metallopeptidases (MMPs) from activated
CAFs induce EMT and enhance the stemness of prostate cancer
cells.221 However, when liver cancer or pancreatic ductal
adenocarcinoma cell lines are cultured in a conditioned medium
from CAFs, they have distinct expressions of CSC markers and
aggressive phenotypes in a cell-line dependent manner,222,223

suggesting that effects of CAFs on stemness of cancer cells may
vary depending on types and subtypes of cancers.
Moreover, CAF-derived exosomes also participate in CSC

formation and/or maintenance. MiR-146a-5p in CAF-derived
exosomes can promote the stemness of bladder cancer cells by
activating the Mammalian Target Of Rapamycin (mTOR) path-
way.224 CircHIF1A in exosomes from hypoxic CAFs can sponge
miR-580-5p in breast cancer cells and increase their expression of
CD44, which is a CSC marker for breast cancers.208 And small
extracellular vesicles with low level of miR-7641 are associated
with activation of the HIF-1α pathway, which promotes stemness
of breast cancer cells.225 Likewise, loss of miR-34c-5p in exosomes
from CAFs maintains the stemness of laryngeal cancer cells.226 In
summary, CAFs regulate the stemness of cancer cells through
paracrine mechanisms that involve cytokines or extracellular
vesicles.

Mesenchymal stem cells. During tumor initiation and develop-
ment, MSCs are believed to be constantly recruited to the tumor,
making them an unneglectable group of cells in the tumor
microenvironment (TME).227 Coculturing BM-MSCs with hypophar-
yngeal or prostate cancer cells induces expression of stemness
markers in these cells,228,229 indicating MSCs can be not only the
origin of CSCs but also an ally in CSC formation and maintenance.
MSCs can induce fatty acid oxidation by upregulating mitofusin 2,
a mitochondrial fusion-inducible factor, Carnitine Palmitoyl
Transferase 1 (CPT1), and lncRNA MACC1-AS1 in gastric cancer,
which finally leads to enhancement of stemness.230–232 Plus, the
direct contact between MSCs and breast cancer cells upregulates
the miR-199a in cancer cells, which subsequently represses the

transcriptional regulator forkhead box P2 (FOXP2) and finally leads
to higher stemness.233

Culturing colon cancer or melanoma cells in an MSC-derived
conditioned medium increased the expressions of stemness
markers of the cancer cells,234,235 indicating the secretomes of
MSCs can induce stemness of cancer cells. Platelet-Derived
Growth Factor (PDGF) from MSCs gives rise to ALDH+ CSCs in a
model of ovarian malignant ascites.236 MSC-derived IL-8 can
induce stem-like properties of gastric cells and blocking Pro-
grammed Cell Death-Ligand 1 (PD-L1) undermines this effect by
reducing the expression of the transcription factor CTCF.237

Conditioned medium or just IL-6 from MSCs increases expression
of stemness markers, such as OCT4, Nanog, and SOX2, via NF-κB
activation in osteosarcoma cells.238,239 Prostaglandin E2 from
MSCs also increases the level of ALDH-high CSCs in human
colorectal carcinoma cells by activating the β-Catenin pathway.240

Exosomes from p53 deficient mouse BM-MSCs can internalize
UBR2 into gastric cancer cells and increase their expression of CSC
markers via the WNT/β-Catenin pathway.241 Adipose- and
placenta-derived MSCs increase the proportion of CD133+/
CD44+ colon CSCs via the IL-8/Mitogen-Activated Protein Kinase
(MAPK) pathway.242

However, MSCs do not always facilitate the stemness of cancer
cells. For instance, endometrium‑derived MSCs suppress the
stemness of endometrial cancer by inhibiting the WNT/β‑Catenin
signaling pathway.243 MSC-derived exosomes reduce the prolif-
eration, migration, invasion, angiogenesis-stimulating, and self-
renewal abilities of hepatocellular CSCs by inducing ERK
phosphorylation244 or pancreatic CSCs by inhibiting the β-Catenin
signaling.245 Altogether, MSCs are an important component in the
TME, some of which can promote the stemness of their
surrounding cancer cells through their secretomes or exosomes,
while some MSCs may reduce the stemness of the
surrounding cells.

Macrophages. Tumor-associated macrophages (TAMs) represent
one of the most abundant groups of immune cells in tumors.246

Based on their immune functions, TAMs can be simply classified
into the M1 proinflammatory phenotype and the M2 anti-
inflammatory phenotype, although this classification neglects
the great diversity of TAMs.246 ScRNA-seq shows that the
maintenance of stemness of hepatocellular cells is mainly based
on M2 polarization rather than the recruitment of TAMs.247 In the
spleen of a murine chronic myeloid leukemia model, red pulp
macrophages provide a niche for leukemia stem cells and support
their stemness.248

Coculturing of TAMs and pancreatic cancer cells or culturing
oral squamous cell carcinoma in an M2 macrophage-derived
conditioned medium promotes their expression of stemness-
related genes.249,250 Conditioned medium from TAMs promotes
stemness of lung cancer cells by upregulating Ubiquitin-Specific
Peptidase 17 (USP17), which subsequently disrupts the TNFR-
Associated Factor (TRAF) 2/TRAF3 complex.251 These results
suggest that the secretomes of TAM are essential in the process.
TAM-derived TGF-β1 promotes stem-like properties of esophageal
squamous cancer cells,252 glioblastoma cells,253,254 pancreatic
cancer cells,255 prostate cancer cells,256 hepatocellular cancer
cells,257 and breast cancer cells.258 Additionally, M2-TAMs
secretory pleiotrophin enlarges the CSC group in human diffuse
large B lymphoma by upregulating the β-Catenin expression.259

TAM-derived interleukin-1β, TNF-α, and IL-6 promote stemness of
Doublecortin Like Kinase 1 (Dclk+) colon tuft cells and initiate
tumor growth.260 TAM-derived IL-6 also enriches breast CSCs by
activating the STAT3 signaling,261 and it also activates WNT and
promotes stemness of ovarian cancer cells in 3D engineered
microenvironments.262 M2-TAM-derived IL-8 induces stemness of
ovarian cancer cells in vitro by activating the STAT3 pathway.263

Macrophages can also secrete IL-10 to promote stemness of
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NSCLC cells by activating the JAK1/STAT1/NF-κB/
Notch1 signaling.264 IL-33 can also recruit macrophages into the
TME and stimulate the secretion of prostaglandin E2, which
subsequently supports stemness of colon cancer cells.265 Inhibitor
Of Differentiation 1 (ID1) from TAMs can inhibit transcription of
two stemness inhibitory factors, SerpinB2 and CCL4, and lead to
stemness enhancement.266 Besides, LSEC in TAMs can enhance
breast cancer stemness by binding to Butyrophilin Subfamily 3
Member A3 (BTN3A3) on breast cancer cells,267 suggesting that
direct cellular contact of TAMs and cancer cells can also enhance
stemness. TAM secretory S100 calcium-binding protein can induce
stemness of hepatocellular cancer cells by activating the NF-κB
pathway in a calcium-dependent manner.268 M2-TAM secretory
VEGF or EGF promotes stemness of breast cancer cells by
activating the VEGF/NRP-1/GTPase Activating Protein And VPS9
Domains 1 (GAPVD1) axis or the EGFR/STAT3/SOX2 signaling,
respectively.207,269 M2-TAM-derived IGF-1 and IGF-2 promotes
thyroid cancer stemness by activating the PI3K/AKT/mTOR path-
way.270 Macrophage-derived glycoprotein nonmetastatic B
induces the production of IL-33, an IL-1-like cytokine, via CD44
in a mouse lung cancer model, which in turn induces the CSC
properties of these cells.271 Likewise, in head and neck squamous
cell carcinoma, macrophage-derived hyaluronic acid (HA) induces
activation of the PI3K/Eukaryotic Translation Initiation Factor 4E-
Binding Protein 1 (EIF4EBP1)/SOX2 signaling via CD44 and
increases the density of CSCs in vitro.272 M2-TAM-derived
exosomal miR-27a-3p and the miR-17-92 cluster promote stem-
ness of hepatocellular cancer cells by upregulating Thioredoxin-
Interacting Protein (TXNIP) or disturbing the balance of the TGF-
β1/Bone Morphogenetic Protein 7 (BMP-7) pathways.273

Several chemokines and chemokine ligands are involved in
TAM-induced CSC formation or maintenance as well. TAM-derived
Chemokine C-C Motif Ligand 2 (CCL2) activates AKT and increases
the expression of β-Catenin in triple-negative breast cancer cell
lines, which eventually induces their CSC properties.274 CCL8
promotes stemness of glioblastoma cells by activating ERK1/2.275

CXCL12 and TGF-β from M2 TAMs elevate DNA Topoisomerase II
Alpha (TOP2A) expression and enhance stemness of hepatocel-
lular cancer cells via the TOP2A/β-Catenin/YAP1 axis.276 Also,
CXCL12 from M2 macrophages activate the WNT/β-Catenin
pathway to facilitate stemness of colorectal cancer cells.277

Macrophage-derived CXCL7 fosters glioma stemness.278 Macro-
phage secretory IL-1β and CCL18 facilitate stemness of head and
neck squamous carcinoma.279,280

Notably, M1 macrophages can also induce a subgroup of
CD44high/CD24−/low or ALDH1+ breast CSCs in vitro, although
prolonged coculture finally endows the macrophages with M2
properties.281 A study shows that breast CSCs respond more
robustly to monocytes/macrophages than do differentiated non-
stem cells through a juxtracrine mechanism, indicating mono-
cytes/macrophages play an essential role in maintaining CSC
niches.282

Myeloid-derived suppressor cells. MDSCs are a heterogeneous
group of immune cells from the myeloid lineage that exert
immunosuppressive effects.283 Coculture of ovarian cancer cells
and MDSCs increases the expression of colony-stimulating factor 2
that activates the STAT3 and leads to upregulation of stemness
markers.284 MDSCs can upregulate the expression of miR101 in
ovarian cancer cells and subsequently repress the core-pressor
gene C-terminal Binding Protein-2 (CtBP2), which restrains cancer
stemness.285 Granulocytic MDSCs trigger piRNA-823 expression
that promotes DNA methylation and maintains the stemness of
multiple myeloma CSCs.286 Hypoxia can induce increased secre-
tion of exosomes containing S100 Calcium-Binding Protein A9
(S100A9) from granulocytic MDSCs, which leads to enhanced
stemness of colorectal cancer cells.210 MDSCs cultured in CAF-
derived conditioned medium express a higher level of

5-Lipoxygenase (5-LO) that induces synthesis of leukotriene B4,
which finally results in enhanced stemness of intrahepatic
cholangiocarcinoma.287 MDSCs also endow stemness to breast
cancer cells by secretory IL-6 and NO that activate the STAT3 and
Notch pathways, respectively.288 The Notch pathway can also be
activated by granulocytic MDSCs and contributes to stem
maintenance in esophageal squamous cell carcinoma,289 and
the STAT3 pathway is also activated in pancreatic cancer cells in
the presence of MDSCs.290 MDSC-derived PGE2 also increases the
stem cell-like properties in epithelial ovarian cancer.291

Besides, NO is frequently upregulated in cancers.292 NO disturbs
the ubiquitin-mediated prosomal degradation of OCT4 and
induces dedifferentiation of human lung cancer cells.151 NO also
promotes stem-like properties of mouse glioma cells by activating
the Notch pathway.293 Ionizing radiation is one of the inducers of
CSCs’ formation across several cancer types,294 which will be
discussed in more detail in the CSCs and sensitivity/resistance to
radiotherapy section.

Features of cancer stem cells
Self-renewal and pluripotency. Since the first identification of CSCs
in 1997,2 self-renewal and pluripotency have been considered two
essential features of CSCs. This discovery comes from the
observation that ALL cells are organized hierarchically, with a
subset of cells that can replicate themselves and give rise to other
malignant lineages, mimicking normal hematopoietic stem cells.2

In solid tumors, CSCs were first identified in breast cancer, in which
the CD44+ CD24−/low lineage-cells underwent self-renewal and
differentiation processes.23 These two properties of CSCs are also
the basis to explain the formation of intratumoral heterogeneity in
the CSC hypothesis or the hierarchical model of tumorigenesis4.

Cancer stem cells in cancer development. Based on the hierarch-
ical model of carcinogenesis or the classical CSC hypothesis, CSCs,
originating from normal stem cells or progenitors, are the cellular
origins of cancers that can self-renew and give rise to the cellular
hierarchies that explain the intratumoral heterogeneities.295

Nevertheless, the observation that some cancer cells can
interchange between differentiated states and stem-like states
does not favor this hypothesis.296 Plus, some cancers do not follow
the CSC model.297 Therefore, although the terms tumor-initiating
cell (TIC) and CSC have been used interchangeably, CSCs are not
necessarily the cell origin of cancers based on the cellular
plasticity model.4 That is, some malignant differentiated cells with
oncogenic mutations can undergo dedifferentiation and form
stem-like cells that cause intratumoral heterogeneities.4 However,
this does not eliminate the role of CSCs in cancer initiation
supported by many studies. AML cells originate from a subgroup
of stem-like cells, as mentioned above.2 LGR5+ intestinal crypt
stem cells, upon oncogenic mutations, serve as cells of origin of
intestinal cancer.166 Injection of CD133+ human brain CSCs into
non-obese diabetic, severe combined immunodeficient mice
causes tumor formation, while that of CD133− does not.24

Conversely, deletion of SOX2, which is essential in maintaining
the stemness of CSCs, decreases the formation of skin squamous-
cell carcinoma.298 Also, decreasing MYC activity that sustains
stemness of hepatocellular CSCs attenuates hepatocellular carci-
noma initiation.299

CSCs are generally characterized by vigorous proliferation.3

Cancer proliferation is heavily dependent on the activation of the
AKT, mTOR, and MAPK/ERK, which result in upregulated expres-
sion of proteins responsible for the cell cycle.300 The signaling
pathways that involve these molecules are also major signaling
pathways,5 which we will introduce in detail in the following
section. Indeed, the acquisition of stemness is usually accom-
panied by enhancement of proliferation.301–304 Conversely, inter-
ventions that inhibit stemness also impair the proliferative
potential of the cells.305,306
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Cancer metastasis involves several biological processes that can
be summarized into 5 essential steps, including cell escape,
intravasation, survival maintenance, extravasation, and out-
growth.307 In epithelial malignancies, the EMT is a crucial event
in metastasis.308 And the EMT can generate stem-like cells in
human mammary epithelial cells,66 indicating a strong correlation
between the EMT and CSCs. Molecularly, the WNT/β-Catenin,
Notch, PI3K/AKT, hedgehog, and NF-κB signaling pathways are
involved in the acquisition of mesenchymal properties of cancer
cells. The pathways are also crucial in inducing and maintaining
the stemness of CSCs.309

CSCs are often indicated as a reason for multi-drug resistance.
This is partially attributed to their capability to maintain
quiescence to avoid the therapeutic effects of anti-cancer
treatments.310 For instance, CD13+ hepatocellular CSCs predomi-
nate in the G0 phase of the cell cycle and exhibit resistance to
5-fluorouracil treatment, as the mechanism of 5-fluorouracil
primarily involves inhibition of DNA replication.311 In addition,
CSCs can reduce intracellular accumulation of therapeutic agents
by overexpressing ALDH and ATP-Binding Cassette (ABC) trans-
porters.312 They also have better DNA repair capabilities and ROS
clearance to avoid apoptosis induced by chemotherapy or
radiation therapy stress.313 Finally, CSC supports an immunosup-
pressive niche that can exclude therapeutic agents and impair the
efficacy of immunotherapy.4 Detailed mechanisms for CSC-
induced chemoresistance, radioresistance, and resistance to
targeted therapy and immunotherapy will be introduced in the
following sections.

Biomarkers of cancer stem cells
One of the most efficient ways to identify CSCs in tumors is to use
biomarkers for CSCs. Based on their cellular distribution, CSC
markers can be classified into intracellular markers and cell-surface
markers. Intracellular markers include transcription factors that
function in the nucleus and markers found in the cytoplasm.
Tables 2 and 3 summarize frequently used CSC markers in solid
tumors and hematopoietic malignancies, respectively. Among
them, generally accepted markers are introduced below.
OCT4, SOX2, and Nanog are the core transcription factors that

regulate the embryonic stem cell state.314 OCT4, SOX2, and Nanog
are encoded by the Sex-Determining Region Y (SRY) gene,315 the
POU Domain, Class 5, Transcription Factor 1 (POU5F1),316 and the
Nanog gene,317 respectively. They collaborate to positively
regulate their promoters, activate the expression of genes
necessary to maintain the embryonic stem cell state, and repress
the expression of lineage-specific transcription factors.205,314

Similar stemness-maintaining functions of OCT4, SOX2, and Nanog
have also been determined in adult stem cells.318–321 Expression
of these transcription factors in cancer also endows stem-like
properties to the cancer cells, unsurprisingly making them classical
markers for CSCs.322–324 In addition, SALL4, encoded by a member
of the Spalt-Like (SALL) gene family, SALL4,325 is also a
transcription factor that regulates embryonic stem cell state by
cooperating with Nanog.326 SALL4 expression is identified in
several solid and hematopoietic malignancy types and correlates
with CSC properties.325

Several cytoplasmic proteins are also identified as CSC markers.
ALDHs refer to a group of enzymes that catalyze the oxidation of
aldehydes to carboxylic acids, which can be further classified into
3 classes in mammals.327 Physiologically, ALDHs are present in
most tissues of humans and have the highest concentration in
livers, orchestrating drug metabolism.328 This also indicates an
important role of ALDH in cancer drug resistance.329 ALDH activity
has been considered a marker for not only normal stem cells but
also CSCs of solid and hematopoietic malignancies.330

RNA-binding protein Musashi Homolog 1 and 2 (Musashi-1/2)
are encoded by the MSI1 gene and the MSI2 gene, respectively.331

Both are RNA-binding proteins involved in post-transcriptional

regulations of gene expressions and expressed in stem cells and
progenitors to maintain their self-renewal.332 Musashi-2 also
support hematopoiesis, which makes them a CSC marker in
hematopoietic malignancies.333–335

Leucine Zipper-EF-Hand Containing Transmembrane Protein 1
(Letm1) is encoded by the Letm1 gene, which is a transmembrane
protein located in the inner membrane of mitochondria and functions
as a Ca2+/H+ antiporter.336 In gastric, colorectal, and lung cancer,
studies reveal a positive correlation between Letm1 and stemness-
related signatures.337–339 Furthermore, suppressing or elevating the
Letm1 expression leads to inhibited or enhanced stemness of
colorectal cancer or osteosarcoma cells, respectively.340,341

Alpha-Fetoprotein (AFP, α-fetoprotein) is encoded by the AFP
gene in humans, which is produced by the fetal liver and the yolk
sac. The serum level of AFP peaks during embryogenesis and
rapidly decreases after birth but re-increases in the presence of
hepatocellular cancer or germ cell tumors, making it an evaluable
biomarker for these two types of malignancies.342 Cells with high
AFP levels exhibit stem-like properties in pancreatic cancer,
cholangiocarcinoma, and hepatocellular cancer, making it a
potential CSC marker for these types of cancer.343–345

Polycomb complex protein BMI-1, also known as polycomb
group RING Finger Protein 4 (PCGF4) or RING Finger Protein 51
(RNF51), is encoded by the BMI-1 gene. BMI-1 takes part in the
repair of DNA double-strand breaks by homologous recombina-
tion346 and is essential for self-renewal in stem cells,347,348 which
makes it also a marker for several types of solid tumor and
hematopoietic CSCs.
Doublecortin-Like Kinase 1 (Dcamkl-1) is encoded by the DCLK1

gene,349 which is a microtubule-associated protein that was
recently revealed to have a role in regulating inflammation.350

Also, a study reports that Dcamkl-1 marks intestinal CSCs but not
normal CSCs, making it an ideal marker for colorectal CSCs.351

A large variety of cell-surface proteins can be applied as CSC
markers for solid tumors. C-X-C Chemokine Receptor Type 4 (CXCR4),
also known as CD184, is a CXC chemokine receptor encoded by the
CXCR4 gene.352 The ligand for this receptor is CXCL12.353 CXCR4 is
famous for its role as one of the receptors inducing the human
immunodeficiency viruses (HIV) infection of T cells.354 CXCR4 is also
involved in cancer progression for its role in activating the PI3K/AKT,
PLC, hedgehog, ERK1/2, and JAK/STAT pathways.355

LGR5, also known as G-Protein Coupled Receptor 49 (GPR49) or
G-Protein Coupled Receptor 67 (GPR67), is encoded by the LGR5
gene.356 LGR5 has been identified as a part of the WNT signaling
complex to potentiate the WNT/β-Catenin signaling.357 Given the
crucial role of the WNT signaling in cancer stemness, LGR5 has
also been identified as a cell-surface marker for several solid tumor
types (Table 2).
Epithelial Cell Adhesion Molecule (EpCAM), also known as

CD326, is known for its role in cell-cell adhesion in the epithelia,358

but its roles exceed this in cancer. Upon cleavage, the intracellular
domain of EpCAM forms a complex with FHL2 and β-Catenin,
which, with interaction with Lef1, leads to transcription of
oncogenes, such as c-Myc.359 Besides, EpCAM also facilitates EMT
by inhibiting E-cadherin.359

CD24, also known as Heat Stable Antigen (HSA), is encoded by
the CD24 gene in humans, which also functions as a cell-cell
adhesion molecule.360 CD24 also mediates several signaling
pathways that could lead to stemness enhancement of tumor
cells.361 Likewise, CD44, also known as Homing Cell Adhesion
Molecule (HCAM) and Phagocytic Glycoprotein-1 (Pgp-1)also
induces cell-cell adhesion and interactions.362 It also takes part
in activations of PI3K/AKT and Src/MAPK pathways and serves as a
c-Met co-receptor.362 Both molecules can individually or com-
binedly mark CSCs in several solid tumor types. Moreover, the
combination of CD44+/CD24− also marks CSCs in breast cancer,
prostate cancer, head and neck squamous cell carcinoma, and
ovarian cancer (Table 2).
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Table 2. Frequently used cancer stem cell markers for solid tumors

Biomarker Full name and alternative name(s) Expression in cancer types Function(s)

Cell surface markers

CXCR4 C-X-C Chemokine Receptor Type 4
Fusin
CD184

Pancreatic cancer1042

Gastric cancer1043

Breast cancer1044–1048

Colorectal cancer1049

Esophageal cancer1050

Lung cancer1051,1052

Glioma/glioblastoma1053,1054

Renal cell carcinoma1055

A chemokine receptor that contributes to HIV
infection and triggers activation of several signaling
pathways that supports cell proliferation, migration,
and survival355

LGR5 Leucine Rich Repeat Containing G
Protein-Coupled Receptor 5
G-Protein Coupled Receptor 49 (GPR49)
G-Protein Coupled Receptor 67 (GPR67)

Gastric cancer1056,1057

Glioma/glioblastoma1058

Cervical cancer1059

Colorectal cancer132,1060

Hepatocellular cancer1061

Pancreatic cancer1062

A member of the WNT signaling pathway

EpCAM Epithelial Cell Adhesion Molecule
CD326

Hepatocellular cancer1063

Head and neck squamous cell
carcinoma1064

Breast cancer1065,1066

Homotypic cell adhesion
Epithelial mesenchymal transition

ProC-R Protein C Receptor (PROCR)
Endothelial Protein C Receptor (EPCR)
Activated Protein C Receptor (APC
receptor)
CD201

Head and neck squamous cell
carcinoma1067

Breast cancer1068,1069

Enhancing activation of protein C

LINGO2 Leucine-Rich Repeat And
Immunoglobulin-Like Domain-
Containing Nogo Receptor-Interacting
Protein 2

Gastric cancer1070 Suppressing EGFR phosphorylation1071

CD24 Heat Stable Antigen (HSA) Hepatocellular cancer219

Prostate cancer1072

Head and neck squamous cell
carcinoma1073,1074

Colorectal cancer1075,1076

Gastric cancer1077

Bladder cancer1078

Mediating the WNT/β-Catenin, MAPK, PI3K/AKT/mTOR,
Notch, and hedgehog pathways361

CD44+/CD24+ Cervical cancer1079

Pancreatic cancer1080

CD44+/CD24− Breast cancer1081,1082

Prostate cancer1083

Head and neck squamous cell
carcinoma1084,1085

Ovarian cancer1086

CD44 Homing Cell Adhesion Molecule
(HCAM)
Phagocytic Glycoprotein-1 (Pgp-1)

Cervial cancer1087

Pancreatic cancer271,1088

Melanoma1089

Lung cancer1090,1091

Colorectal cancer1092,1093

Head and neck squamous cell
carcinoma1094,1095

Glioma/glioblastoma1096,1097

Bladder cancer1098

Breast cancer926,1099

Prostate cancer1100

Ovarian cancer1101

Recruiting ezrin/radixin/moesin (ERM) proteins to
interact with VEGFR and to actiavte the PI3K/Akt and
Src/MAPK pathways
Co-receptor of c-Met362

CD133 Prominin-1
PROM1

Colorectal cancer366,1102

Lung cancer1103

Glioma/glioblastoma1104,1105

Esophageal cancer1106

Hepatocellular cancer380,1107

Gastric cancer1108

Melanoma1109

Cervical cancer1110

Breast cancer1111

Pancreatic cancer1112

Prostate cancer1113

A member of pentaspan transmembrane
glycoproteinsActivating the PI3K/AKT, Src, and
β-Catenin363
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Table 2. continued

Biomarker Full name and alternative name(s) Expression in cancer types Function(s)

CD24+/CD133+ Hepatocellular cancer1114

CD44+/CD133+ Gallbladder cancer364

CD44+/CD133− Colorectal cancer365

CD44−/CD133+ Colorectal cancer366

CD166 Activated Leukocyte Cell Adhesion
Molecule (ALCAM)
CD6 Ligand (CD6L)

Colorectal cancer1115

Head and neck squamous cell
carcinoma1116

A cell–cell adhesion molecule

CD87 Urokinase Plasminogen Activator
Surface Receptor (uPAR)

Lung cancer1117

Glioma1118

Medulloblastoma1119

A part of the plasminogen activation system

CD90 Thy-1 Pancreatic cancer1120,1121

Breast cancer1122

Hepatocellular cancer1123

Src activation1124

CD29 Integrin β1
ITGB1

Endometrial cancer1125

Breast cancer1126

Lung cancer1127

Head and neck squamous cell
carcinoma869,1128

A member of the integrin family

CD61 Integrin β3
ITGB3

Breast cancer1129

Lung cancer1129

Pancreatic cancer1129

Breast cancer1130

A member of the integrin family

CD70 Glioblastoma1131

Breast cancer1132
A costimulatory molecule

CD49f Integrin α6 Breast cancer1133,1134

Glioma/clioblastoma1135,1136

Epidermal squamous cell
carcinoma1137

A member of the integrin family

Intracellular markers

SOX2 Breast cancer1138,1139

Colorectal cancer512,1140

Lung cancer1141

Glioma/glioblastoma1142,1143

Pancreatic cancer1144,1145

Retinoblastoma1146

Skin squamous-cell carcinoma298

Head and neck squamous cell
carcinoma1147,1148

Esophageal cancer1149,1150

Renal cell carcinoma1151

Cervical cancer1152

Pleural mesothelioma1153

Gastric cancer1154

Hepatocellular cancer1155

Osteosarcoma1156,1157

Ovarian cancer1158

Neuroblastoma1159

Bladder cancer1160,1161

Melanoma1162

Sarcoma165

A transcription factor that maintains self-renewal and
pluripotency of stem cells

OCT4 Octamer-Binding Transcription Factor-4
POU Domain, Class 5, Transcription
Factor 1 (POU5F1)

Endometrial cacner152

Glioma/glioblastoma1163

Breast cacner1164

Head and neck squamous cell
cancer1165

Gastric cancer1166

A homeodomain transcription factor of the POU
family that maintains self-renewal of stem cells

Nanog Nanog Homeobox Breast cancer1167,1168

Lung cancer1169,1170

Hepatocellular cancer1171,1172

Colorectal cancer1173,1174

Ovarian cancer1175,1176

Esophageal cancer1177

Gastric cancer1178

Prostate cancer1179

Renal cell carcinoma1180

Pancreatic cancer1062

A transcription factor that maintains pluripotency of
stem cells
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CD133, also known as Prominin-1 (PROM1) and encoded by the
PROM1 gene, belongs to the pentaspan transmembrane glyco-
proteins family.363 CD133 can activate the PI3K/AKT, Src, and
β-Catenin signaling intracellularly to participate in cancer progres-
sion.363 CD133 is expressed in a wide range of human tissues and
can serve as a CSC marker for various types of solid tumors and
hematopoietic malignancies (Tables 2 and 3). The combined use
of CD44 and CD133 as CSC markers has been reported in
gallbladder cancer.364 Plus, CD44+/CD133− and CD44−/CD133+

cells both can represent CSCs in colorectal cancer.365,366

The differences between CSC markers for solid tumors and those
for hematopoietic malignancies mainly lie in the variation of cell
surface markers (Table 3) (Fig. 3). Interleukin-1 Receptor Accessory
Protein (IL1RAP), encoded by the IL1RAP gene, is a receptor for
interleukin-1.367,368 It has been identified as a CSC marker for
myeloid leukemia.369 Similarly, CD25, a receptor for interleukin-2, and

CD123, a receptor for interleukin-3, are also identified as CSC markers
for AML or CML.370–373 CD70, expressed on the surface of various
cells, and CD27, expressed on the T cell surface, are a pair of
costimulatory molecules. The CD70/CD27 signaling is found
activated in acute or chronic myeloid leukemia stem cells and
contributes to the stemness formation of these cells by activating the
WNT pathway.374–376 CD34+/CD38− is also identified as a marker for
myeloid leukemia stem cells and has been widely used.2 Compared
to myeloid leukemia, CSC markers for lymphoblastic leukemia are
hardly reported. A study suggests that CD90 and CD110 correlate
with stemness of ALL cells and might be a CSC marker.377

Notably, a single CSC marker or a pair of CSC markers might not
be sufficient to identify CSCs. For instance, while CD133+,
CD166+CD44+, and CD24+CD44+ phenotypes of human color-
ectal cells do not correlate with stem cell properties, these 3 sets
of markers are reported as CSC-specific in colorectal cancer.378

Table 2. continued

Biomarker Full name and alternative name(s) Expression in cancer types Function(s)

Head and neck squamous cell
carcinoma1181

Glioma/glioblastoma1182

Cervical cancer1183

SALL4 Sal-Like Protein 4 Hepatocellular cancer1184,1185

Melanoma1186

Choriocarcinoma1187

Esophageal cancer1150

Breast cancer1099

Ovarian cancer1188

A transcription factor that maintains pluripotency of
stem cells1189

ALDH Aldehyde Dehydrogenase Colorectal cancer1190

Head and neck squamous cell
carcinoma1191

Lung cancer1192

Glioma/glioblastoma1193

Endometrial cancer1194

Neuroblastoma1195

Ovarian cancer1101

Renal cell carcinoma1196

Adenoid cyst carcinoma1197

Breast cancer1198

Cholangiocarcinoma1199

A polymorphic enzyme that oxidates aldehydes to
carboxylic acids

Musashi-1/2 RNA-Binding Protein Musashi Homolog
1/2

Hepatocellular carcinoma894

Endometrial cancer829

Glioblastoma1200

Breast cancer1201

Colorectal cancer1202

Esophageal cancer1203

Lung cancer1204

RNA-binding protein involved in post-transcriptional
mRNA editing

Letm1 Leucine Zipper-EF-Hand Containing
Transmembrane Protein 1

Gastric cancer339

Colorectal cancer338

Lung cancer337

Osteosarcoma341

A Ca2+/H+ antiporter in the inner membrane of
mitochondria336

AFP Alpha Fetoprotein Pancreatic cancer343

Cholangiocarcinoma344

Hepatocellular cancer345

A carrier protein in the fetus liver and the yolk sac

BMI-1 B Lymphoma Mo-Mlv Insertion Region
1 Homolog
Polycomb Group RING Finger Protein 4
(PCGF4)
RING Finger Protein 51 (RNF51)

Gastric cancer1205

Hepatocellular cancer1206

Endometrial cancer1207

Thyroid cancer1208

Lung cancer1209

Head and neck squamous cell
carcinoma1210

Colorectal cancer1211

Glioma/glioblastoma1212

Pancreatic cancer1213

Prostate cancer1209

A subunit of PRC1
Negatively regulating p16INK4a and p14ARF/p19ARF

expression at the transcriptional level
Inhibiting E-cadherin expression1214

Dcamkl-1 Doublecortin-Like Kinase 1 Colorectal cancer351 A microtubule-associated protein that also mediates
inflammation response350
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Plus, ALDH1 alone does not correlate with stem cell-like features in
hepatocellular cancer cells,379 but CD133+ALDH+ cells are
significantly more tumorigenic than their CD133−ALDH+ or
CD133−ALDH− counterparts,380 suggesting that combined use
of CD133 and ALDH can better distinguish hepatocellular CSCs.
Conversely, the absence of a CSC marker does not always indicate
the absence of stemness. For instance, CD44− head and neck
squamous carcinoma cells also have stem-like features, although
CD44 is a CSC marker for this type of cancer.381 This phenomenon

indicates that these CSCs may have distinct origins. Indeed, in
glioblastoma, CD133+ and CD133− CSC respectively resemble
fetal neural stem cells and adult neural stem cells, both of which
exhibit stem-like properties.382 It is also noteworthy that certain
CSC markers do not apply to every type of malignancy, even
though it expressed in a wide range of tissues. For example,
although ALDHs are present in most human tissues and represent
a CSC marker for several cancer types, their activities play no
functional role in stem cell-like properties in anaplastic thyroid

Table 3. Frequently used cancer stem cell markers for hematopoietic malignancies

Biomarker Other name(s) Expression in cancer types Function

Cell surface markers

IL1RAP Interleukin 1 Receptor Accessory Protein
IL1R3

Chronic myeloid
leukemia369

Acute myeloid leukemia368

A receptor for interleukin-1

CD133 Prominin-1
PROM1

Acute lymphoblastic
leukemia1215

Acute myeloid leukemia1216

Activating the PI3K/AKT, Src, and β-Catenin363

CD70/CD27 Acute myeloid leukemia374

Chronic myeloid
leukemia375

CD70: a costimulatory molecule
CD27: a costimulatory molecule on T cells

CD34+/CD38− Chronic myeloid
leukemia1217

Acute myeloid leukemia1218

CD34: a member of a family of single-pass
transmembrane sialomucin proteins and an adhesion
molecule
CD38: a receptor for CD31 and an enzyme that catalyzes
the synthesis of ADP ribose and cyclic ADP-ribose1219

CD25 Interleukin-2 Receptor Alpha Chain (IL2RA) Acute myeloid leukemia370

Chronic myeloid
leukemia372

A receptor for interleukin-2

CD123 Interleukin-3 Receptor Acute myeloid leukemia373 A receptor for interleukin-3

CD26 Dipeptidyl Peptidase-4 (DPP4 or DPPIV)
Adenosine Deaminase Complexing Protein 2 (ADCP2)

Chronic myeloid
leukemia1220

A cell-surface enzyme that cleave a wide range of
peptides1221

CD36 Platelet Glycoprotein 4 Fatty Acid Translocase (FAT)
Scavenger Receptor Class B Member 3 (SCARB3)
Glycoproteins 88 (GP88)

Chronic myeloid
leukemia1222

A member of the class B scavenger receptor family

CD90 Thy-1 Acute lymphoblastic
leukemia377

Src activation1124

CD110 Thrombopoietin Receptor
Myeloproliferative Leukemia Protein

Acute lymphoblastic
leukemia377

A receptor for thrombopoietin

CD371 CLEC12A
CLL-1

Acute myeloid leukemia1223 A member of the C-type lectin/C-type lectin-like domain
(CTL/CTLD) superfamily

TIM-3 Hepatitis A Virus Cellular Receptor 2 (HAVCR2) Acute myeloid leukemia1224 An immune checkpoint on lyphocytes, myeloid cells,
and other cells

CD117 KIT
Proto-Oncogene c-KIT
Tyrosine-Protein Kinase KIT
Mast/Stem Cell Growth Factor Receptor (SCFR)

Acute myeloid leukemia1225 A receptor tyrosine kinase involved in hematopoiesis
and gametogenesis

Intracellular markers

SOX2 SRY-Box Transcription Factor 2 T-cell leukemia1226 A transcription factor that maintains self-renewal and
pluripotency of stem cells

ALDH Aldehyde Dehydrogenase Chronic myeloid
leukemia1227

Acute myeloid leukemia1228

Multiple myeloma1229

A polymorphic enzyme that oxidates aldehydes to
carboxylic acids

Nanog Nanog Homeobox T-cell leukemia1226

Acute myeloid leukemia1230
A transcription factor that maintains pluripotency of
stem cells

Musashi-2 Musashi RNA Binding Protein-2 Mixed-lineage leukemia334

Mantle cell lymphoma335

Myeloid leukemia333

RNA-binding protein involved in post-transcriptional
mRNA editing

OCT3/4 Octamer-Binding Transcription Factor-3/4
POU Domain, Class 5, Transcription Factor 1 (POU5F1)

Acute myeloid leukemia1231 A homeodomain transcription factor of the POU family
that maintains self-renewal of stem cells

SALL4 Sal-Like Protein 4 Mixed lineage leukemia1232

Chronic myelogenous
leukemia1233

A transcription factor that maintains pluripotency of
stem cells1189

BMI-1 B Lymphoma Mo-Mlv Insertion Region 1 Homolog
Polycomb Group RING Finger Protein 4 (PCGF4)
RING Finger Protein 51 (RNF51)

Acute lymphoblastic
leukemia1234

Chronic myeloid
leukemia1235

Acute myeloid leukemia1236

A subunit of PRC1
Negatively regulating p16INK4a and p14ARF/p19ARF
expression at the transcriptional level
Inhibiting E-cadherin expression1214
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cancer cells.383 Also, the CSC markers, CD133 and CD44, are
generally overexpressed in gastrointestinal stromal tumors (GISTs)
and cannot be used to distinguish CSCs from non-CSCs.384

MOLECULAR REGULATIONS IN CSCS
WNT/β-Catenin pathway
The WNT/β-Catenin signaling pathway, known for its involvement
in various physiological processes and diseases, is evolutionarily
conserved.385 Recent evidence highlights its crucial role in
maintaining the stemness of CSCs. Chen et al. demonstrated its
significance in converting mouse-iPSCs into CSCs.386 This pathway
regulates stemness in CSCs across diverse cancer types, including
lung, liver, thyroid, colorectal, cervical, and glioblastoma. For
instance, in cervical cancer, cells with elevated Leucine-Rich
Repeat-Containing G-Protein-Coupled Receptor 6 (LGR6) exhibit
enhanced stemness, as LGR6 activates the WNT/β-Catenin path-
way, forming a positive feedback loop with Transcription Factor
7-Like 2 (TCF7L2).387 Similarly, LSD1 maintains stemness in thyroid
cancer by targeting Adenomatous Polyposis Coli 2 (APC2) or
indirectly regulating Dickkopf WNT Signaling Pathway Inhibitor 1
(DKK1) via the HIF-1α/miR-146a axis to antagonize the WNT
pathway.94 In liver cancer, EPHB2 sustains tumor stemness by
activating the SRC/β-Catenin cascade. The WNT/β-Catenin path-
way, in turn, upregulates EPHB2 expression in a TCF1-dependent
manner, forming a positive feedback loop linked to liver CSCs.95

Furthermore, non-coding RNAs play a pivotal role in stemness
maintenance. For example, Protein Kinase Membrane-Associated
Tyrosine/Threonine 1 (PKMYT1) associated lncRNA sponges miR-
485-5p to upregulate PKMYT1, inhibiting β-transducin repeat
containing protein 1 (β-TrCP1)-mediated β-Catenin degradation
and activating WNT signaling in NSCLC stem cells.388 Similarly, in
liver CSCs, lncRNA Small Nucleolar RNA Host Gene 5 (lncSNHG5)
activates the WNT/β-Catenin pathway by inhibiting Upstream
Frameshift 1 (UPF1), sustaining stemness.302 Additionally, over-
expression of LINC00839 in GSCs via Methyltransferase-Like 3
(METTL3)-mediated m6A modification enhances c-Src-driven

phosphorylation of β-Catenin, activating WNT signaling and
promoting stemness.389 Likewise, in colorectal cancer, Sec62,
induced by METTL3-mediated m6A modification, enhances
β-Catenin nuclear translocation, reducing its ubiquitination
degradation and promoting cancer stemness.390

The involvement of the WNT/β-Catenin signaling pathway in
CSCs contributes to malignant behaviors such as tumorigenesis
and differentiation. Kim et al. showed that colorectal cancer cells
expressing CD44 and CD133, markers of CSCs, exhibit strong
tumor-initiating effects, accompanied by significant activation of
the WNT/β-Catenin pathway.391 Furthermore, a CD44+Cellular
Prion Protein (PrPc+) LGR4+ CSC subpopulation in colorectal
cancer demonstrates high metastatic potential, with LGR4 and
PrPC activating the WNT/β-Catenin pathway.392 Far Upstream
Element-Binding Protein 1 (FUBP1) upregulation in colorectal
cancer activates the WNT/β-Catenin cascade, enhancing stemness
and potentially driving tumorigenesis.393 In breast cancer,
Calreticulin (CALR) promotes a stem cell phenotype, with
upregulation by HIF-1 activating the WNT/β-Catenin pathway to
facilitate tumor initiation.394 Piwi-Like RNA-Mediated Gene Silen-
cing 2 (Piwil2)-overexpressing cervical cancer cells exhibit strong
stemness, partly attributed to the WNT/β-Catenin pathway,
inhibition of which induces cell differentiation and suppresses
tumorigenicity.395

The WNT/β-Catenin signaling pathway in CSCs is involved in the
metastasis process. Husain et al. demonstrated that Farnesyl
Dimethyl Chromanol (FDMC), an inhibitor of the WNT/β-Catenin
pathway, suppresses the stemness and metastatic potential of
colorectal CSCs, inducing their apoptosis.396 Colorectal cancer
exhibits overexpression of Disheveled3 (DVL3), activating the WNT/
β-Catenin/c-Myc/SOX2 signaling cascade, thereby enhancing
stemness and metastatic potential.397 In gastric cancer, ST2+

serves as a functional marker of CSCs and activates the WNT
signaling pathway, promoting metastasis through interaction with
BCL-XL.398 Similarly, in pancreatic cancer, upregulated Frizzled-7
(FZD7) promotes CSC phenotype and liver metastasis via the
canonical WNT/β-Catenin pathway.399 Additionally, polychlorinated

Fig. 3 Biomarkers for CSCs in solid tumors and hematopoietic malignancies. Biomarkers for CSCs in solid tumors (left), hematopoietic
malignancies (right), or both (center). The biomarkers can be classified into cell-surface markers and intracellular markers. Intracellular markers
can be further classified into transcription factors that function in the nucleus and molecules that are found in the cytoplasm. Cell-surface
markers make up the main differences between markers of solid tumors and those of hematopoietic malignancies
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biphenyls 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ)
activates the WNT/β-Catenin pathway, enhancing breast cancer
stemness and metastasis.400

Most studies have consistently shown a positive correlation
between the activation of the WNT/β-Catenin pathway and the
malignant behavior of CSCs. However, in radioresistant glioblas-
toma, the expression of N-cadherin correlates positively with the
inhibition of the WNT/β-Catenin signaling pathway. N-cadherin
binds to β-Catenin in the cytoplasm, inhibiting neuronal
differentiation mediated by the WNT signaling pathway and
maintaining a stem-like phenotype.401 Conversely, in ameloblas-
toma, β-Catenin expression is negatively correlated with the CSCs’
marker SOX2. Exogenous activation of the WNT/β-Catenin
signaling pathway leads to the inhibition of tumor stemness and
invasiveness.402 These findings suggest that the role of the WNT/
β-Catenin signaling pathway in CSCs is complex and may vary
across different cancer types and states.

Hedgehog pathway
The classic hedgehog signaling pathway encompasses several
cascades. Initially, Patched (PTCH) binds to the hedgehog ligand,
relieving the inhibition of Smoothened (SMO). This event further
facilitates the dissociation of the Suppressor of Fused (SuFu) from
GLI, allowing GLI activators to regulate target genes.403 Yan et al.
demonstrated that the interaction between glioma cells and
endothelial cells activates the hedgehog pathway, promoting the
transformation of glioma cells into a GSC phenotype.404 The
regulation of the hedgehog pathway in CSCs is intricately linked to
their emergence and various malignant biological behaviors.405

The hedgehog signaling pathway plays a pivotal role in
maintaining the stemness of CSCs. Kelch Domain-Containing 8 A
(KLHDC8A) has been identified in GSCs as an upstream factor
involved in maintaining stemness by activating the hedgehog
signaling pathway through ciliogenesis.406 Similarly, Liu et al.
revealed the existence of the ISL1/sonic hedgehog (SHH)/GLI1
axis, which promotes GSCs’ stemness.407 The elimination of the
liver CSCs’ stemness maintainer Ubiquitin-Like With PHD And Ring
Finger Domains 1 (UHRF1) results in extensive DNA hypomethyla-
tion, ultimately upregulating CEBPA to inhibit the hedgehog
pathway.408 Additionally, miR-324-5p weakens the function of
multiple myeloma stem cells by inhibiting the hedgehog signaling
pathway.409 Guen et al. demonstrated the connection between
the EMT program and stemness, showing that tumor-initiating
cells activate the hedgehog pathway through the EMT program to
enhance stemness.410

Furthermore, the hedgehog signaling pathway is implicated in
the tumor-initiating function of CSCs. In liver CSCs, the circIPO11/
Topoisomerase 1 (TOP1)/GLI1 axis associated with liver cancer
initiation has been identified. TOP1 is recruited to the GLI1
promoter by circIPO11 to activate the hedgehog pathway,
promoting stemness and tumor initiation.411 Mok et al. revealed
that cholesterol-related pathways are significantly upregulated in
liver CSCs compared to normal stem cells. The hedgehog signaling
pathway is activated in hepatic CSCs as a downstream factor for
cholesterol synthesis mediated by the caspase-3/Sterol-Regulatory
Element-Binding Protein 2 (SREBP2) axis, ultimately maintaining
stemness and tumorigenicity.412 Similarly, TRNA Methyltransferase
6 (TRMT6)/TRMT61A-mediated N1-methyladenosine methylation
in liver CSCs promotes cholesterol metabolism and activates the
hedgehog pathway to maintain stemness and enhance tumor-
igenicity.413 In breast CSCs, the activated hedgehog signaling
pathway is positively associated with stemness maintenance and
tumorigenicity. Overexpression of Tetraspanin-8 (TSPAN8) relieves
the inhibition of SMO by PTCH1 and phosphorylates SMO by
promoting the binding of PTCH1 to SHH1, recruiting Ataxin-3
(ATXN3) to reduce the ubiquitination degradation of the SHH/
PTCH1 complex, ultimately promoting GLI1 transcription.414

Additionally, Polypeptide N-Acetylgalactosaminyltransferase 1

(GALNT1)-mediated glycosylation of SHH in bladder cancer
activates the hedgehog pathway, increasing the stemness and
tumorigenicity of CSCs.415 Immunity may also play a significant
role in influencing the effects of the hedgehog pathway in CSCs.
IL-25, an intrinsic hedgehog pathway agonist, promotes CSCs’
function, increasing colitis-related tumorigenesis through the
accumulation of GLI1.416

It is widely recognized that CSCs participate in the process of
metastasis by activating the hedgehog signaling pathway.417

Upregulated Ubiquitin-Specific Peptidase 37 (USP37) in breast
CSCs binds and stabilizes GLI1 to activate the hedgehog pathway,
which further regulates the stemness and metastatic potential of
CSCs.418 GLI1 was identified as a key regulatory gene for colorectal
cancer stemness, and activation of the Hh/GLI1 signaling cascade
was positively correlated with the invasiveness of colorectal
CSCs.419 Disc Large Homolog 5 (DLG5), an activator of the
hedgehog signaling pathway in glioblastoma. DLG5 prevents
ubiquitination and degradation of GLI1 to promote the migration
and stemness maintenance of GSCs.420

Notch pathway
The Notch pathway comprises several main components: the
Notch receptor, Notch ligand, CBF-1, suppressor of hairless, Lag
(CSL), DNA binding protein, and downstream target genes. Initially
discovered by Drosophila,421 the Notch pathway has been shown
to play a crucial role in promoting the formation of medullo-
blastoma stem cells.422 It is implicated in maintaining the
stemness of CSCs, as evidenced by its upregulation in supraten-
torial ependymoma and mucoepidermoid carcinoma, where it
correlates positively with the expression of CSCs’ markers.423,424

Additionally, syndecan-1 in inflammatory breast CSCs acts as a
molecular marker maintaining their stem phenotype by activating
the Notch pathway.425 While most studies support the positive
relationship between Notch pathway activation and stemness
maintenance, Högström et al. reported that upregulation of the
Notch pathway attenuated the stemness of Prospero Homeobox 1
(PROX1+) colorectal cancer cells.426

Moreover, activation of the Notch pathway in CSCs has been
associated with metastasis in various tumors such as breast
cancer, glioma, renal cancer, and ovarian cancer. In breast cancer,
Bone Morphogenetic Protein 4 (BMP-4) promotes stemness and
EMT programs by activating the Notch pathway in a Smad4-
dependent manner.427 Similarly, Signal Peptide CUB Domain And
EGF-Like Domain Containing 2 (SCUBE2) overexpression in breast
cancer cells enhances tumorigenicity and metastatic potential by
activating the Notch pathway.428 Family With Sequence Similarity
129 Member A (FAM129A) prevents ubiquitination and degrada-
tion of Notch1, upregulating the Notch pathway to maintain the
stemness and metastatic potential of GSCs.429 Notably, the
upregulated Notch pathway in renal CSCs contributes to multiple
malignant biological behaviors, including metastasis, stemness
maintenance, and tumorigenesis.430 Additionally, glycosyltransfer-
ase GnT-III-mediated bisecting glycosylation of Notch1 effectively
activates the Notch pathway, supporting stemness maintenance
and metastasis.431

Activation of the Notch pathway in CSCs is associated with
tumorigenesis, differentiation, and immune regulation. Liposar-
coma cells with continuous activation of the Notch pathway
exhibit overexpression of CSCs’ marker genes, leading to
enhanced tumorigenesis compared to cells with normal Notch
activity.432 Speckle-Type POZ Protein-Like (SPOPL), a stemness
maintainer highly expressed in GSCs, activates the Notch pathway,
thereby increasing tumorigenicity.433 Inhibition of the Notch
pathway in GSCs induces significant neuronal differentiation and
reduces stemness.434 Similarly, lncRNA FOXD2 Adjacent Opposite
Strand RNA 1 (FOXD2-AS1) recruits TATA-Box Binding Protein
Associated Factor 1 (TAF-1) to the promoter of Notch1, initiating
the Notch signaling pathway in GSCs. Inhibition of FOXD2-AS1
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induces the apoptosis and differentiation of GSCs while attenuat-
ing their stemness.435 Additionally, the Notch pathway plays a
crucial role in immune system regulation. Expression of histone
methyltransferase G9a in GSCs positively correlates with stemness
characteristics. G9a binds to the Notch suppressor F-Box And WD
Repeat Domain Containing 7 (FBXW7), upregulating the Notch
pathway and enhancing the expression of PD-L1 in GSCs. This, in
turn, weakens the function of T lymphocytes, creating an
immunosuppressive microenvironment.436

NF-κB pathway
The NF-κB pathway, consisting of several cascades, is activated
when cells encounter various stimuli, leading to the degradation
of I-kappa B (IκB) protein by IκB kinase activation. This degradation
releases NF-κB dimers, which are further activated through various
post-translational modifications and translocated to the nucleus.
There, they bind to target genes, promoting the transcription of
these genes.437 NF-κB activation plays a critical role in the
formation of breast CSCs.438 Pathway analysis of CSCs isolated
from prostate cancer and NSCLC patient revealed the specific
activation of the NF-κB pathway, suggesting its potential as an
effective therapeutic target.439,440 Evaluation of the NF-κB
signature in patient-derived GSCs can accurately predict the
prognosis of low-grade glioma.441

Moreover, the NF-κB pathway is implicated in maintaining
stemness. Calcium Calmodulin-Dependent Protein Kinase II γ
(CaMKIIγ), identified as a marker of AML stem cells, maintains
stemness by activating the 5-LO/NF-κB pathway.442 In ovarian
CSCs, NF-κB pathway-related proteins are highly expressed, and
inhibiting the NF-κB pathway reduces the CSC population.443 The
lncRNA ASB16 Antisense RNA 1 (ASB16-AS1) cooperates with ATM
kinase to phosphorylate Tripartite Motif Containing 37 (TRIM37),
activating the NF-κB pathway and promoting gastric cancer cell
stemness.444 Additionally, the Let-7a/Ras/NF-κB axis acts as a
stemness antagonistic pathway in breast CSCs, with Let-7a
inactivating the NF-κB pathway in a Ras-dependent manner.445

Overexpression of S100 Calcium-Binding Protein A4 (S100A4)
activates the Inhibitor Of Kappa B Kinase (IKK)/NF-κB signaling
pathway, contributing to the stemness maintenance of bladder
CSCs.446

The activated NF-κB pathway in CSCs is intimately linked to
tumorigenesis and metastasis. The transition from a proneural to
mesenchymal phenotype (PMT) characterizes the conversion of
less aggressive proneural GSCs into highly aggressive mesench-
ymal GSCs.447,448 Fos-Like Antigen 1 (FOSL1) has been identified
as a key regulator of PMT, upregulating Ubiquitin-Conjugating
Enzyme (UBC9) to enhance the SUMOylation of Cylindromatosis
(CYLD). This process activates the NF-κB pathway, supporting
the PMT program of GSCs.449 Similarly, Mixed Lineage Kinase 4
(MLK4) binds to phosphorylated IKKa, activating the NF-κB
pathway and facilitating the transformation of GSCs into the
mesenchymal phenotype.450 Upregulated BMI-1 in CD133+ liver
CSCs enhances NF-κB activation and nuclear translocation,
promoting CSC stemness and metastatic potential while
inhibiting apoptosis.451 The estrogen metabolite 2-methoxy
estradiol (2-ME2) disrupts the NF-κB/HIF-1 axis, reversing the
EMT program and abolishing the metastatic potential of
nasopharyngeal carcinoma stem cells.452 Stromal Cell-Derived
Factor-1 (SDF-1) overexpression in breast cancer induces
stemness and EMT phenotypes by activating the NF-κB path-
way.453 Additionally, miR-221/222 inhibits Phosphatase And
Tensin Homolog (PTEN), leading to NF-κB activation and
enhanced stem cell characteristics, tumorigenesis, and metas-
tasis in breast cancer cells.454 A positive feedback loop involving
DiGeorge Syndrome Critical Region 8 (DGCR8)/circKPNB1/SPI1/
DGCR8 promotes stemness in GSCs, with SPI1 upregulating the
NF-κB pathway in a TNF-α-dependent manner, thereby promot-
ing tumorigenesis.455

JAK/STAT pathway
The JAK/STAT pathway consists of three main components:
tyrosine kinase-related receptors that receive signals, tyrosine
kinase JAK that transmits signals, and transcription factors STAT.456

Upon binding of various stimulatory factors to the receptor, JAK is
phosphorylated and activated, subsequently recruiting and
phosphorylating the transcription factor STAT. This phosphory-
lated STAT then forms dimers and is translocated to the nucleus,
where it binds to target genes, regulating downstream gene
expression.457

Regulation of the JAK/STAT pathway is closely linked to the
maintenance of stemness. Misra et al. demonstrated that selective
inhibition of STAT3 significantly reduced the expression of
stemness-related genes in breast CSCs.458 Alpha-casein acts as a
STAT pathway antagonist, inhibiting the STAT3/HIF-1α axis and
impairing the function of breast CSCs.459 Moreover, activation of
the lipid metabolism-related STAT3/CPT1B/fatty acid β-oxidation
(FAO) axis in breast CSCs correlates positively with stemness
maintenance.460 Similarly, STAT pathway activation contributes to
stemness maintenance in osteosarcoma, liposarcoma, and thyroid
cancer.461–463 Immunity may play a significant role in JAK/STAT
pathway regulation in CSCs. IL-17E/IL-25 secreted by non-CSCs
binds to IL-17 Receptor B (IL-17RB) on CSCs, activating the JAK/
STAT3 pathways to regulate liver CSCs’ stemness.464 Additionally,
IL-6 is secreted by regulatory T cells, which upregulates the STAT3
pathway in glioma cells, maintaining the stemness-associated
phenotype.465

Regulation of the JAK/STAT pathway in CSCs is intricately linked
to tumorigenesis, metastasis, and metabolic reprogramming.
Kanno et al. demonstrated that Von Hippel-Lindau (VHL) inhibits
the JAK2/STAT3 signaling pathway, thereby reducing the tumori-
genic ability of GSCs.466 In prostate CSCs, IL-6-mediated activation
of the JAK/STAT pathway is a crucial event in tumorigenesis, and
its inhibition eliminates tumor initiation.467 LIM Domain Only 2
(LMO2) acts as an endogenous agonist of the JAK/STAT pathway
by forming a complex with LIM Domain-Binding 1 (LDB1) that
phosphorylates STAT3, promoting the expression of ID1 and
thereby upregulating the stemness and metastatic potential of
GSCs.468 Leptin, an adipocyte-derived hormone, activates the JAK/
STAT pathway in gastric cancer cells, maintaining their stemness
and metastatic potential.469 Interferon-Induced Transmembrane
Protein 3 (IFITM3), derived from GSCs, activates the JAK/STAT3
pathway to upregulate Basic Fibroblast Growth Factor (bFGF)
expression, promoting angiogenesis in glioblastoma, a critical step
in metastasis.470 Contrary to the STAT3/CPT1B/FAO axis, which is
activated to maintain the stemness of breast CSCs, viperin
overexpression in CSCs partially inhibits FAO through the JAK/
STAT pathway, thereby reprogramming metabolism to promote
tumor progression.460,471

TGF-β pathway
The TGF-β family ligands form a complex with receptors on the
membrane, and the activated receptor kinase recruits and
activates downstream Smad proteins, thereby inducing nuclear
transfer of Smad proteins and exerting transcriptional regula-
tion.472 The TGF-β pathway plays a pivotal role in embryonic
development, immune surveillance, and maintenance of home-
ostasis.473 Dysregulation of the TGF-β pathway in CSCs is closely
associated with the occurrence and progression of tumors.474

Nakano et al. demonstrated that stimulation of the TGF-β pathway
triggers the conversion of CD44− non-colorectal CSCs into CD44+

colorectal CSCs. Moreover, sustained activation of the TGF-β
pathway is crucial for colorectal CSCs to maintain an undiffer-
entiated state.141 Similarly, activation of the TGF-β signaling
pathway has been observed during breast CSC generation.475

Activation of the TGF-β pathway in CSCs is closely linked to
tumorigenesis and stemness maintenance. The U2 Auxiliary Factor
65 (U2AF65)/circNCAPG/Ras-Responsive Element-Binding Protein
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1 (RREB1) positive feedback loop was identified in GSCs, where
U2AF65 binds to and stabilizes circNCAPG, thereby stabilizing
RREB1 and promoting its nuclear translocation. Accumulated
RREB1 activates the TGF-β1 pathway to maintain the stemness of
GSCs and promote tumorigenesis.476 Similarly, Heat Shock Protein
47 (HSP47) induces the stemness and tumorigenesis of GSCs by
activating the TGF-β pathway.477 Lymphoid Enhancer-Binding
Factor 1 (LEF1) directly binds to and upregulates the expression of
ID1, triggering the TGF-β pathway, which in turn promotes the
stemness-associated phenotype and tumorigenicity of esophageal
squamous cell carcinoma.478 Wang et al. discovered that CD51, a
marker of colorectal CSCs, activates the TGF-β/Smad signaling
pathway to support tumorigenesis.479 The Hematological And
Neurological Expressed 1-Like (HN1L) overexpression triggers the
TGF-β pathway by upregulating FOXP2, ultimately maintaining
stemness and promoting tumorigenesis of prostate cancer.480

Activation of the TGF-β pathway in CSCs plays a pivotal role in
tumor metastasis. Wen et al. demonstrated that targeted
inhibition of the TGF-β/Smad pathway effectively eliminated the
EMT program and metastatic potential of ovarian CSCs.481 FZD7
activates the TGF-β1/Smad3 pathway to confer stemness to
pancreatic cancer cells. Further evidence suggests that upregula-
tion of FZD7/TGF-β1/Smad3 promotes the EMT program to
support pancreatic cancer liver metastasis.399 Similarly, Epithelial
Membrane Protein 3 (EMP3) in lung CSCs interacts with TGF-β
Receptor Type 2 (TGFBR2) to activate the TGF-β/Smad pathway,
subsequently upregulating stemness and promoting the EMT
program.482 Activation of the SIX Homeobox 1 (Six1)/Eyes Absent
(EYA)/TGF-β pathway mediates CSC characteristics and EMT
programs in breast cancer.483 Additionally, the interaction
between miRNAs and the TGF-β pathway is a critical factor
affecting tumor metastasis. MiR-495, identified as a stemness
suppressor in oral squamous cell carcinoma, inhibits Homeobox
C6 (HOXC6), thereby inhibiting the TGF-β pathway to prevent
stemness characteristics and the EMT program of CSCs and induce
their apoptosis.484 MiR-106b attenuates the expression of the
inhibitory Smad protein Smad7 to trigger the TGF-β pathway and
promote the EMT program.485 Angiogenesis is a crucial aspect of
the metastatic cascade.486 Chen et al. identified Paired-Related
Homeobox 1 (Prrx1) as a non-GSC stemness-promoting factor and
a GSC stemness-maintaining factor in glioma. Prrx1 directly binds
to the TGF-β1 promoter region to activate the TGF-β/Smad
pathway, which in turn upregulates stemness and promotes
vascularization in the tumor microenvironment.487

PI3K/AKT pathway
As a pivotal factor in the PI3K/AKT pathway, AKT undergoes
structural changes and activation by PI3K, which subsequently
modulates a cascade of downstream substrates to regulate
various cellular behaviors.488 The mTOR is a classic downstream
target of the PI3K/AKT pathway, while PTEN acts as a negative
regulator by dephosphorylating AKT to suppress downstream
signaling.489 The involvement of the PI3K/AKT pathway in driving
the differentiation of normal stem cells into CSCs has been
confirmed.490,491 Moreover, this pathway is closely associated with
the maintenance of stemness in CSCs. Madsen et al. demonstrated
a positive correlation between PI3K/AKT/mTOR pathway activation
and breast cancer stemness score.492 Additionally, activation of
the insulin/insulin-like growth factor signaling (IIS) pathway in
breast CSCs further potentiates the PI3K/AKT pathway to sustain
MYC expression, thereby enhancing the stemness traits of breast
CSCs.493 Furthermore, PD-L1 contributes to the establishment of a
suppressive immune microenvironment.494 Almozyan et al.
revealed that the continuously activated PI3K/AKT pathway by
PD-L1 is pivotal in maintaining the stemness of breast CSCs.495

Activation of the PI3K/AKT pathway in CSCs is intricately linked
to tumorigenicity. Activation of the PI3K/AKT pathway and the
MAPK/ERK pathway respectively promote and inhibit the

stemness signatures and tumorigenic potential of lung cancer.496

The liver cancer tumor suppressor Connexin 32 (Cx32) attenuates
the activity of the PI3K/AKT pathway, thereby suppressing
stemness and tumorigenicity.497 The tumor suppressor miR-30a
binds to and inhibits 5’-Nucleotidase Ecto (NT5E), thus down-
regulating the activity of the NT5E-mediated PI3K/AKT pathway,
thereby impeding the stemness and tumorigenicity of GSCs.498

Non-coding RNAs also play a regulatory role in the PI3K/AKT
pathway. Tumor suppressors miR-873 and miR-30a bind and
inhibit patterns of Pleckstrin-2 (PLEK2) and NT5E respectively,
leading to downregulation of the PLEK2 or NT5E-mediated PI3K/
AKT pathway, thus hindering stemness and tumorigenicity of
pancreatic CSCs and GSCs.498,499 Similarly, miR-3187-3p, which can
be sponged by circ_0000745, inhibits Erb-B2 Receptor Tyrosine
Kinase 4 (ERBB4), thereby attenuating the activity of the PI3K/AKT
pathway, exerting a suppressive effect on the tumorigenicity and
stemness of ovarian cancer.500

The activation of the PI3K/AKT pathway in CSCs is intricately
linked to metastasis. AKT-mediated phosphorylation of Testis-
Specific Y-Like Protein 5 (TSPYL5), a factor involved in stemness
maintenance, impedes its ubiquitination and degradation. Phos-
phorylated TSPYL5 further inhibits negative regulators of the PI3K/
AKT pathway, forming an AKT/TSPYL5/PTEN positive feedback
loop that sustains the expression of stemness-related genes and
promotes EMT programs.501 In head and neck squamous cell
carcinoma, activation of the PI3K/AKT/mTOR pathway upregulates
SOX2, promoting the maintenance of the stemness phenotype
and the E-cadherin-mediated EMT program.502 Stress-Induced
Phosphoprotein 1 (STIP1) in osteosarcoma enhances MMP-2 and
MMP-9 by activating the PI3K/AKT and ERK1/2 pathways,
ultimately promoting osteosarcoma CSC metastasis.503 In breast
CSCs, Transmembrane And Coiled-Coil Domain Family 3 (TMCC3)
binds AKT to activate the PI3K/AKT pathway, thereby supporting
tumorigenesis and metastasis.504 CAFs are pivotal in supporting
metastasis. CAFs upregulate TNF Receptor Superfamily Member 19
(TNFRSF19/TROY), a marker of liver CSCs, which activates the PI3K/
AKT/T-Box Transcription Factor 3 (TBX3) pathway by promoting
polyubiquitination of the PI3K inhibitory subunit p85α. Accumu-
lated TBX3 maintains stemness and promotes metastasis.505

Similarly, CAFs-secreted periostin induces the phosphorylation of
FAK to activate AKT, enriching CSCs in the gastric cancer cell
population.216 Moreover, Liang et al. demonstrated that inhibition
of the PI3K/AKT pathway attenuates the stemness characteristics
and angiogenesis of endometrial cancer, which are closely
associated with distant metastasis.506,507

PPAR pathway
PPARs, belonging to the nuclear hormone receptor family, are
ligand-activated receptors that regulate various metabolic pro-
cesses like fat and glucose metabolism. There are three main
subtypes: PPARα, PPARδ/β (PPARD), and PPARγ (PPARG).508

The activation of the PPAR pathway plays a pivotal role in
maintaining the stemness of CSCs. In liver CSCs, activation of the
PPARα pathway and the enrichment of its downstream factor,
Stearoyl-CoA Desaturase 1 (SCD1), contribute to the stemness
characteristics.509 Similarly, increased PPARγ activity has been
observed in melanoma stem cells.510 Co-culturing MSCs with
gastric cancer cells leads to the enrichment of lncRNA Histocom-
patibility Leukocyte Antigen Complex P5 (HCP5) in MSC-
stimulated gastric cancer cells, which sponges miR-3619-5p to
promote the expression of PPARG Coactivator 1 Alpha
(PPARGC1A). PPARGC1A accumulation triggers the PPAR Coacti-
vator-1α (PGC1α)/CCAAT Enhancer Binding Protein Beta (CEBPB)/
CPT1 axis, inducing FAO and stemness characteristics.230

Conversely, inhibition of the PPAR pathway has also been
associated with maintaining CSC stemness. Activation of PPARγ
induced by inhibiting TRAF2- and NCK-Interacting Protein Kinase
(TNIK) correlates with the reduction of osteosarcoma cell stemness
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and their differentiation into adipocytes.511 Downregulation of
PPARD in the acidic microenvironment of colorectal cancer
inhibits Vitamin D Receptor (VDR) expression, promoting the
emergence of a CSC phenotype.512 Similarly, PPARγ activation
effectively inhibits the stem cell phenotype of bladder cancer.513

Moreover, besides fat metabolism, the PPAR pathway also
regulates CSC characteristics through glucose metabolism. Low
expression of PPARα in AML CSCs inversely correlates with their
stemness characteristics. PPARα binds to HIF1α, inhibiting the
expression of its downstream Phosphoglycerate Kinase 1 (PGK1)
gene, ultimately weakening glucose metabolism activity and
inhibiting stemness.514

Activation of the PPAR pathway in CSCs is closely associated
with tumorigenicity, differentiation, and metastasis. GSCs exhibit
overexpression of PPARα compared to normal neural stem cells.
Knockdown of PPARα significantly reduces the expression of
stemness-related genes and fat metabolism-related genes in GSCs,
leading to a decrease in tumorigenicity.515 In hepatic CSCs, fatty
acid 4-phenylbutyric acid (4-PBA) upregulates the expression of
PPARα, preventing its degradation, thereby promoting the
initiation and tumorigenicity of hepatic CSCs.516 N1-
methyladenosine methylation-driven expression of PPARδ in
hepatic CSCs activates the PPAR pathway, regulating cholesterol
metabolism to maintain stemness and enhance tumorigenicity.413

Activation of PPARδ has been implicated in colorectal cancer liver
metastasis induced by a high-fat diet, where it increases Nanog
transcription.517 Moreover, PPARα activation is positively corre-
lated with the invasive and stemness phenotypes of GSCs518.
Conversely, stimulation of PPARγ may inhibit the migration ability
of GSCs.519 Activation of PPARγ has also been shown to
downregulate the stemness of brain CSCs and induce the
expression of differentiation-related genes such as Collagen Type
II Alpha 1 (COL2A1) and Motor Neuron And Pancreas Homeobox 1
(HLXB9).520 Similarly, PPARγ activation reduces the activity of SOX2
and YAP1 genes, inhibiting the stemness of osteosarcoma stem
cells and promoting their differentiation.521

Molecular crosstalks
The formation and maintenance of CSCs involve complex interac-
tions between multiple signaling pathways. For instance, SCD1 has
been identified as a target for colorectal CSCs, inhibiting both WNT
and Notch signaling pathways simultaneously to maintain the
stemness-associated phenotype.522 Similarly, NK6 Homeobox 1
(NKX6-1) in leiomyosarcoma upregulates stemness by activating
Notch and SHH pathways.523 Tumors with high expression of Notch
and hedgehog signaling pathways exhibit stronger stemness, often
associated with a hypoxic microenvironment and activation of
regulatory T cells.524 Protein kinase CK2 activates AKT, NF-κB, and
STAT3 pathways to maintain the stemness of AML cells.525 Breast
CSCs overexpressing Cyclooxygenase-2 (COX-2) activate PI3K/AKT,
Notch, and WNT pathways via E-type Prostaglandin Receptor 4 (EP4),
contributing to breast cancer metastasis.526 Moreover, Frizzled10
(FZD10) activation in liver CSCs through N6-methyladenosine
methylation mediated by METTL3 stimulates the WNT and Hippo
pathways, critical for hepatic CSC self-renewal.527

The formation and the stemness of CSCs are supported by
crosstalk between multiple pathways. IL-6 and NO secreted by
MDSCs activate STAT3 and Notch signaling in breast cancer cells,
collectively inducing CSC formation.288 Notch signaling can drive
NF-κB pathway-related gene expression in skin CSCs (Fig. 4a).528

Notably, NF-κB pathway upregulation also activates the Notch
pathway to support breast CSC expansion (Fig. 4b).529 Addition-
ally, activated PPARγ inhibits the STAT5 pathway, downregulating
HIF2α and Cbp/P300 Interacting transactivator with Glu/Asp-Rich
Carboxy-Terminal Domain 2 (CITED2) expression, which are
protectors of CML CSCs (Fig. 4c).530 Lastly, Breast Cancer
Susceptibility Gene 1-Associated Protein (BRAP) inhibits the TGF-
β/PI3K/AKT/mTOR pathway, weakening the stem cell properties of

GSCs (Fig. 4d).531 LncROPM exerts a direct binding effect on
Phospholipase A And Acyltransferase 3 (PLA2G16), thereby
augmenting its expression and facilitating phospholipid metabo-
lism. This process subsequently activates the PI3K/AKT, WNT/
β-Catenin, and Hippo/YAP pathways to maintain the character-
istics of breast CSCs (Fig. 4e).532

The tumorigenicity, differentiation, and metastasis capabilities of
CSCs are regulated by the intricate crosstalk among multiple
signaling pathways. In GSCs, the miR-139/Phosphodiesterase 2
(PDE2A)/Notch1 loop inhibits stemness and tumorigenicity by
suppressing WNT signaling (Fig. 4f).533 Chronic hypoxia-induced
HIF-2α overexpression activates WNT and Notch pathways, leading
to enhanced stemness-associated phenotype and tumorigenesis in
breast CSCs.534 Additionally, LINC00115, activated by the TGF-β
pathway, upregulates ZEB1 and Zinc Finger Protein 596 (ZNF596)
expression to activate ZNF596/Enhancer Of Zeste Homolog 2
(EZH2)/STAT3, promoting the stemness and tumorigenesis of GSCs
(Fig. 4g).535 Activation of the AKT and YAP pathways in CSCs may
inversely correlate with tumorigenesis. In liver cancer-initiating stem
cells, the Toll-like receptor 4 (TLR4)/Nanog/YAP1/insulin-like growth
factor 2 mRNA-binding protein 3 (IGF2BP3) axis inhibits TGF-β
pathway activity and tumor-initiating ability, which can be counter-
acted by TGF-β pathway activation (Fig. 4h).536 The interaction
between the WNT pathway and hedgehog, Notch, and TGF-β
pathways influences the differentiation of colorectal CSCs. Hedge-
hog signaling negatively regulates WNT signaling, while PTCH1-
dependent non-canonical hedgehog signaling positively regulates
WNT signaling, contributing to CSCs’ differentiation (Fig. 4i).537

PROX1, a downstream effector gene of the WNT/β-Catenin signaling
pathway, can inhibit each other with Notch1, thereby enhancing
the stemness of colorectal cancer cells and hindering their
differentiation (Fig. 4j).426 Moreover, the SOX9/PROM1 positive
feedback loop in colorectal cancer inhibits differentiation by
activating the stem cell program, positively correlating with WNT
pathway activation and negatively correlating with TGF-β pathway
activation (Fig. 4k).538 In lung CSCs, the HIF-1ɑ/miR-1275 axis co-
activates WNT/β-Catenin and Notch pathways, enhancing stemness
and metastatic potential.539 In gastric cancer, Chromobox Protein
Homolog 7 (CBX7) upregulates the PI3K/AKT pathway, activating
the NF-κB pathway to promote miR-21 expression, enhancing the
CSC-associated phenotype and metastasis (Fig. 4l).540

CLINICAL PREDICTIVE VALUES OF CSCS
Using CSC markers, investigators have revealed a negative
correlation between the presence of CSCs and patients’ survival
in various types of cancers.541 Moreover, given the close
correlation between CSCs and multi-drug resistance, it is also
reasonable to use CSC as a parameter to predict patients’
prognosis after a specific type of anti-cancer treatment.
CSC markers can be used to predict response and survival after

chemotherapy. In 47 patients with esophageal squamous cell
carcinoma who receive neoadjuvant chemotherapy followed by
radical esophagectomy, those with a high pre-chemotherapy
expression of CD133 have significantly shorter survival compared
to those with low CD133 expression, while the difference in survival
is not significant between patients with high CD44 expression and
low CD44 expression.542 This study also reveals that CD44high/
CD133high expression is associated with significantly poorer survival
compared to those with CD44low or CD44high/CD133low, suggesting
that the combined use of CSC markers can provide better predictive
values.542 In 112 patients with advanced NSCLC treated with
platinum-based chemotherapy, high Nanog levels were indepen-
dently associated with shorter PFS (hazard ratio (HR)= 3.09, 95%
confidence interval (CI) 2.01−4.76) and OS (HR= 3.00, 95% CI
1.98−4.54).543 Likewise, overexpression of CXCR4 correlates with
poorer PFS and OS in 124 patients with epithelial ovarian cancer
receiving cisplatin-based chemotherapy.544 Some studies also
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investigated the predictive value of single-nucleotide polymorph-
isms (SNPs) of CSC markers, which can influence the transcription,
translation, and splicing of these proteins.545 For instance, LGR5
rs17109924 is associated with prolonged time to recurrence (TTR)
(HR 0.38, 95%CI 0.19−0.79; P= 0.006) based on data from
391patients with colon cancer treated with adjuvant 5-
fluorouracil-based chemotherapy.546 However, this correlation does
not occur in patients treated with surgery alone, indicating that the
correlation is mainly attributed to the impact of LGR5 rs17109924
on adjuvant chemotherapy.
CSC markers or stemness-related gene signatures also correlate

with response to radiation and can be used to predict patients’
prognosis after radiotherapy. A study suggests that the CSC marker
CD44 expression can be used to predict local recurrence of larynx
cancer based on data from 19 patients.547,548 Patients with rectal
cancer and high expressions of CSC markers, CD133, OCT4, and
SOX2, are prone to develop distant recurrence compared to those
with low expressions of the genes.549 A systemic review identifies a
series of CSC markers, including CD133, CD44, ALDH1, LGR5, and
G9a, as indicators for the prognosis of patients with rectal cancer
receiving radiotherapy.550 Using a machine learning method and
data from the TCGA database, a model based on five tumor
stemness and immune-related signatures, including Carbamoyl
Phosphate Synthetase I (CPS1), CCR2, NT5E, Anillin (ANLN), and
ATP-Binding Cassette Sub-Family C Member 2 (ABCC2), demon-
strates favorable predictive values predicting radiotherapy
responses.551 A study suggests that P16INK4A expression is

negatively associated with CSC markers and predicts poor survival
of patients with cervical cancer after radiotherapy.552 GSC markers,
CD133 and O6-methylguanine-DNA methyltransferase, are also
associated with patients’ responses to radiotherapy.553

Some studies attempt to predict patients’ response to or
survival after targeted therapy and immunotherapy using CSC
markers or stemness-related gene signatures. For instance, a study
shows that head and neck squamous cell carcinoma patients with
low CD44, a CSC marker, have a significantly better HR for OS than
those with high CD44 expression when comparing nimotuzumab
plus cisplatin-radiation (NCRT) with cisplatin-radiation (CRT),
suggesting that CD44 might be a favorable reference for whether
to use nimotuzumab.554 Using a five tumor stemness and
immune‐specific‐gene (CPS1, CCR2, NT5E, ANLN, and ABCC2)
signature, a study constructs a machine-learning model that can
predict therapeutic responses in melanoma patients receiving
adoptive T cell therapy (area under ROC curve (AUC)= 0.717) and
immune checkpoint blockades (AUC= 0.703).551 The AUCs of this
signature were higher than those of PD-1 (0.687 for adoptive T cell
therapy and 0.505 for immune checkpoint blockades).551

CANCER STEM CELLS AND TUMOR CHEMOTHERAPY
RESISTANCE
The clinical significance of chemotherapy resistance
Chemotherapy remains the cornerstone of current clinical
oncology, offering significant reductions in tumor burden and

Fig. 4 Crosstalk of signaling pathways in CSCs. a, b The Notch pathway can be activated by the NF-κB pathway while activating the NF-κB
pathway. c PPARγ inhibits the STAT5 pathway to downregulate the expression of HIF2α and CITED2, ultimately attenuating the stemness
characteristics of CSCs. d BRAP inhibits the TGF-β/PI3K/AKT/mTOR axis to reduce the stemness of CSCs. e LncROPM upregulates PLA2G16
expression to facilitate phospholipid metabolism, which subsequently activates the PI3K/AKT, WNT/β-Catenin, and Hippo/YAP pathways to
maintain the stemness of CSCs. f Amplified miR-139 through the miR-139/PDE2A/Notch1 loop, inhibits the WNT pathway to attenuate the
tumorigenicity of CSCs. g LINC00115, upregulated by the TGF-β pathway, sponges miR-200s to activate the ZNF596/EZH2/STAT3 axis to
promote the stemness and tumorigenesis of CSCs. h Activation of the TLR4/NANOG axis subsequently upregulates the YAP1/SMAD3 and
IGF2BP3/AKT/mTOR/SMAD3 pathways to inhibit the nuclear transfer and phosphorylation of SMAD3, ultimately attenuating the
tumorigenicity of CSCs. i WNT/β-Catenin pathway downstream effector PROX1 inhibits each other with Notch1, thereby elevating the
stemness of CSCs and hindering their differentiation. j PROX1, which can be activated by the WNT/β-catenin pathway, inhibits each other with
Notch1, thereby enhancing the stemness of tumor cells and hindering their differentiation. k SOX9/PROM1 positive feedback loop in inhibits
differentiation by activating the CSC program, which positively correlates with WNT pathway and negatively correlates with TGF-β pathway.
l The PI3K/AKT pathway, activated by CBX7, further stimulating the NF-κB/miR-21 axis, and ultimately promoting the stemness characteristics
and metastasis of tumor cells
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enhanced patient survival, thereby securing its widespread clinical
application.555 However, patients initially responsive to che-
motherapy inevitably evolve into drug resistance. This phenom-
enon, termed acquired resistance, poses a significant challenge to
both clinicians and researchers. Research has progressively
revealed that acquired resistance is intricately linked to intratu-
moral heterogeneity.300 Chemotherapy selectively eliminates
sensitive subpopulations, allowing resistant cells to prevail and
drive disease progression. The contribution of CSCs to intratu-
moral heterogeneity and acquired resistance has been a focal
point of research for decades. This chapter explores the
mechanisms through which CSCs mediate resistance and their
ramifications for chemotherapy strategies.

Mechanism of resistance of CSCs to chemotherapy
In cancer biology, CSCs exhibit dynamic states of proliferation and
quiescence. During dormancy, CSCs reduce their metabolic
activity, enabling prolonged survival in a quiescent state. Upon
extracellular stimulation, however, CSCs may re-enter the cell
cycle, regaining proliferative capacity.556,557 This duality poses
significant challenges for chemotherapy, as quiescent CSCs exhibit
resistance to such treatments, and often develop more resistant
phenotypes.558–560 This resistance is largely attributed to the
mechanism of conventional chemotherapy, which targets rapidly
dividing cells and acts in a cell cycle-specific manner (Fig. 5).561

However, CSCs, with their slow division rates, often residing in the
G1 or S phase, exhibit resistance to a variety of chemotherapeutic
agents including cisplatin, taxol, and doxorubicin.562,563 For
instance, the overexpression of Zinc Finger E-Box-Binding Homeo-
box 2 (ZEB2) increases the proportion of colorectal CSCs in G0/G1
phase, leading to platinum resistance.564 Distinguishing quiescent
CSCs from proliferative CSCs remains a challenge due to the lack
of specific surface markers and common genotypic and pheno-
typic characteristics.565 CD13 has been proposed as a marker for

quiescent hepatic CSCs, which have been proven capable of
neutralizing chemotherapy-induced ROS and DNA damage.311

Moreover, epigenetic modifications also play crucial roles in
regulating the quiescent state of CSCs. For example, SET Domain-
Containing Protein 4 (SETD4) promotes breast CSC dormancy
through the trimethylation of histone H4 lysine 20, facilitating
heterochromatin formation.566 Elevated levels of miR-135a reduce
the methylation at the CG5 site of the Nanog promoter by directly
targeting DNA Methyltransferases 1 (DNMT1). Then, the combina-
tion of SET And MYND Domain Containing 4 (SMYD4) and
unmethylated Nanog promoter will activate the expression of
Nanog in those Nanog-negative tumor cells, thus promoting the
switch of CSCs.567 Endothelial cells, by expressing miR-126, can
induce dormancy in CML stem cells. Concretely, by targeting the
PI3K/AKT/mTOR signaling pathway, miR-126 blocks the cell cycle
progression of CSCs.568,569 Soluble growth factor/receptor path-
ways, such as CXCL1/CXCL12, Bone Morphogenetic Protein-4
(BMP4), and LIF, have also been shown to regulate the quiescent
state of activated CSCs. For instance, CXCL1 induces liver CSC
quiescence via mTORC1 kinase activation, while knocking out
CXCL12 downregulates quiescence-associated genes, such as TGF-
β and STAT3, facilitating the exit of leukemia stem cells from
dormancy.570,571 BMP4 directly regulates the quiescent state of
CML leukemia stem cells through a JAK/STAT3 pathway depen-
dent on BMPR1B kinase activity, and the LIF Receptor (LIFR)
correlates with the expression of quiescence-associated genes in
CSCs, such as TGFβ2 and Notch1. Knockout of LIFR promotes the
proliferation of breast CSCs and enhances their capacity for bone
destruction.572,573 More and more evidence suggest the involve-
ment of extracellular vesicles (EVs) in CSC quiescence regulation.
EVs from CAFs of hormone therapy-resistant breast cancer
patients promote estrogen receptor-independent oxidative phos-
phorylation and hormone therapy resistance.574 Furthermore,
CAFs create a resistant niche through close interactions with CSCs,
secreting factors like IL-6 and IL-8 that support CSC survival.575 In
colorectal cancer, CAF-derived EVs trigger resistance to
5-fluorouracil in CSCs, which is the standard of care.576 Endothelial
cells can promote resistance in GSCs through the secretion of NO,
enhancing Notch signaling, or by releasing CD44 ligands.
The HIF pathway emerges as one of the most pivotal regulators

of the quiescent state in CSCs.577 With the identification of
quiescent CSCs in MM, the expression levels of TRIM44 were
elevated. This E3 ubiquitin ligase facilitates the deubiquitination
and stabilization of HIF-1α under both normoxic and hypoxic
conditions, underscoring the intricacy of oxygen sensing in
tumorigenesis.578,579 Furthermore, the significance of HIF2α in
the stability and transformation of CSCs in glioblastoma also
highlights the critical role of oxygen levels in CSC biology.580 The
markers of CSCs such as OCT4, Nanog, SOX2, Krüppel-Like Factor 4
(KLF4), c-Myc, and miR-302 are induced in hypoxic environments
further supporting the adaptive responses of CSCs to oxygen
deprivation.581 Notably, hypoxia not only modulates cell plasticity
but also stimulates the proliferation and expansion of pre-existing
CSC pools, suggesting a dynamic interplay between CSC
quiescence and activation.582–584 In conclusion, CSCs exhibit
long-term stability and a quiescent phenotype under hypoxia,
characterized by low metabolism and reduced oxidative phos-
phorylation. Conversely, the presence of oxygen triggers the
activation of tricarboxylic acid (TCA) cycle enzymes and oxidative
phosphorylation, transitioning CSCs into a proliferative state.585,586

Metabolic reprogramming stands as one of the hallmarks of the
bioenergetics of CSCs.587 ALDH enzymes serve as potential
inducers of metabolic reprogramming, thereby promoting che-
motherapy resistance. For example, ALDH enzymes mitigate
aldehyde accumulation by converting them into less toxic
carboxylic acids, which play a crucial role in detoxification within
CSCs.588 Moreover, ALDH enzymes maintain a low level of ROS by
consuming these reactive aldehydes induced by ROS.589 The

Fig. 5 Mechanism of resistance of CSCs to chemotherapy. CSCs
possess the ability to maintain a quiescent state and reduce
metabolic activity, thereby exhibiting resistance to chemotherapy.
Furthermore, CSCs are capable of metabolic reprogramming,
utilization of ABC transport proteins, and activation of DNA repair
pathways, which allows them to evade chemotherapy. Additionally,
the microenvironment plays a crucial role in supporting CSC
survival. The balance between ROS and anti-apoptotic versus pro-
apoptotic signals, along with exosomes secreted by tumor-
associated fibroblasts, dynamically regulates CSCs
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increased activity of ALDH1A1 and ALDH3A1 subtypes enables
CSCs to metabolize cyclophosphamide and its analogs, such as 4-
hydroperoxycyclophosphamide, ifosfamide, and etoposide, and
detoxify their intermediate products aldophosphamide into
carboxyphosphoramide.590,591 ALDH also contributes to the
synthesis of retinoic acid and neurotransmitter γ-aminobutyric
acid (GABA), essential for the homeostasis and differentiation of
CSCs.330,592 Inhibition of ALDH activity using all-trans retinoic acid
(ATRA) significantly improves prognosis in leukemia, highlighting
the enzyme’s involvement in cell differentiation and survival
pathways including Notch, mTOR, and PI3K/AKT.593–595 The
mediating role of ALDH activity in therapy resistance has been
established across various cancers, including breast, pancreatic,
lung, Ewing’s sarcoma, stomach, glioblastoma, head and neck,
ovarian, and colorectal cancers in recent years. Types of
chemotherapy agents covered include doxorubicin, paclitaxel,
gemcitabine, gefitinib, temozolomide, doxorubicin, and platinum,
implicating it as a key marker of CSC drug resistance.596–604

Among the 19 ALDH family members, ALDH1 is considered most
closely associated with CSCs.605,606 However, the complex role of
ALDH in CSC biology and therapy resistance warrants further
investigation.
The ABC transporter superfamily, encoded within the human

genome, represents the largest group of transmembrane proteins.
These transporters are categorized into seven subfamilies, ABC-A
to ABC-G, based on the similarity or disparity of their domain
structures.607 Recent studies have revealed a significant upregula-
tion of ABC transporters in CSCs, highlighting their pivotal role in
mediating chemotherapeutic resistance by extruding harmful
toxins and xenobiotic compounds from cells, thereby reducing
intracellular drug concentrations.83,608 ABCB1, also known as
Multidrug Resistance Protein 1 (MDR1) or P-glycoprotein, was
the first member of the ABC transporter family identified in
humans.609 Wright et al. demonstrated that ABCB1 expression
serves as a crucial marker for doxorubicin resistance in breast
CSCs.610 Various members of the ABC transporter family, especially
ABCB1, ABCC1, and ABCG2, are recognized for their heightened
expression in CSCs and their involvement in MDR mechan-
isms.611–613 Certain cancers, such as melanoma, might exhibit
specific ABC transporter profiles, with ABCB5 playing a significant
role.614,615 From the structure and properties of ABC transporter,
ABCB1, characterized by two ATP-binding sites, exhibits enhanced
drug transport capabilities.616 Distinct ABC transporters have been
implicated in various chemotherapeutic resistances. For example,
ABCC1 is primarily associated with resistance to anthracycline
drugs, whereas ABCG2 exhibits the broadest spectrum of drug
resistance.617–619 New roles for ABC transporters in CSCs have
been uncovered. ABCB5 possesses the ability to regulate IL-8-
dependent CSC maintenance in melanoma and promote the
invasion of tumor cells in colorectal cancer. ABCG2 also plays a
role in the enhancement of CSC tumorigenic potential.83,620 It
should be noted that the ABC transporter family is intimately
linked with signaling pathways. The ABCB1 gene promoter
contains multiple targets for the β-Catenin complex, suggesting
a reciprocal relationship where the WNT/β-Catenin signaling
pathway targets ABCB1 activity.621 Activation of the WNT/
β-Catenin pathway can induce ABCB1 expression, facilitating
chemotherapy resistance in CSCs.622,623 ABCG2 is also involved in
the WNT/β-Catenin signaling cascade.613,624 And its expression
can be regulated by the Notch pathway as well.625 Furthermore,
the Hippo pathway effector YAP1 promotes the drug resistance of
CSCs through ABCG2.626,627 The PI3K/AKT pathway regulates
ABCG2 in GSCs at the plasma membrane, instead of the mTOR
pathway.628 Inhibition of the PI3K/AKT pathway results in the
downregulation of ABCG2 in CML cells.629 Despite these insights,
clinical successes with specific ABC transporter inhibitors remain
scarce, underscoring the ongoing need for mechanistic
exploration.

Several studies have elucidated that the mechanisms of DNA-
damaging chemotherapeutic agents underlying tumor cells,
which include DNA crosslinkers (cisplatin, carboplatin, oxaliplatin),
DNA synthesis inhibitors (methotrexate), and topoisomerase
inhibitors (doxorubicin, daunorubicin).630 These agents predomi-
nantly target the S phase of tumor cells, where DNA replication
occurs, exploiting the diminished DNA repair capacity in tumor
cells, which culminates in genomic instability and subsequent
apoptosis. Notably, in CSCs, DNA damage checkpoints are
activated, facilitating repair mechanisms that enhance cell
survival. Sequencing data reveal an upregulation in the majority
of DNA damage response and repair genes within CSCs, indicating
a superior DNA repair efficiency.23,631 The p53 signaling pathway
and apoptosis are pivotal to DNA damage repair. Upon
detrimental DNA damage, the ATM and Ataxia Telangiectasia
And Rad3-Related (ATR) kinase complex with Poly ADP-Ribose
Polymerase 1 (PARP-1) and BRCA1, phosphorylate CHK1 and CHK2,
thereby activating p53, which leads to cell cycle arrest, DNA repair,
or the execution of apoptosis.632 Remarkably, genes like p53,
which induce cell death, often harbor mutations or are
dysregulated in CSCs, and inhibiting p53 aggregation can restore
sensitivity to platinum-based treatments.633 DNA repair proteins
directly or indirectly linked to CSCs’ drug resistance include CHK1,
CHK2, ATR, MSI1, RAD50, and RAD51, with RAD51 playing a
significant role in resistance to PARP inhibitors.634–637

Furthermore, CSCs can prevent DNA damage through effective
ROS clearance.638 A highly compatible ROS scavenging system has
evolved in the CSCs of some tumors to maintain low ROS
concentrations. Antioxidant enzymes like superoxide dismutase,
glutathione peroxidase, and catalase are markedly active in
CSCs.639–641 NRF2, a transcription factor, mediates CSC drug
resistance by not only regulating the expression of genes involved
in the cellular antioxidant response, but also by stimulating drug
efflux through raising ATP Binding Cassette Subfamily F Member 2
(ABCF2) expression among other functions.642,643 ROS overload or
elevated ROS levels induced by chemotherapy have been
implicated in the activation of HIFs, which can trigger the activation
of pro-survival and developmental pathways such as Notch, WNT,
and hedgehog. These pathways in turn contribute to the
sustenance of CSCs’ survival.644 Additionally, studies have identified
a negative feedback loop between ROS and COX-2 within CSCs,
where elevated ROS levels induce COX-2 expression, which in turn
mitigates ROS accumulation, fostering CSC enrichment and
metastasis.645,646 Autophagy, a critical biological process for cellular
homeostasis, has been recognized as a pivotal resistance mechan-
ism in metastatic prostate CSCs, significantly contributing to ROS
scavenging.647 To sum up, CSCs exhibit heightened sensitivity to
any alteration in the oxidant/antioxidant balance, acquiring
resistance under both low and elevated ROS levels.
One of the primary approaches of chemotherapeutic agents is

the induction of apoptosis.648 The balance between pro-apoptotic
(BCL2-Associated X Protein (BAX), BCL2 Antagonist/Killer (BAK),
BCL2 Asociated Death Promoter (BAD)) and anti-apoptotic (BCL2,
BCL-XL, MCL1) proteins constitutes a focal point of cellular
response to apoptosis.649 In CSCs with chemotherapy resistance,
the balance tips towards anti-apoptotic proteins. It has been
shown that compared to tumor cells, CSCs exhibit higher levels of
anti-apoptotic gene expression (such as BCL2, BCL-XL).650,651

Knockdown of the biomarkers of CSCs, such as CD44, increases
apoptosis, evidenced by elevated expression of pro-apoptotic
proteins BAX and caspases-3, -8, and -9, while the levels of anti-
apoptotic proteins BCL2 and BCL-XL decrease.652 Further analysis
by Konopleva et al. demonstrated that the overexpression of anti-
apoptotic genes BCL-XL and BCL2 could also induce a quiescent
state in CSCs.653 Moreover, the upregulation of specific cell surface
receptors (such as EGFR, Fibroblast Growth Factor Receptor
(FGFR), HER2R) in CSCs can inhibit apoptosis by downregulating
the pro-apoptotic protein BAD.654 Additionally, CSCs can evade
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apoptosis by prolonging the G2/M phase in the cell cycle through
upregulation of G2/M checkpoint proteins CHK1 and CHK2.650

Some CSCs overcome apoptosis by upregulating the expression of
Inhibitors Of Apoptosis Proteins (IAPs).655 The expression of
Cellular FLICE-Like Inhibitory Protein (C-FLIP) also affects the
apoptosis receptor initiation pathway, inhibiting caspase activa-
tion and thereby hindering the apoptotic process. Studies have
shown that different splice variants of c-FLIP are associated with
resistance to chemotherapeutic drugs.656,657 CSCs employ various
indirect or direct mechanisms to evade apoptosis, such as
endoplasmic reticulum stress. It has been discovered that several
components directly involved in endoplasmic reticulum protein
processing are dysregulated in CSCs.658 In vitro CSC models
observed the inactivation of IRE1 (XBP-1 splicing) and the
activation of the PERK (elF2α phosphorylation) pathway, both
key conduits of the endoplasmic reticulum stress response.659

Mitochondrial integrity is crucial for the survival and maintenance
of CSCs, with its dysregulation having profound effects on
autophagy and apoptosis.660 Studies indicate mitochondrial
alterations in CSCs of CML compared to normal stem cells.
Resistant CSC subpopulations can be identified by higher
mitochondrial mass and increased endopeptidase activity.661

In conclusion, the chemoresistance mechanisms of CSCs
constitute an interactive network (Fig. 5). Targeting individual
components may not eliminate the resistance posed by CSCs. To
devise accurate CSC-targeted treatments that enhance sensitivity,
further exploration in the domain of resistance is warranted.

Clinical trials targeting CSCs combined with chemotherapy
With a profound understanding of the pivotal role CSCs play in
chemotherapy resistance, researchers have initiated a series of
targeted clinical trials aimed at exploring potential therapeutic
strategies for CSCs (Table 4). These trials broadly fall into three
categories. The first category, guided by the ChemoID assay,
identifies subsequent treatment regimens using patient biopsy
samples before treatment to enrich stem cells and test their
response to chemotherapy drugs. Results from a phase III clinical
trial, exemplified by NCT03632135, demonstrated a significant
reduction in patient mortality risk in the ChemoID assay-guided
group, suggesting that the ChemoID assay could become a
routine diagnostic and treatment method akin to genetic testing
in the future. The second category involves the development of
specific inhibitors targeting mechanisms by which CSCs contribute
to chemotherapy resistance. This category encompasses most
clinical trials, such as those using vismodegib or PF-04449913 to
inhibit the hedgehog pathway, LGK974 targeting the WNT
pathway, and OMP-52M51 against DLL4 in the Notch pathway.
Although γ-secretase inhibitors are the largest group of drugs
targeting the Notch pathway, trial outcomes have not been
disclosed yet. Additionally, the development of the drugs
RO4929097 and PF-03084014 has been halted for various reasons.
NCT04137627 evaluated melatonin as an antioxidant in combina-
tion with neoadjuvant chemotherapy for changes in tumor
stemness expression in oral squamous cell carcinoma, but results
showed no statistical difference despite a reduction in miR-210
and CD44 expression, implying the tumor microenvironment
might play a role in CSC resistance mechanisms but may not be
the dominant factor. In theory, PARP inhibitors involved in DNA
repair could also be effective against CSCs, but current clinical
trials have not measured changes in CSCs or biomarkers before
and after treatment, necessitating further exploration of their
effect on CSCs. The third category targets markers specific to CSCs
for treatment, such as CD44v6. Bivatuzumab mertansine, an
antibody-drug conjugate (ADC) targeting CD44v6, enhances the
specificity of chemotherapy and has shown promising results in
various cancer treatments. However, its effectiveness against CSCs,
as indicated by NCT02254005, remains inconclusive. These results
indicate that we cannot yet conclusively determine whether

targeting CSCs can reverse chemotherapy resistance. We look
forward to the anticipated outcomes of these clinical trials in the
coming years.

CANCER STEM CELLS AND TUMOR IMMUNOTHERAPY
RESISTANCE
CSCs and immune evasion
Immune cells within the tumor microenvironment play a pivotal
role throughout the oncogenesis and progression of tumors.
Unlike their counterparts in normal tissues, these immune cells
often exhibit attenuated inflammatory responses or enhanced
suppressive functions, thereby facilitating tumor immune evasion.
This section aims to provide an overview of the principal roles
played by TAMs, MDSCs, NK cells, T cells, and B cells in mediating
immune escape of CSCs. Their complex interplay and the
mechanisms through which they contribute to the immunological
cloak that shields CSCs from the host’s immune defense are critical
to understanding and developing novel therapeutic strategies.
Research across various tumor types has revealed that TAMs

often constitute up to 50% of the immune cell population,
positioning them at one of the forefront research fields of immune
cells within the microenvironment.662 The heterogeneity of TAMs
emerges as a critical mechanism behind immunotherapy resis-
tance. Engagement of damage-associated molecular patterns
(DAMPs) with specific pattern recognition receptors on macro-
phages, such as TLR4, triggers pro-inflammatory signaling and
polarization towards the M1 phenotype.663 M1-TAMs, character-
ized as classically activated macrophages, exhibit enhanced
pathogen phagocytosis capabilities, thereby exerting anti-
tumoral properties. However, the tumor microenvironment
promotes polarization towards the M2-TAMs, which possess pro-
tumoral potential, supporting and sustaining CSCs and therapy
resistance through the secretion of chemokines and activation of
stemness pathways, such as sonic hedgehog ligands. For instance,
GSCs can recruit M2-TAMs by secreting periostin.664 CSCs may also
elevate M2–TAM levels through chemokines like CCL2 and
macrophage colony-stimulating factor 1 (CSF1).665 Drug-resistant
lung CSCs activate the Interferon Regulatory Factor 5 (IRF5)/M-CSF
pathway to promote the production of M2-TAMs from CD14+

monocytes.666 In turn, M2-TAMs secrete factors like milk fat
globule-EGF factor 8 (MFG-E8), activating STAT3 and sonic
hedgehog signaling in CSCs, thereby enhancing treatment
resistance.667 Moreover, TAMs secrete substantial amounts of
TGF-β1, maintaining CSC characteristics and promoting EMT.257,668

Lu et al. demonstrated that CSCs undergoing EMT upregulate
CD90/Thy1 and EphA4, crucial proteins mediating physical
interactions between CSCs and TAMs. EphA4 receptor activation
secretes Src and NF-κB, inducing CSCs to secrete various cytokines
maintaining stem cell status.282 ScRNA-seq has clarified the
bidirectional feedback mechanisms between CSCs and TAMs.
CSCs secrete S100A11 protein to promote TAM polarization
towards the M2 phenotype, which in turn enhances CSC self-
renewal and metastatic capabilities.247 The crosstalk between
CSCs and macrophages is intricate, wherein CSCs not only polarize
macrophages towards a tumorigenic state but also employ
protective mechanisms to avoid macrophage phagocytosis.
Elevated expression of CD47, observed in CSCs from both
hematological malignancies like AML and solid tumors like
pancreatic, liver, and lung cancers, interacts with Signal Regulatory
Protein α (SIRPα) on TAMs, broadcasting a “don’t eat me” signal to
protect them from macrophage engulfment.669–674 Recent studies
have also identified TAMs as “iron donors” within the tumor
microenvironment, fulfilling the high iron demand of CSCs and
playing a crucial role in influencing iron homeostasis.675 Although
the mediators involved in this crosstalk may vary with tumor
pathology, such interactions may one day become potential
therapeutic targets against CSCs.
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Tumor-infiltrating myeloid cells represent a heterogeneous
lineage that includes TAMs, MDSCs, and so on, the latter being
a focal point of research due to their impact on limiting the
efficacy of immunotherapy.676 MDSCs, immature myeloid cells
derived from the bone marrow, are categorized into polymorpho-
nuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs),
expressing CD15 and CD14, respectively.677,678 These cells exert
immunosuppressive effects through distinct mechanisms, with the
ratio of PMN-MDSCs to M-MDSCs in peripheral blood being
crucial.679 In murine models of melanoma, prostate, and cervical
cancers, CSCs promote PMN-MDSC infiltration by overexpressing
G-CSF, CXCL5, and TGFβ.680–682 In turn, PMN-MDSCs increase
STAT3 phosphorylation, CD133 and CD44 expression, and sphere
formation of colorectal CSCs in vitro by secreting S100A9
protein.210 PMN-MDSCs also enhance the ratio of CSCs,
spheroid-forming ability, and expression of stemness-related
genes in myeloma cells by inducing piRNA-823 expression.286

Moreover, studies have identified M-MDSCs as primary drivers of
the CSC phenotype in pancreatic and breast cancers.288,290 In
breast tumor models, M-MDSCs comprise the majority of tumor-
infiltrating MDSCs. Mechanistic analysis has shown that NO
produced by M-MDSCs promotes the CSC phenotype through
activation of Notch signaling and sustained STAT3 phosphoryla-
tion in cancer.288,677 The relationship between CSCs and MDSCs is
bidirectional, as CSCs also recruit MDSCs to limit T cell activity,
creating a favorable environment for tumor growth. MDSCs in
peripheral lymphoid organs are predominantly PMN-MDSCs,
which exhibit relatively mild immunosuppressive activity com-
pared to M-MDSCs. PMN-MDSCs primarily produce high levels of
ROS to exhibit immunosuppressive activity, which are unstable
and transiently, requiring antigen-specific interactions with T cells
to ultimately induce tumor-specific T cell tolerance.683 In contrast,
M-MDSCs produce substantial amounts of NO, arginase 1, and
immunosuppressive cytokines with longer half-lives, effectively
inhibiting nonspecific T cell responses without the need for direct
contact between MDSCs and T cells.679 It is noteworthy, however,
that despite functional annotation and transcriptomic profiles
widely recognizing PMN-MDSCs as distinct from inflammatory
neutrophils, tumor-associated neutrophils, and PMN-MDSCs share
overlaps in markers and suppressive functions, suggesting a close
phenotypic and functional relationship.684

T cells are the most pivotal immune effector cells in the anti-
tumor response, executing cytotoxic effects on tumor cells
through classical pathways such as perforin/granzyme release,
death receptor engagement, and induction of apoptosis.685

Studies have revealed that CSCs evade T cell-mediated immune
rejection by downregulating key components of the antigen
processing and presentation machinery and suppressing T cell
anti-tumor functionality.686 Tumor antigens are broadly classified
into two categories: (1) tumor-specific antigens (TSAs), encoded by
mutated or rearranged genes, and (2) tumor-associated antigens
(TAAs), encoded by genes specific to the normal cellular
lineage.687 CSCs may selectively avoid expressing differentiation-
related TAAs, thus resisting T cell-mediated rejection.688,689

Another mechanism of immune evasion involves the down-
regulation or loss of MHC-I by CSCs.690 As MHC-I play a crucial role
in immune recognition, their absence or reduced expression can
limit T cell-mediated lysis of CSCs.689,691 The induction of T cell
tolerance by CSCs is another key strategy in escaping immune
surveillance. A primary mechanism of tolerance induction involves
the clonal deletion of antigen-reactive T cells through apoptosis or
death, with the Factor-Related Apoptosis (Fas)/Fas-L pathway
serving as a significant mediator.692,693 CSCs may actively destroy
T cells through the expression of Fas-L, moreover, the autocrine
secretion of soluble Fas-L protects CSCs from cytotoxic T cell-
mediated Fas killing.693–695 Furthermore, CSCs can evade immune
attack by downregulating Fas.693 The tumor-expressed ligand
Receptor-Binding Cancer Antigen Expressed On SiSo Cells (RCAS1)Ta
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has also been found to induce apoptosis in T, B, and NK cells
expressing its receptor.696 Immunogenic tolerance can be
achieved through non-deletional processes, such as the inactiva-
tion of antigen-reactive cells.697 The secretion of TGF-β underpins
the inhibition of T cell proliferation mediated by MSCs.698 CSCs
produce TGF-β and IL-10, directly suppressing T cells to avoid
immune-mediated destruction.699–701 The TGF-β signaling path-
way is also specifically activated in CSCs, with secreted morpho-
gens of the TGF-β superfamily and their receptors preferentially
expressed by CSCs.702–704 T cell activation in the immune response
requires two signals.705 The first signal comes from the T Cell
Receptor (TCR) recognizing the MHC/antigen peptide complex,
conveying an antigen-specific recognition signal.706 The second
signal is provided by co-stimulatory molecules of antigen-
presenting cells (APCs), offering a non-specific synergistic co-
stimulation signal.707 CSCs may reduce T cell responsiveness to
tumor antigens by actively modulating the activation state of
APCs and may express negative co-stimulatory molecules to
disrupt anti-tumor immune responses.708,709 PD-1/PD-L1-
mediated negative co-stimulatory signal transduction is the most
common way of inhibiting lymphocyte activation.710,711 Other
mechanisms include the induction or active recruitment of
regulatory T (Treg) cells, which can effectively suppress the
activation, proliferation, and cytokine production of other T cells,
crucial for maintaining immune self-tolerance and homeosta-
sis.712–715 In summary, CSCs employ a multitude of processes to
drive tumor escape from immune-mediated rejection responses.
In the era of immune checkpoint inhibitors (ICIs) and adoptive

T cell therapies, the pivotal role of T cells in anti-tumor immunity
has become indisputable. However, these advancements have
also exposed numerous limitations of T cells, underscoring the
urgent need to unravel immunological mechanisms. With the
advancement of scRNA-seq technology, the subpopulations and
states of B cells within the tumor microenvironment are
increasingly scrutinized. For instance, in melanoma, genes
associated with early B cell stages are extensively expressed.716

In breast cancer, B cells predominantly exist as naive B cells,
memory B cells, with fewer plasma cells and germinal center cell
clusters observed. Notably, compared to peripheral blood B cells,
tumor-associated B cells exhibit higher levels of somatic
mutations and greater clonal expansion.717,718 Another distinc-
tive function of B cells was observed in ovarian cancer, where B
cells preferentially express IgA, while in breast cancer, B cells
mainly express IgM and IgG. This IgA can target antigens and be
internalized by tumor cells in an antigen-independent manner
through Polymeric Immunoglobulin Receptor (PIGR), sensitizing
tumors to T cell.719 Current research indicates that the states of
tumor tissue-associated B cells vary across different types of
tumors, but largely remain in a pre-antibody class-switched state.
Some studies suggest that in the presence of ongoing tumors,
exhausted or dysfunctional CD8+ and CD4+ T cells seek the aid of
B cells in the microenvironment, through the expression of
CXCL13, to form tertiary lymphoid structures (TLS).720–722

Research across multiple cancers demonstrates that the presence
of TLS and B cells in tumor tissues correlates with better
prognoses, and the anti-tumor efficacy of T cells is enhanced in
the presence of B cells.723–726 Interestingly, TLS can also be
exploited by tumor cells under certain conditions to promote
lymphatic infiltration of tumor cells, leading to lymphatic
metastasis.727 However, few studies have revealed a direct
significant correlation between the CSC phenotype and both
TLS and B cells.728 Tumors with low TLS infiltration may present
higher CSC characteristics, with increased proliferation and
metastatic potential.729 In summary, the presence of TLS is
considered a crucial component of anti-tumor immunity. With
the development of scRNA-seq and spatial transcriptomics,
research into the functions of TLS within tumors and their
relationship with CSCs is expected to mature and refine further.

NK cells represent a crucial component of the innate immune
system, constituting the third major lymphocyte type, following
T cells and B cells. They play a complementary role to T cells by
eliminating reduced or absent MHC class I expression tumor cells
which evade CD8+ T cell detection, and can also recruit dendritic
cells to indirectly enhance T cell-mediated responses.730 Emerging
evidence suggests that CSCs may be particularly susceptible to NK
cell-mediated targeting. In colorectal cancer models, CSCs exhibit
increased vulnerability to NK cell cytotoxicity, associated with the
upregulation of natural cytotoxicity receptors, especially NKp30
and NKp44.731 Intriguingly, GSCs demonstrate resistance to
unstimulated NK cells but exhibit heightened sensitivity in co-
culture models following pre-treatment with IL-2 and IL-15.732 This
preferential susceptibility might be mediated by increased
expression of Natural-Killer Group 2 Member D (NKG2D) ligands
UL16 Binding Protein 1 (ULBP1), ULBP2, and MHC Class I Chain-
Related Protein A (MICA) on CSCs.733 Beyond their capacity to
directly eliminate CSCs, NK cells can also induce their differentia-
tion. In the presence of CSCs and IL-2, the cytotoxicity of NK cells is
suppressed, and cytokine production is enhanced, a state referred
to as “split energy”.734 These split anergic NK cells secrete high
levels of Interferon-γ (IFN-γ), which induces the expression of
MHC-I, differentiation receptors, and PD-L1 while reducing CD44
levels on CSCs. This induction of CSC differentiation subsequently
leads to slowed tumor growth and decreased metastatic
spread.735 Therefore, NK cells appear to counter tumor progres-
sion through a dual-step mechanism: initially eliminating a portion
of CSCs and then, following a phase of split energy inducing
cellular differentiation within the remaining CSC population.736

However, the local tumor microenvironment can directly inhibit
NK cell effector mechanisms. Tregs suppress NK cell functions in a
TGF-β-dependent manner, while CAFs inhibit NK cell functions
through cell-cell communication and the release of PGE2.737–739

CSCs can also impede NK immune responses through various
inhibitory mechanisms. In metastatic melanoma, the expression of
Indoleamine-2,3-Dioxygenase (IDO) and/or production of PGE2
can modulate the expression of NKp30, NKp44, and NKG2D.740 In
neuroblastoma, TGF-β suppresses NK cell functions by regulating
the expression of activation receptors and chemokine receptor
repertoires, chiefly interfering with their migration and accumula-
tion within tumor nests.741,742 In ovarian tumors, the expression of
Macrophage Migration Inhibitory Factor (MIF) and the glycopro-
tein MUC-16 can downregulate NKG2D and disrupt the formation
of synapses between tumor cells and NK cells.743,744 Additionally,
CSCs evade immune surveillance and reduce NK cell-mediated
killing by actively shedding MICA and MICB and recruiting
Tregs.745,746 Kryczek et al. observed that IL-22 promotes the CSC
phenotype in preclinical and patient-derived models, with IL-22
being produced by NK and T cells.747

In summary, immune cells’ fight against tumors mainly goes
through three stages: immune elimination, immune equilibrium,
and immune evasion. In the initial phase, T cells and NK cells
identify and eradicate proliferating CSCs before they develop into
full-blown cancer. Consequently, CSCs with high immunogenicity
are gradually eliminated by the immune system, such as high
MHC-I or NKG2D, leaving behind those with low immunogenicity
or those in a quiescent state to survive into the second phase.
Ultimately, these selected CSCs expand uncontrollably with the
help of immunosuppressive effectors, and the immune system
becomes incapable of suppressing them.

Immunotherapy targets cancer stem cells
Tumor immunotherapy represents a therapeutic approach that
harnesses the immune system to generate tumor-specific immune
responses, aimed at suppressing and eliminating tumor cells.
Based on the different mechanisms of the immune response
against tumors, tumor immunotherapy can be categorized into
“active immunotherapy” and “passive immunotherapy”.748
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The core of passive immunotherapy hinges on administering
immune effectors with antitumor activity, such as tumor-specific
T cells and antibodies. This method offers rapid action but fails to
elicit a lasting immune response.748 Tumor-specific monoclonal
antibodies (mAbs) represent the most well-known form of
immunotherapy, widely utilized in clinical practice.749 The
mechanisms for mAbs primarily encompass (1) specific recogni-
tion of molecules expressed on tumor cell surfaces, leading to
tumor cell death via phagocytosis, complement system activation,
and antibody-dependent cell-mediated cytotoxicity (ADCC); (2)
disruption of signaling pathways essential for tumor cell progres-
sion and survival, or inducing death signals by binding to surface
receptors; and (3) conjugation with cytotoxic drugs or radioactive
isotopes for specific delivery to tumors.750 Adoptive cell immu-
notherapy (ACI or AIT) involves infusing immune cells with
anticancer activity back into the patient. This includes chimeric
antigen receptor T-cell (CAR-T) therapy, tumor-infiltrating lym-
phocytes (TILs) therapy, NK cell therapy, and cytokine-induced
killer (CIK) cell therapy.751,752 The principle behind these therapies
is the isolation of immune cells with cytotoxic potential from the
patient. CAR-T therapy involves genetically engineering isolated
T cells to bind tumor cell antigens;753,754 CIK cells, expressing both
CD3 and CD56 membrane proteins, are a novel type of immune
cell known as NK-like T lymphocytes with potent anticancer
activity.755,756 In contrast to passive immunotherapy, active
immunotherapy only exerts anticancer effects after activating
the host’s immune system. Initial attempts to enhance antitumor
immunity relied on non-specific immune stimulation, such as the
local administration of inflammatory molecules (such as
pathogen-associated molecular patterns (PAMPs) and DAMPs)
and immunostimulatory cytokines (such as G-CSF, GM-CSF, TNF-α,
IFN-α, IL-2).757 Unlike non-specific immunostimulants, antitumor
vaccine inoculation offers high tumor specificity.758 Notably,
immunomodulatory mAbs, such as ICIs, fall under active
immunotherapy. These drugs activate new or restore pre-
existing host immune responses by blocking the interactions
between tumor cells expressing immune checkpoints and
immune cells.
Over the past two decades, mAbs have emerged as effective

therapeutic agents for cancers, significantly enhancing the survival
rates and quality of life.759 CSCs can be identified by combinations
of positive and negative expression of surface markers, with novel
mAbs becoming increasingly potent and specific drugs targeting
CSCs (Fig. 6a). Among these, CD44 has been recognized as one of
the well-known CSC markers, playing a crucial role in EMT as well
as in the initiation, progression, and metastasis of tumors.760,761

RG7356, an anti-CD44 mAb, has shown promise in preclinical
models, demonstrating activation of macrophages and good
tolerance in both solid and hematological malignancies.762–764

However, the ADC targeting CD44v6, bivatuzumab mertansine,
was prematurely discontinued due to life-threatening off-target
skin toxicity.765 Other CSC markers that have entered clinical trials
include CD24, CD47, CD123, EpCAM, CD9 and so on.759,766–769

However, only CD105-targeting crituximaband EpCAM-targeting
edrecolomab have entered phase III clinical trials.770,771 Beyond
ADCs, bispecific antibodies, which target two different CSC
antigens simultaneously, have shown superior efficacy in pre-
clinical models compared to agents targeting a single antigen.772

However, the clinical trial success of these bispecific antibodies
remains to be further observed.
Another promising therapeutic strategy targeting CSCs is CAR-T

cell therapy (Fig. 6a).773 This approach holds a distinct advantage
over TILs therapy or ex vivo activation of autologous unmodified
T cells, as CSCs often exhibit reduced antigen presentation
capabilities due to the downregulation of MHC and/or antigen-
processing machinery (APM) molecules. While, tumor cell recogni-
tion by CAR-T cells without relying on the MHC complex.774,775

Various CAR-T cell therapies have been developed for GSCs. For

instance, research by Zhu et al. demonstrated that CAR-T cells
targeting CD133 effectively kill CD133+ CSCs in glioma patients,
both in vitro and in vivo.776 However, such therapies have not
succeeded in completely eradicating tumors, possibly due to
tumor cell-induced terminal differentiation or senescence of CAR-
T cells. When CD57+ glioma cells interact with CAR-T cells, an
increase in the expression of the T cell senescence marker CD57
on CAR-T cells is observed.776 Similarly, CAR-T cells targeting the
epidermal growth factor receptor variant III (EGFRvIII) have been
effective in killing target cells. EGFRvIII has been identified as a
tumor-specific antigen for GSCs.777 Yet, in a phase I clinical trial for
glioblastoma patients, EGFRvIII-targeted CAR-T cells induced
downregulation of tumor antigens and significant upregulation
of inhibitory molecules.778 These findings underscore the need for
further efforts to enhance the efficacy of CAR-T cell therapy. In
recent years, numerous CAR-T therapies targeting antigens
associated with CSCs, including CD22, CD123, and ALDH, etc.,
have been developed. CAR-T therapy remains a leading trend in
future research endeavors.
As previously mentioned, most normal cells expressing MHC-I

molecules are not targeted by NK cells. However, tumor cells and
CSCs that downregulate MHC-I molecules while upregulating
activating ligands become primary targets for NK cell-mediated
cytotoxicity.779,780 The imbalance in the expression of MHC-I and
NK activating ligands on CSCs leads to increased sensitivity to NK
cell killing.781 This pattern of NK ligand expression and sensitivity
to its cytotoxic effects has been reported across multiple tumor
types, including gliomas, colorectal cancer, melanoma, pancreatic
cancer, oral squamous cell carcinoma, breast cancer, and Ewing’s
sarcoma.732–734,782–784 Nonetheless, multiple studies have also
shown that the targeting capability of NK cells can be influenced
by the tumor microenvironment, underscoring the need for
further research to identify the appropriate subtypes of NK cells as
carriers and to effectively target and kill tumors (Fig. 6b).740,785,786

In recent years, γδ T cells, a subset of non-conventional T cells
characterized by their expression of heterodimeric T-cell receptors
(comprising γ and δ chains) and their non-restrictive antigen
recognition, have garnered significant interest within immu-
notherapy.787 Present in the immune infiltration of human
cancers, γδ T lymphocytes have been shown to play a role in
antitumor immune responses.788 Specifically, Vγ9Vδ2 T cells have

Fig. 6 Immunotherapy targets CSCs. a Targeted therapy using
antigens of CSCs, such as CAR-T and monoclonal antibodies, etc.
b Leverage the innate immune cells’ natural cytotoxic activity to
circumvent antigen presentation and nonspecifically target CSCs,
such as NK cells or CIK cells. c Active immunization strategies involve
the use of DC vaccines loaded with CSC lysates, or the reinvigoration
of T cells through targeting immune checkpoints. d γδ T cells exhibit
the dual capacity to directly attack CSCs and indirectly stimulate NK
cells or DCs to target CSCs
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demonstrated the capability to kill various tumor cells in vitro and
in vivo, independent of the tumor cells’ MHC molecule expression
levels.789 The antitumor activity of Vγ9Vδ2 T cells is exerted
through two main mechanisms: direct induction of cytotoxic
mechanisms akin to those of CD8+ T cells and indirect stimulation
of other immune cells such as NK cells and cytotoxic T
lymphocytes (CTLs).790,791 Notably, the activation of Vγ9Vδ2
T cells can be induced by bisphosphonates, drugs associated
with bone metastasis.792 Treatment of CSCs with zoledronic acid
stimulates Vγ9Vδ2 T cells to secrete cytokines like IFN-γ, express
pro-apoptotic molecules such as TNF-Related Apoptosis-Inducing
Ligand (TRAIL), and release cytotoxic granules, ultimately inducing
CSC death through a TCR-dependent mechanism (Fig. 6d).793–795

Moreover, chemotherapy drugs like doxorubicin and 5-fluorouracil
can induce the expression of TRAIL and NKG2D activating ligands
on CSCs, rendering them sensitive to Vγ9Vδ2 T cell-mediated
killing.796 Vγ9Vδ2 T cells can also enhance the chemosensitivity of
ovarian CSCs by reducing the expression of multidrug resistance
components ABCG2, topoisomerase 2a, and 2b.797 Clinical trials
involving Vγ9Vδ2 T cells have been conducted in various tumors,
including breast cancer, prostate cancer, lung cancer, and head
and neck cancer.788 Although these therapies can reduce tumor
burden, only modest improvements in long-term survival rates
have been observed, highlighting the importance of further
research into mechanisms regulating CSC sensitivity to γδ T cells
and considering these mechanisms in the design of new clinical
trials.
Additionally, CIK cells have demonstrated the ability to kill CSCs

in preclinical models of melanoma, sarcoma, and liver cancer
(Fig. 6b).798,799 In liver CSCs, CIK cells induce caspase-3-dependent
apoptosis and G2/M arrest.800 In melanoma and sarcoma, CIK cells
exert direct cytotoxic effects.798,799 CIK cells emerge as promising
candidates for targeting CSCs in immunotherapy for two main
reasons: their cost-effectiveness compared to other immune cell
populations and their sensitivity to CSCs resistant to chemother-
apy and targeted therapies, with easy derivation from patients
who have undergone these treatments.801 Therefore, combining
CIK therapy with chemotherapy or molecular-targeted therapies
may represent a future direction for immunotherapy.
Dendritic cells (DCs)-based antitumor vaccines, a widely applied

immunotherapeutic strategy targeting CSCs, primarily operate by
loading DCs with proteins or mRNA from tumor lysates, thereby
activating specific tumor immune responses (Fig. 6c).802 The
nature of the antigen (such as peptides, whole proteins, or mRNA)
impacts the resultant immune response, with whole proteins
capable of activating both CD8+ and CD4+ T cells, whereas mRNA
encoding antigens induces only CD8+ T cell responses.803

Pellegatta et al. pioneered the construction of DC vaccines using
lysates from GSCs, demonstrating that CSC-based DC vaccines
exhibit higher efficacy compared to non-CSC-based DC vaccines
(utilizing glioma cells).804 Moreover, therapeutic tumor vaccines,
as adjunct therapy post-radiotherapy or surgical resection, show
more potential benefits than prophylactic vaccination. Qiao et al.‘s
series of studies confirmed that adjuvant therapy with DC vaccines
based on ALDH+ cells significantly reduces local tumor recurrence,
inhibits spontaneous lung metastasis, and prolongs host survival
in lung cancer or melanoma patients, outcomes not achieved with
DCs loaded with non-CSCs or an unselected cancer cell popula-
tion.805,806 This advantage likely stems from the CSC-specific
humoral and cellular immune responses generated by DCs loaded
with CSCs.805,806 These encouraging preclinical results have
propelled CSC-loaded DC vaccines into the clinical application
phase. The first clinical trial of a CSC-loaded DC vaccine in
glioblastoma patients, although limited to seven patients,
reported extended PFS compared to historical controls.807

Additional clinical trials in lung and pancreatic cancer patients
have not shown significant adverse side effects, confirming the
safety of CSC-targeted DC vaccines.808,809 However, it is

noteworthy that these clinical studies did not compare outcomes
with DC vaccines loaded with non-CSCs or unsorted cells, leaving
the replicability of preclinical success in humans in question.
Furthermore, while CSC-targeted vaccines offer a cost-effective
advantage over other immunotherapies, they may increase
economic burdens.
Immune checkpoints such as PD-L1 play a crucial role in the AKT

signaling pathway, impacting the expression of embryonic stem
cell transcription factors OCT4A, Nanog, and the stem cell factor
BMI1.495 Concurrently, the downregulation of PD-L1 impairs the
self-renewal capabilities of breast CSCs. Interaction between PD-L1
and PD-1 enhances the proliferative capacity of gastric cancer
stem-like cells.810 Similarly, CTLA-4 exhibits analogous functions.
ALDH+ melanoma stem cells express CTLA-4, indicating its ability
to support cellular proliferation and inhibit apoptosis in vitro.
Blocking CTLA-4 can suppress both in vitro and in vivo self-
renewal and tumorigenic capabilities by depleting ALDH+ cells.811

Consequently, in CSC-targeted therapy, the application of ICIs
holds particular appeal. Preclinical studies have demonstrated that
anti-CSC vaccines combined with anti-PD-L1 therapy, as adjuvant
treatment following surgical resection of squamous cell carci-
noma, significantly inhibit tumor recurrence and prolong survival
compared to monotherapy.806 Moreover, a triple regimen
combining anti-PD-L1 with anti-CTLA-4 and an anti-CSC vaccine
is more effective in promoting tumor regression in melanoma-
bearing mice than the anti-CSC vaccine alone.812 These antitumor
effects are attributed to the significant depletion of ALDH+ CSCs
following combination therapy, associated with T cell expansion,
suppression of TGF-β secretion, increased IFN-γ secretion, and
notably enhanced host-specific CD8+ T cell responses against
CSCs.813 Researchers conclude that combining anti-CSC vaccines
with PD-1 blockade can enhance the functionality of tumor-
specific CTLs and protect mice from secondary challenges by
CSCs.813

Clinical trials of targeting CSCs combined with immunotherapy
In recent years, vaccination against CSCs has garnered increasing
attention in the clinical research domain (Table 5). These trials
encompass various cancer types, including pancreatic cancer
(NCT02074046), nasopharyngeal carcinoma (NCT02115958), breast
cancer (NCT02063893), hepatocellular carcinoma (NCT02089919),
lung cancer (NCT02084823), colorectal cancer (NCT02176746), and
ovarian cancer (NCT02178670). Although these trials are listed as
completed on ClinicalTrials.gov, the research outcomes have yet
to be reported. On another front, with the advancement of CAR-T
cell technology, an increasing number of clinical trials are
exploring CAR-T cell therapies using CSC biomarkers. These cells
can bypass the antigen presentation process and directly target
CSCs, exerting anti-tumor effects. NCT02541370, a single-arm
phase II trial, demonstrated promising anti-tumor activity and
manageable safety for CD133-targeted CAR-T cells in advanced
hepatocellular carcinoma. Additionally, Catumaxomab, a bispecific
antibody targeting EpCAM and CD3, has been proven effective in
eliminating malignant ascites in several clinical trials. However,
due to its high cost and potential adverse reactions from targeting
CD3, the drug was withdrawn from the market in 2017. While
therapies like ICIs and NK cells have shown some efficacy in
combating tumors, they struggle to effectively distinguish
between tumor cells and CSCs. Hence, despite the promising
strategy of employing immunotherapy to target CSCs, further
research is crucial for its broader clinical application.

CANCER STEM CELLS AND SENSITIVITY/RESISTANCE TO
RADIOTHERAPY
CSCs and radiotherapy sensitivity/resistance
Radiotherapy, or radiation therapy, is one of the most common
and important therapeutic strategies in terms of solid tumor
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treatment. Radiotherapy exerts its cell-killing effects mainly by
inducing DNA damage that is beyond repair, which consequently
leads to cell cycle arrest, apoptosis, autophagy, or senescence of
target cells.294 In this process, ROS is considered a critical mediator
(Fig. 7).814

Research indicates that radiation can induce the formation of
CSCs and that CSCs are less radiosensitive than other cancer
cells.294,815–822 For instance, radiation-induced radioresistant
NSCLC cell line has increased expressions of CSC markers,
including SOX2, CD133, and ALDH compared to radiosensitive
cells, and upregulating SOX2, a DNA repair regulator, results in
more robust radioresistance of these cells.823 FOXM1 can also
induce SOX2 expression in glioblastoma and induce radio-
resistance.824 In response to radiation, CD133+ GSCs exhibit
radioresistance by preferentially activating DNA damage check-
points and repairing DNA damage more effectively.825 CD24−/low/
CD44+ breast CSC-enriched mammospheres are also more radio-
resistant than monolayers breast cancer cells,826 and the
CD24−/low/CD44+ breast CSCs contain less ROS levels compared
to non-tumorigenic cells.641 Likewise, CD133+ hepatocellular CSCs
are more resistant to radiation than CD133− cells, and suppression
of CD133 sensitizes these cells to radiation by breaking cell-cycle
arrest and inducing apoptosis.827 On the contrary, knocking down
CSC markers can sensitize the cells to radiation.828–830 This
suggests that the acquisition of stem-like properties and radio-
resistance can be two sides of the same coin. Indeed, studies show
that radioresistance is companied by enlarged CSC population in
glioma/glioblastoma,824,831–836 breast cancer,828,837–841 colorectal
cancer,842–845 lung cancer,846 salivary adenoid cystic carcinoma,847

oral squamous carcinoma,848 head and neck squamous cell
carcinoma,849 neuroblastoma,850 cervical cancer,841,851 esophageal
squamous cell carcinoma,852 ovarian cancer,853 and gastric
cancer.854

The induction mechanism of CSC properties by radiation has
not been fully revealed, and some researchers believe CSC
properties are acquired through radiation-inducible EMT.294 Also,
some studies provide insights into the relationship between
radiation and CSC formation. Following DNA damage, senescence-
associated secretory phenotype (SASP) is released and promotes

the emergence of CSCs in MM.855 Similarly, High Mobility Group
Box 1(HMGB1), a DAMP, is released after radiation and subse-
quently activates the HIF-1α signaling in pancreatic cancer cells
which leads to the acquisition of CSC properties.856 Another study
regarding glioblastoma shows that the radiation-inducible activa-
tion of the K-RAS/ERK/CD44 axis facilitates the stemness of the
cells.857 And the miR-603 in extracellular vesicles of glioblastoma
after radiation targets IGF1 and IGF1R that promote CSC state.835

Additionally, following radiation, non-CSCs of breast cancer are
converted into CSCs, which can be prevented by Notch inhibition,
suggesting a crucial role of the Notch pathway in this transition.858

The radioresistance of CSCs depends on their enhanced abilities
to repair DNA damage and maintain ROS levels (Fig. 7). MYCN-
amplified neuroblastoma cells exhibit increased c-Myc expression,
dysregulated DNA repair pathway, stable ROS level after radiation,
and CSC properties.850 c-Myc plays an important role in radio-
resistance of nasopharyngeal carcinoma CSCs by upregulating
DNA damage checkpoint Checkpoint Kinase 1 (CHK1) and
CHK2.859 OCT4, a CSC marker, endows radioresistance to head
and neck squamous cell carcinoma cells by regulating the
homologous recombination factors PSMC3IP and RAD54L, and
either upregulation or downregulation of OCT4 diminishes radio-
resistance of the cells.860 THOC2 and THOC5 play an important
role in the radioresistance of triple-negative breast cancer cells by
upregulating SOX2.837 SOX2 can lead to radioresistance by
inducing cell cycle arrest to avoid DNA damage checkpoints.861

Ubiquitination-Specific Protease 1 (USP1), which is upregulated in
GSCs, stabilizes DNA damage response regulators and induces
radioresistance of these cells.862 Musashi1, a CSC marker, regulates
the expression of a DNA-protein kinase catalytic subunit to induce
enhanced DNA repair response, which finally endows radio-
resistance to GSCs.863

Several signaling pathways are involved in the acquisition of
both stemness and radioresistance. The activation of the JAK2/
STAT3 pathway promotes colorectal cancer stemness character-
ized by increased expression of cyclin D2, which also maintains
low levels of DNA damage accumulation.842 The TGF-β pathway
activation or the WNT/β-Catenin pathway also enhances not only
stemness but also radioresistance of breast cancer, salivary

Fig. 7 Radioresistance induced by CSCs. a As for radiosensitive cancer cells, radiation can induce the production of ROS, which subsequently
leads to the accumulation of cytochrome C and apoptosis, and DNA damage that causes various types of cell death. b CSCs can be
radioresistant due to their high expression of DNA damage repair-associated molecules and powerful radical scavenging system
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adenoid cystic carcinoma, colon cancer, cervical cancer, or gastric
cancer.839,844,847,851,854,864 MiR-19b can downregulate FBXW7
expression and consequently activate the WNT/β-Catenin path-
way, which eventually leads to stemness enhancement and
radioresistance.843 SFRP2 is downregulated in glioma patients
treated with radiotherapy, and a study shows that SFRP2
diminishes stemness and radioresistance of glioma cells by
inhibiting the WNT/β-Catenin signaling.833 Besides, the Forkhead
Box Q1 (FOXQ1)/Sirtuin 1 (SIRT1)/β-Catenin axis and the Ecotropic
Virus Integration Site 1 (EVI1)/β-Catenin can also mediate
stemness and radioresistance of colorectal cancer.845,865 The
activation of the PI3K/AKT/mTOR pathway decreases apoptosis
thus inducing radioresistance of prostate CSCs.866 Also, Tribble 2
activates the mTOR pathway and induces stemness and radio-
resistance in esophageal squamous cell carcinoma.852 In glioblas-
toma, the cyclin-like protein Spy1 endows the cancer cells with
self-renewal abilities and downregulates CAP-Gly Domain-Con-
taining Linker Protein 3 (CLIP3) whose expression leads to the
glycolytic flux that induces radioresistance.832,867 The Proliferating
Cell Nuclear Antigen (PCNA)-Associated Factor (PAF) supports GSC
maintenance and promotes radioresistance by inducing transle-
sion DNA synthesis.868 Activation of NRP1 not only improves
stemness but also potentiates radioresistance of breast cancer
cells by reducing radiation-mediated apoptosis.840 Integrin β1
increases stemness of oral squamous carcinoma cells and induces
radioresistance by suppressing radiation-induced apoptosis.869

Preclinical studies on improving radiosensitivity by targeting CSCs
Efforts have been made to restore radiosensitivity by inhibiting
CSCs in preclinical studies. DNA-Dependent Protein Kinase (DNA-
PK) stabilizes SOX2 and maintains the stemness of GSCs, and
NU7441, a DNA-PK inhibitor, can effectively reduce the stem cell
sphere formation and sensitize the tumor to radiotherapy
in vivo.831 Combining radiotherapy with glimepiride, an agent to
treat type 2 diabetes, can disturb GSC maintenance and sensitize
the tumor to radiation by reducing glycolysis.832 MiR-7-5p can
reduce stemness of colorectal CSCs and sensitize these cells to
radiation by downregulating the stemness-associated transcrip-
tion factor, KLF4.870 Delivery of miR-145 that targets multiple
stemness-related transcriptional factors reduces stemness and
reverse radioresistance of colorectal CSCs.871 The lncRNA Trans-
membrane Phosphatase With Tensin Homology Pseudogene 1
(TPTEP1) interacts with miR-106a-5p and thus activates the P38/
MAPK pathway that suppresses stemness and radioresistance of
glioma cells.834 An Oncostatin M Receptor (OSMR) promotes
mitochondrial respiration in GSCs, and suppression of this
receptor sensitizes the cells to ionizing radiation.872 Apigenin
can attenuate stemness of glioblastoma by downregulating HIF-1α
and NF-κB and sensitizing the cells to radiotherapy due to reduced
glycolysis.873 MiR-146b-5p can target the Hu antigen R and
increase lncR-p21 which leads to inhibition of β-Catenin.874 This
process attenuates stemness and increases apoptosis and radio-
sensitivity of the cells.874 Silencing Human Telomerase Reverse
Transcriptase (hTERT) abolishes telomerase activity, reduces
stemness, and reverses the radioresistance of a radioresistant
nasopharyngeal carcinoma cell line.875 Given that miR-210 induces
hypoxia adaption and maintains stemness of GSCs, knockdown of
miR-210 abolishes CSC markers and endows radiosensitivity to
these cells.876 Inhibition of integrin a6 leads to reduced DNA
damage response and normalizes cell cycle pathways, which
eventually helps overcome radioresistance and diminish stemness
of the GSCs.836 Methyltransferase-like 14 and miR-99a-5p can
downregulate Tribble 2, and the Tribble 2-induced activation of
the mTOR pathway can be inhibited by an H-Istone Deacetylase 2
(HDAC2) inhibitor and restore radiosensitivity of the esophageal
squamous CSCs.852 Restoration of E3 ubiquitin ligase C Terminus
Of HSC70-Interacting Protein (CHIP) not only reduces expression
of stemness of NSCLC cells but also sensitizes the cells to

radiotherapy by improving apoptosis via inhibition of the PBK/ERK
axis.877 BEZ235, a dual PI3K/mTOR inhibitor, can effectively
sensitize prostate CSCs to radiotherapy by reducing the stemness
of the cells.866

Clinical trials targeting CSCs combined with radiotherapy
Despite the efforts made to increase radiosensitivity by targeting
CSCs in preclinical trials, few clinical trials that combine radio-
therapy and CSC-targeting therapies are carried out (Table 6). A
study tried to set the periventricular stem cell niche as additional
target volumes in newly diagnosed high-grade glioma to
eliminate the potential CSC pool. However, all 4 enrolled patients
had adverse events and did not complete the study
(NCT02039778). Another phase I study (NCT01068327) evaluated
the safety and efficacy of nelfinavir, an Akt inhibitor, plus
stereotactic body radiotherapy in treating locally advanced
borderline or unresectable pancreatic adenocarcinoma. Among
the 46 patients enrolled, sixteen patients experienced grade ≥2
adverse events, and grade 3−4 adverse events only occurred in 1
patient. The median overall survival of all the patients was
14.4 months. This trial concludes that concurrent stereotactic body
radiation therapy (SBRT) (40 Gy) plus nelfinavir (1250 mg BID) was
tolerable and safe for patients with locally advanced pancreatic
cancer, but the efficacy of this combination still required
investigations.878

CANCER STEM CELLS AND TARGETED THERAPY
Targeted therapy for tumors, a pivotal component of precision
medicine, entails identifying specific carcinogenic sites at the
molecular level and employing drugs to selectively target these
areas, thereby achieving therapeutic objectives.879 Due to its
notable advantages in prolonging patient survival, targeted
therapy has garnered increasing attention, with a considerable
number of treatments earning Food and Drug Administration
(FDA) approval for tumor management.880 However, resistance to
targeted therapy remains a significant consideration during
treatment, emphasizing the critical role of CSCs.881

Thoracic tumors
Resistance of thoracic tumors to targeted drugs such as gefitinib,
osimertinib, erlotinib, afatinib, palbociclib, and lapatinib can be
partially attributed to the presence of a rare subset of CSCs. NSCLC
stem cells with elevated expression levels of ALDH1A1 and CD44
demonstrate heightened resistance to gefitinib. Notably,
ALDH1A1 activity can be neutralized by ATRA, restoring sensitivity
(Fig. 8a).882 Osimertinib-resistant lung cancer cells exhibit
increased stemness traits. Ginsenoside Rg3 has been identified
as a sensitizing factor for osimertinib by activating the Hippo
pathway (Fig. 8b).883 Furthermore, NSCLC cells resistant to
erlotinib and afatinib demonstrate enhanced CSCs-related char-
acteristics.884,885 The CSCs’ marker ALDH1A1 has been identified as
a critical gene for erlotinib resistance in lung cancer cells. In
ALDH1A1-positive cells, the anti-ROS system is activated, leading
to significant upregulation of its associated enzymes Superoxide
Dismutase 2 (SOD2) and Glutathione Peroxidase 4 (GPX4) during
ALDH1A1-induced erlotinib resistance (Fig. 8c).886 Additionally,
besides their intrinsic resistance to targeted therapy, CSCs confer
drug resistance to non-CSCs by secreting vesicles. Vesicles
originating from lung CSCs augment Apurinic Endonuclease 1
(APE1) expression in NSCLC, subsequently activating the IL-6/
STAT3 axis, thus contributing to erlotinib resistance (Fig. 8d).887

Further, Fibroblast Growth Factor Receptor 1 (FGFR1), which
promotes breast cancer stemness through the WNT/β-Catenin
pathway, was identified as a key factor in palbociclib resistance, a
CDK4/6-related targeted drug (Fig. 8e).888 While the majority of
studies suggest that heightened stemness in thoracic tumors
fosters resistance to targeted drugs, Huang et al. reported a
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contrasting finding. Specifically, they demonstrated that over-
expression of Thymocyte Expressed Molecule Involved In Selec-
tion 2 (THEMIS2) in breast cancer promotes the binding of Protein-
Tyrosine Phosphatases 1B (PTP1B) to MET, leading to MET
activation, and ultimately sustaining stemness characteristics.
Interestingly, THEMIS2 expression was positively associated with
lapatinib sensitivity and inversely correlated with chemotherapy
sensitivity (Fig. 8f).889

Liver cancer
CSCs play a pivotal role in the resistance of liver cancer to various
targeted drugs, including sorafenib, trametinib, lenvatinib, and
regorafenib. Chang et al. uncovered a negative correlation
between the expression of YAP1, a promoter of stemness-
related genes SOX2 and OCT4, and the sensitivity of liver cancer
cells to sorafenib.890 Viral infection-associated hepatocellular
carcinoma cells (vHCC) exhibit resistance to sorafenib.891 The
activated Interferon-Gamma Receptor (IFNGR)/JAK2/STAT1/Poly(-
ADP-Ribose) Polymerase 1 (PARP1) pathway in vHCC maintains
stemness, leading to resistance to sorafenib. Conversely, the JAK2
inhibitor momelotinib reverses vHCC drug resistance (Fig. 9a).892

Integration of the hepatitis B virus gene HBx-ΔC contributes to
liver cancer stemness and resistance to sorafenib and
5-fluorouracil.893

Activation of Notch and PI3K/AKT pathways in CSCs is pivotal in
developing resistance to targeted drugs. CD44v6 serves as a
marker of liver CSCs positively associated with sorafenib
resistance. Musashi2 (MSI2) overexpression in CD44v6-positive
liver CSCs contributes to sorafenib resistance by binding Lunatic
Fringe (LFNG) to activate the Notch1 pathway (Fig. 9b).894 Highly
expressed TROY in liver cancer correlates with stemness
characteristics and sorafenib resistance, while wortmannin inacti-
vates the TROY-induced PI3K/AKT pathway, restoring sensitivity to
sorafenib (Fig. 9c).505 Plasma-activated medium (PAM) enhances
the efficacy of trametinib and sorafenib in CSC-rich liver cancer
cell populations by inducing various forms of cell death.895 FZD10
expression significantly increases in lenvatinib-resistant liver
cancer cells, maintaining liver CSC characteristics by activating
the WNT/β-Catenin pathway and β-Catenin/c-Jun/MEK/ERK axis,

thereby contributing to lenvatinib resistance (Fig. 9d).527 CD73, a
marker of liver CSCs, upregulates the c-Myc/SOX9 axis, inhibiting
GSK3β and the ubiquitination and degradation of SOX9, thereby
conferring stemness characteristics to liver cancer (Fig. 9e).896

Cytokines and exosomes are critical factors in conferring
resistance to targeted drugs in liver cancer cells. Kahraman et al.
demonstrated that the application of targeted drugs, such as
sorafenib and regorafenib, enriches liver CSCs, indirectly suggest-
ing resistance to targeted therapy. Further mechanistic studies
showed that IL-8 derived from the liver cancer niche maintains the
stemness phenotype and inhibits sensitivity to sorafenib.897 CSCs
can also confer resistance to targeted drugs to differentiated
malignant cells. Exosomes released by hepatic CSCs in Ras-Related
Protein Rab-27A (RAB27A)-dependent manner confer regorafenib
resistance to differentiated hepatoma cells by inducing the
upregulation of Nanog expression (Fig. 9f).898

Other tumors
The relationship between resistance to targeted therapy and CSCs
is confirmed in various tumors, including melanoma, colorectal
cancer, renal cell carcinoma, osteosarcoma, and oral squamous
cell carcinoma. Vemurafenib-resistant melanoma cells exhibit
higher expression of CSCs-related markers such as CD271 and
fibronectin.899 The Mechanistic Target Of Rapamycin Complex 2
(mTORC2) confers stemness characteristics to melanoma-initiating
cells in Rapamycin-Insensitive Companion Of MTOR (RICTOR)-
dependent manner, promoting melanoma cell resistance to
vemurafenib (Fig. 8G).900 Overexpression of the stemness-related
gene SOX2 in melanoma correlates closely with vemurafenib
resistance. SOX2 binds to the promoter of CD24 to upregulate its
expression, activating Src and STAT3 and conferring adaptive
resistance rather than acquired resistance to melanoma cells
against targeted therapy (Fig. 8h).901 Additionally, the NRG-1β/
ErbB-3 axis and the AKT pathway are critical for colon CSC
resistance to vemurafenib.902

The antipsychotic drug penfluridol inhibits Dopamine Receptor
D2 (DRD2) to eliminate the CSCs associated phenotype of renal
cell carcinoma mediated by the hedgehog pathway, inducing
apoptosis and autophagy, and enhancing the efficacy of the

Fig. 8 Targeted drug resistance of CSCs (except liver cancer). (a, k) gefitinib resistance (b) osimertinib resistance (c, d, j) erlotinib resistance (e)
palbociclib resistance (f) capmatinib resistance (g, h) vemurafenib resistance (i) sunitinib resistance
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targeted drug sunitinib (Fig. 8i).903 However, the use of sunitinib
also enriches CSC subsets in renal cell carcinoma. Sunitinib
enhances Estrogen Receptor β (ERβ) expression by upregulating
lncRNA-ECVSR, activating HIF-2α, and promoting the emergence
of a CSC phenotype.904 MiR-499a suppresses resistance to the
EGFR inhibitor erlotinib in CD166+ osteosarcoma stem cells.
TGFβ-induced enhancement of Snail1 and Zeb1 expression
suppresses the miR-499a/SHKBP1 axis, enhancing stemness
characteristics and erlotinib resistance (Fig. 8j).905 Conversely,
highly expressed Lysyl Oxidase-Like 2 (LOXL2) in oral squamous
cell carcinoma correlates positively with the activation of the EMT
program and the maintenance of stemness. LOXL2 promotes the
expression of stemness-related genes and EGFR in an IFIT1- and
IFIT3-dependent manner, ultimately rendering oral squamous
cell carcinoma more sensitive to the EGFR inhibitor gefitinib
(Fig. 8k).906

There is a scarcity of ongoing or completed clinical trials
specifically targeting CSCs and their resistance to targeted
therapies. Clinical trial NCT01215487 aims to investigate whether
the content of CML stem cells can serve as a predictor of efficacy
in CML patients undergoing imatinib therapy. Another trial,
NCT03481868, is centered on epigenetics and resistance to
tyrosine kinase inhibitors in CML stem cells. However, no results
from these trials have been reported.

THERAPEUTIC STRATEGIES TARGETING CSCS
Targeting classic markers of CSCs
Markers of CSCs, whether they are cell surface markers like CD13,
CD44, and CD133, or intracellular markers such as Nanog, ALDH1,
and SOX2, are effective molecules for identifying the rare
population of CSCs and represent important targets for eliminat-
ing their various malignant biological behaviors. For instance,
CD13 expression in liver CSCs positively correlates with the
activation of the TGF-β-mediated EMT program, which enhances
stemness characteristics while inhibiting ROS accumulation.
Inhibiting CD13 induces apoptosis of liver CSCs.907 Liposomes
modified with CD44 monoclonal antibodies exhibit enhanced

anti-tumor efficacy by effectively targeting CSCs.908 Similarly, the
plant extract emodin serves as a specific inhibitor of the liver CSCs
marker CD44, exerting anti-tumor effects.909 Targeting CD133+

CSCs in gastric cancer with anti-CD133 CAR-T cells significantly
inhibits CSCs-mediated tumor progression and treatment resis-
tance.910 Targeting intracellular stemness-related marker Nanog
effectively reduces the stemness of breast CSCs.911 Inhibiting the
expression of intracellular stemness-related marker ALDH1 using
the cell cycle regulatory kinase wee1 inhibitor MK1775 eliminates
the stemness characteristics of MM.912 Moreover, FDA-approved
drugs like ATRA and Suberoylanilide Hydroxamic acid (SAHA) can
specifically target CSCs based on the expression of cell surface
marker CD133 and intracellular marker Nanog. Their combination
relieves the inhibition of Tet Methylcytosine Dioxygenase 2 (TET2)
and PTEN by inactivating the lncRNA MIR22HG/miR‐22 axis,
ultimately attenuating the stemness characteristics of liver cancer
and inducing apoptosis of liver CSCs.913 Similarly, ATRA effectively
inhibits the expression of cell surface marker CD44 and stemness-
related genes ALDH, SOX2, and KLF4 to target gastric CSCs and
hinder gastric cancer progression.914

Cell surface markers, such as CD123, and intracellular markers,
such as Nanog, represent commonly utilized targets in these
clinical trials, predominantly through CAR-T cells, specific anti-
bodies, and targeted drugs (NCT04272125, NCT02232646). How-
ever, the majority of these trials are in phase I or phase II, with few
reporting outcomes. Limited survival data from completed trials
make it challenging to draw definitive conclusions regarding the
clinical efficacy of targeting CSC markers in relapsed or refractory
tumors.

Targeting the classic pathway of CSCs
The malignant biological behavior of CSCs is underpinned by
multiple interacting signaling pathways, hinting at the potential
significance of targeting classic pathways in CSCs (Fig. 10).
Preclinical investigations have validated the feasibility of targeting
signaling pathways within CSCs. For instance, ICG-001, a WNT
pathway inhibitor, effectively eliminates the stemness and
metastasis phenotypes of colorectal cancer cells by suppressing

Fig. 9 Targeted drug resistance of liver CSCs. a IFNGR stimulation of the JAK2/STAT1/PARP1 pathway is responsible for stemness maintenance
and sorafenib resistance, and can be reversed by the JAK2 inhibitor momelotinib. b MSI2 binds LFNG to stimulate the Notch1 pathway to
upregulate tumor cell’ stemness and sorafenib resistance. c Wortmannin inactivates the TROY/PI3K/AKT axis triggered by CAFs to inhibit the
stemness of tumor cells and restore their sensitivity to sorafenib. d FZD10 contributes to stemness maintenance and lenvatinib resistance by
activating the β-Catenin/c-Jun/MEK/ERK axis. e CD73 upregulates the c-Myc/SOX9 axis and inhibits GSK3β to hinder the ubiquitination and
degradation of SOX9, ultimately maintaining the stemness characteristics and lenvatinib resistance of tumor cells. f CSCs release exosomes to
upregulate Nanog expression in a RAB27A-dependent manner, promoting stemness characteristics and regorafenib resistance of tumor cells
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the downstream gene of the WNT pathway, Myeloid Ecotropic Viral
Insertion Site 1 (MEIS1).915 Similarly, a complex comprising
[PdCl(terpy)](sac)2H2O and niclosamide, designed by Karakas
et al., enhances the therapeutic efficacy against breast cancer by
inhibiting the WNT pathway and inducing apoptosis of CSCs.916

The sonic hedgehog pathway, when activated in pancreatic CSCs,
can be attenuated by sulforaphane (SFN), derived from cruciferous
vegetables, which reduces GLI activity, suppresses stemness, and
induces apoptosis.917 Additionally, silencing the Notch2 pathway
significantly inhibits the stemness and metastatic phenotypes of
bladder cancer cells, revealing a promising target to impede
bladder cancer progression.918 The inhibitory effects of nonster-
oidal anti-inflammatory drugs on colorectal CSCs could be
attributed to the inactivation of the Notch pathway and the
activation of the PPARγ pathway.919 The JAK2-specific inhibitor
CYT387 markedly suppresses the paclitaxel-induced enhancement
of stemness characteristics in ovarian cancer by attenuating the
activity of the JAK2/STAT3 pathway.920 Natural products such as
curcumin from turmeric and epigallocatechin-3-gallate (EGCG)
from green tea have demonstrated inhibition of breast CSCs
activity by deactivating the JAK/STAT and NF-κB pathways.921

Moreover, celastrus orbiculatus extract had demonstrated the
capability to deactivate the TGF-β/Smad pathway by inhibiting
Smad3/4, which ultimately results in the suppression of gastric
CSCs.922 Hongwiangchan et al. synthesized hydroquinone 5-O-
cinnamoyl ester of renieramycin M (CIN-RM), which exhibits
inhibitory effects on lung CSCs by deactivating the AKT/PI3K
pathway and downstream c-Myc.923 Furthermore, GSK-458
effectively disrupts the stemness characteristics of CSCs and
induces caspase-3-mediated cell death by inactivating the PI3K/
mTOR pathway.924

While preclinical data indicate the feasibility of targeting
signaling pathways within CSCs to eliminate them, there are
currently limited corresponding clinical trials. Most ongoing
clinical trials solely utilize signaling pathway inhibitors in patients.

However, discerning whether the anti-tumor effect necessitates
targeting CSCs remains challenging (NCT00106145, NCT01608867,
NCT00844064). More sophisticated clinical trial designs are
imperative to ascertain the effectiveness of targeting signaling
pathways within CSCs.

Targeting the niche of CSCs
The supportive niche surrounding CSCs represents another crucial
protective factor in maintaining their stemness characteristics.4 In
diffuse large B-cell lymphoma, a significant positive correlation
was observed between the stemness score and the scores of
immune cells and stromal cells, highlighting the importance of
targeting the niche as a key strategy for eliminating CSCs.925

Components of the CSCs niche, including the hypoxic micro-
environment, acidic microenvironment, TAMs, CAFs, and cyto-
kines, have been shown to closely influence the stemness
maintenance and survival of CSCs.
Hypoxia-induced HIF-2α serves as a key factor in maintaining

stemness in breast cancer. Mechanistically, inhibition of HIF-2α
effectively attenuates the stemness phenotypes through inactivat-
ing the PI3K/AKT/CD44 pathway.926 Acidosis, a hallmark of the
tumor microenvironment, acts as a promoting factor for the
stemness phenotype in melanoma, prostate cancer, colorectal
cancer, and gastric cancer.927 The extracellular acidic microenvir-
onment may become another promising target for the treatment
of CSCs. Doherty et al. proposed significant inactivation of the IFN
pathway in breast CSCs, suggesting that IFN-β could serve as a
new targeted therapy for breast CSCs. Exogenous IFN-β induces
breast CSCs to transition toward a non-stemness phenotype and
promotes lymphocyte infiltration.928 Further mechanistic studies
have indicated that overexpression of non-phosphorylated IFN-
Stimulated Gene Factor 3 (ISGF3) in breast CSCs is responsible for
their stemness phenotype and invasive behavior. Exogenous IFN-β
therapy significantly phosphorylates ISGF3 to suppress the
stemness characteristics of breast CSCs.929 Chemokines are

Fig. 10 Targeting CSCs through classical signaling pathways. a WNT/β-Catenin pathway. Commonly developed targets include WNT/Frizzled
complex, β-Catenin/TCF, CK1α, tankyrase, and COX. b Hedgehog pathway. Commonly developed targets include SHH-PTCH interaction, SMO,
and GLI. c Notch pathway. Commonly developed targets include Notch, Dll3/4, γ-secretase, ADAM. d NF-κB pathway. Commonly developed
targets include NF-κB complex, IκB, IKKα/β/γ, NF-κB inducing kinase (NIK). e JAK/STAT pathway. Commonly developed targets include JAK1/2/3,
STAT1/2/3/4/5. f TGF-β pathway. Commonly developed targets include TGF-β1/β2/β3, TβRI/II, Smad3/4/5. g PI3K/AKT pathway. Commonly
developed targets include PI3K complex, AKT1/2/3, mTORC1/2. h PPAR pathway. Common targets that have been developed include PPARα/γ/δ
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implicated in tumor progression as components of the tumor
microenvironment. C-X-C Motif Chemokine Receptor 2 (CXCR2),
upregulated by Galectins-3 (Gal-3), has been identified as a renal
cell cancer stemness maintenance factor.930 IL-8 transactivates the
EGFR/HER2 pathway through CXCR1 and CXCR2 activation in SRC-
dependent manner, ultimately enhancing the stemness character-
istics of breast CSCs.931 This further suggests that chemokines can
serve as potential targets for controlling CSCs.
Highly expressed CD51 in TAMs maintains the M2 polarized

phenotype and promotes TGF-β1 secretion. Niche-derived TGF-β1
further activates the TGF-β/Smad pathway to sustain the stemness
characteristics of pancreatic cancer. CD51-based TAM-targeted
therapy may become another option to control pancreatic
CSCs.255 TAMs-derived CCL2 effectively activates the AKT pathway
in breast cancer cells, facilitating the nuclear transfer of β-Catenin
and ultimately sustaining the stemness and EMT-related pheno-
types of breast cancer.274 Similarly, TAMs-derived CCL22 was
identified as a factor promoting stemness and invasiveness in
esophageal squamous cell carcinoma. CCL22 in the tumor
microenvironment activates the FAK/AKT axis to bind and
phosphorylate GLI1, thereby activating the hedgehog pathway.932

Additionally, M1-TAMs secrete IL-6 to upregulate the STAT3/
Thrombospondin-1 (THBS1) axis, maintaining the stemness of oral
squamous cell carcinoma.933 The interaction of TAMs and CAFs
with non-CSCs populations can promote the transformation of
CD44+CD24+ non-CSCs into CD44+CD24− breast CSCs. Mechan-
istically, Rab13 supports the stimulation of IL-8 derived from the
breast CSC niche to promote membrane translocation of CXCR1/2,
ultimately upregulating the stemness of breast cancer. Upon
inhibition of Rab13 with bardoxolone-methyl, a notable suppres-
sion of breast CSCs was observed.934 IL-6 and IL-33 secreted by
CAFs significantly enhance the activity of 5-LO in MDSCs,
stimulating downstream Leukotriene B4 (LTB4)/Leukotriene B4
Receptor Type 2 (BLT2) axis to promote stemness and chemore-
sistance of intrahepatic cholangiocarcinoma.287 Furthermore, IL-6
and IL-8 derived from myofibroblasts in the tumor microenviron-
ment activate the Notch/Hairy And Enhancer Of Split 1 (HES1) and
STAT3 pathways, enhancing the CSCs population in early color-
ectal cancer.935 This further suggests that CAFs in the niche are
another promising target for controlling CSCs. Unlike most
evidence supporting CAFs as protectors of CSCs, McAndrews
et al. reported that the presence of αSMA+ CAFs was associated
with suppressed activity of LGR5+ colorectal CSCs, increased
regulatory T cells and decreased CD8+ T cells.936

While preclinical studies indicate the feasibility of targeting the
niche to affect CSCs, there remains a notable absence of relevant
clinical trials. Current ongoing clinical trials involve interventions
such as the use of autologous activated T cells and CSC vaccines
comprising dendritic cells, T cells, B cells, and CSC-derived
antigens to reprogram the CSC niche (NCT05341947,
NCT02074046, NCT00846456). However, the majority of these
trials are in phases I and II, with no conclusive experimental
outcomes reported yet.

Targeting CSC through other approaches
In addition to targeting the markers, signaling pathways, and
niches of CSCs, other potential approaches to eliminate CSCs
include modulating stemness-related genes, abnormal metabo-
lism, non-coding RNA, etc. The Protein Arginine Methyltransferase
Family (PRMTs) has emerged as a key player in tumor progres-
sion.937,938 Feng et al. highlighted PRMTs as crucial enzymes
regulating ovarian cancer stemness, suggesting that PRMT
inhibitors could serve as potential targeted therapeutics for
ovarian CSCs.939 Dysregulation of iron metabolism, lipid metabo-
lism, and mitochondrial function contributes to stemness main-
tenance. Katsura’s team demonstrated a close association
between imbalanced iron metabolism and tumor stemness.
Deferasirox application effectively downregulates stemness in

esophageal cancer and oral cancers.940 High-fat diets activate lipid
metabolism via PPARα and PPARδ, enhancing intestinal stem cell
function and tumorigenesis.941 Activation of the FOXM1/PRDX3
axis in mitochondria is essential for endometrial CSCs’ survival,
suggesting mitochondria as a feasible CSC target.942 Similarly, the
mitochondria function-associated FOXM1/PRDX3 pathway is
indispensable for colorectal CSCs survival, with its induced
upregulation of CD133 expression significantly contributing to
colorectal stemness.943

Non-coding RNAs play a crucial role in the intricate regulatory
network governing tumor progression and the stemness main-
tenance of CSCs.944,945 Utilizing a delivery vector termed human
telomerase reverse transcriptase promoter-driven VISA (TV),
circular RNA RANBP2-Like And GRIP Domain-Containing Protein
6 (circRGPD6) is transported to breast CSCs to impede their tumor
initiation and metastasis potential. Mechanistically, TV-circRGPD6
acts as a sponge for miR-26b, alleviating its suppression of yes-
associated factor 2.946 The DGCR8/circKPNB1/SPI1 positive feed-
back loop, persistently activated in glioblastoma, sustains the
upregulation of circKPNB1, which subsequently activates the SPI1/
TNF-α/NF-κB axis, maintaining stemness of glioblastoma.455

Elevated circ_0007385 in NSCLC functions as a stemness-
promoting factor by sponging miR-493-3p to alleviate its
inhibition of ras-related protein Rab-22A.947 Similarly, lung CSCs-
secreted lncRNA Mir100hg is delivered via exosomes to non-CSCs,
targeting miR-15a-5p and miR-31-5p, thereby promoting lung
cancer progression.948 MiR-148a, inversely correlated with the
expression of stemness-related genes SOX2, OCT4, and Nanog,
attenuates the stemness of esophageal squamous cell carcinoma
by inhibiting Activin A Receptor, Type I (ACVR1).949 Non-coding
RNA emerges as a promising therapeutic avenue for
targeting CSCs.
While preclinical studies have shown promise in targeting CSCs

through alternative pathways, their clinical efficacy remains to be
established. We provide a summary of pertinent clinical trials in
Table 7. Interventions in these trials encompass CSC vaccines,
repurposing of existing drugs (such as metformin), and targeting
of genes potentially linked to stemness (NCT02084823,
NCT01440127, NCT03298763). However, most investigations are
in early phases (phase I and phase II), with limited comparison
between treatment strategies targeting CSCs and standard
therapies. The available results from a few clinical trials do not
conclusively demonstrate significant patient benefit from CSC-
targeted treatments (NCT01579812, NCT02001974, NCT02001974).

DRUG DELIVERY SYSTEM FOR TARGETING CSCS
Therapies targeting CSCs face several obstacles. Traditional CSC-
targeting drugs have shown significant progress, yet they suffer
from shortcomings such as poor solubility, stability, and dose-
limiting toxicity.950 Additionally, CSCs present a unique challenge
in cancer treatment, displaying heightened resistance compared
to ordinary tumor cells due to their robust capability of drug
concentration regulation and metabolism.951,952 Addressing these
challenges, a notable trend in targeted CSCs therapy involves drug
delivery systems to optimize therapeutic effects and overcome
treatment resistance.953–955 Targeting CSCs treatment predomi-
nantly utilizes nanoparticles, liposomes, and polymer micelle,
while pH-sensitive capsules, and aptamers are also prevalent
(Fig. 11).956–958 Moreover, other treatments include echogenic
PEGylated PEI-loaded microbubble, virus preparations, multi-
nuclear complexes, etc.959–962 Nanobiotechnology not only aids
in early detection and tumor diagnosis but also offers several
advantages in CSC treatment, including precise targeting, high-
dose administration, multiple drug delivery, and controlled drug
release.963

Precise targeting is crucial in nanotechnology-based therapies.
Previously, passive targeting of tumor cells relied on exploiting
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vascular leakage within the tumor microenvironment to facilitate
the accumulation and release of nanomaterials at tumor sites.
However, advancements in technology have enabled active
targeting strategies, wherein nanoparticles are equipped with
targeting ligands for specific recognition of tumor cells. This active
targeting mechanism enhances nanoparticle accumulation in
close proximity to the tumor, thereby augmenting cellular uptake
of therapeutic agents. Such precision targeting serves as the
foundation for achieving localized, high-dose drug delivery.964,965

For instance, HA-mediated Fe3O4 nanocubes exhibit selective
recognition of liver CSCs via the HA-CD44 receptor ligand
pathway, effectively inhibiting their migration and proliferation.966

Wang et al. have developed a peptide-based drug delivery system
characterized by deep tissue penetration and enhanced cellular
uptake. This system, when combined with platinum, enhances
radiation-induced DNA damage, thereby overcoming CSC-
mediated radiation resistance.967 Moreover, nanocomposites such
as H-MnO2@(ICG+ ISL)@HA were a monodispersed hollow
structure of MnO2 with a continuously modified mesoporous
shell structure of HA. These nanocomposites can effectively deliver
isoliquiritigenin at high concentration to CD44+ CSCs.
H-MnO2@(ICG+ ISL)@HA nanocomposites integration with che-
motherapy or phototherapy synergistically enhances tumor
eradication with minimal side effects.968 Conjugation with
antibodies, peptides or aptamers improves CSCs recognition. For
instance, Toshiyama et al. developed a poly (ethylene glycol)-poly
(lysine) block copolymer-ubenimex conjugate, which enhances
the production of ROS to selectively eradicate CSCs by inhibiting
aminopeptidase N.969 Micellar nanomedicine of cisplatin, coupled
with cyclic Arg-Gly-Asp peptide, exhibits enhanced inhibition of
CSCs.970 To address challenges like off-target effects and rapid
degradation, Xu et al. engineered peptide-modified nanoparticles
for targeted delivery to laryngeal CSCs.971 Similarly, activated
carbon nanoparticles loaded with metformin effectively elevate
drug concentrations within liver CSCs, enhancing therapeutic
efficacy.972 Furthermore, nucleic acid aptamers, often referred to
as “chemical antibodies”, possess specific tertiary structures that
bind molecular targets with high affinity. Due to their lower
immunogenicity and small volume, aptamers have emerged as
promising tools for CSCs targeting, especially when combined
with siRNA and miRNA.973 Beyond precise targeting, nanoparticles
can also induce the expression of tumor molecules, offering
additional avenues for therapeutic intervention.974

High-dose administration. Nanomaterials provide a relatively
stable environment for drugs, siRNA, etc., which enable prolonged
drug circulation within the body. For example, CD44v6-targeted
polymeric micelles loaded with niclosamide exhibit tumor-specific
accumulation, allowing for increased intravenous dosages without
a corresponding increase in adverse events.975 Furthermore,
studies by Yuan et al. have demonstrated that although the
plasma concentration of albumin nanoparticles carrying paclitaxel
is 3–5 times lower than that of free paclitaxel, the tumor/plasma
concentration ratio can reach up to 10 times higher. This
underscores the specific tumor targeting capability of albumin
nanoparticles and provides robust evidence supporting their
suitability for high-dose administration.976 In vivo delivery of
therapeutic molecules such as siRNA and miRNA face numerous
challenges, including enzymatic degradation, interactions with
blood components, and non-specific cellular uptake. In addition to
enhancing therapeutic efficacy through nano-loaded drugs,
loading therapeutic miRNAs like miR34a and miR200c can further
augment treatment outcomes.977,978

Controlled drug release mechanisms rely on both endogenous
and exogenous stimuli. Endogenous stimuli responses encompass
pH variations, redox reactions, enzyme activity, etc. pH-sensitive
nanomaterials maintain stability under physiological conditions
but rapidly degrade in the acidic tumor microenvironment,
facilitating targeted drug release and enhancing therapeuticTa
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efficacy.979 For instance, nanoparticles encapsulating SchB exhibit
pH-sensitive release properties and reverse multidrug resistance in
breast CSCs by inhibiting P-Glycoprotein.957 pH-sensitive core-
shell nanoparticles can simultaneously target GSCs and differ-
entiated cells, significantly reducing the proportion of CSCs.980

Exogenous stimuli, including temperature, light, and ionizing
radiation etc., serve as triggers for nanomaterials and can exert
therapeutic effects on tumors. Combination therapy, integrating
conventional anticancer treatments with anti-CSC drugs, repre-
sents a prudent approach to enhance treatment effect.981,982

Photothermal or photodynamic therapy offers higher selectivity,
lower toxicity, and improved reproducibility.951 For instance, Zhu
et al. engineered nanoparticles with sheddable PEG shells and
acid-activatable pro-penetration peptides to deliver a diradical-
featured croconium-based photothermal agent and a natural
cytotoxic HSP inhibitor to CSCs, achieving synergistic thermo-
chemotherapy.983 Fernandes et al. designed magnetic nanoparti-
cles released via hyperthermia to exert potent inhibitory effects on
colorectal CSCs when combined with chemotherapy.984

Enhancing drug delivery systems to accommodate multiple
drugs is crucial for inhibiting CSCs. CSCs possess unique
metabolic pathways and often exhibit overexpression of drug
efflux pumps, leading to multidrug resistance. Multiple dosing
strategies can increase drug concentrations and target CSCs
through diverse mechanisms. For example, coating cisplatin
and disulfiram with hydroxypropyl-β-cyclodextrin enhances
solubility, inhibiting tumor stemness and improving che-
motherapy resistance.985 Liposomes coated with bufalin and
doxorubicin effectively suppress the self-renewal of breast
CSCs.986 Dual-targeting nanoparticles, characterized by excel-
lent biocompatibility and precise CSC recognition, can simulta-
neously deliver doxorubicin and siRNA cocktails, exerting
potent anti-CSC effects.987 Zhang et al. devised mesoporous
silica nanoparticles co-loaded with multiple siRNAs, which
effectively treat leukemia when combined with chemotherapy
drugs.988 Furthermore, the combined delivery of salinomycin

and docetaxel via dual-targeting gelatinase nanoparticles
demonstrates significant inhibition of cervical CSCs.989 Nano-
particles incorporating penetration peptide RW9, an Histone
Deacetylase (HDAC) inhibitor warhead, and 5-fluorouracil, along
with AS1411, enhance inhibitory efficiency against stem-like
cells.990 These advancements in drug delivery systems hold
promise for combating CSC-mediated resistance and improving
cancer treatment outcomes.
Various drug delivery systems exhibit both advantages and

limitations.991 In preclinical research, nanotechnology is frequently
employed to target CSCs markers such as CD44 and CD133, as well
as signaling pathways like WNT/β-Catenin, Notch, and hedge-
hog.991,992 However, in current clinical trials, the utilization of
inhibitors of CSCs markers or related molecular pathways is more
prevalent, with limited investigations focusing on enhancing
CSCs-targeted therapy through drug delivery systems. Given the
heterogeneity of CSCs and the complexity of the tumor
microenvironment, achieving precise targeting of CSCs remains
a critical challenge. Accurate targeting not only enhances efficacy
but also mitigates side effects. Furthermore, leveraging computer
technology to assist in setting specific triggers for controlling drug
release and identifying precise and efficient targets, employing
multi-target, multi-function, and multi-drug combination strate-
gies, will enhance the efficiency of CSC targeting.993–998 Designing
diverse nanomaterials based on the five fundamental character-
istics of nanoparticle therapy—long circulation, tumor accumula-
tion, deep penetration, cellular internalization, and controlled drug
release—remains the prevailing research paradigm.999 Although
most studies are currently confined to preclinical investigations,
optimized therapeutic strategies targeting CSCs via drug delivery
systems hold significant promise.952,1000

In tackling brain tumors, particularly gliomas and brain
metastases, optimizing drug delivery systems is essential due
to the inherent limitations of chemotherapy, including lack of
specificity, harmful side effects, low efficacy, and limited
transport.1001 The blood-brain barrier (BBB) high selectivity for

Fig. 11 Drug delivery systems in targeting CSCs therapy. The utilization of drug delivery systems, predominantly nanomaterials, plays a pivotal
role in targeting CSCs therapy. Traditional passive targeting relies on the leakage of immature blood vessels. However, advancements in
technology have enabled the attainment of active targeting of nanoparticles through surface modifications. Nanomaterials, serving as
carriers, offer the capacity to encapsulate therapeutic agents such as small interfering RNA (siRNA) and drugs, thus safeguarding against drug
degradation. Moreover, active targeting facilitated by nanomaterials enhances drug concentration and enables precise identification of CSCs.
Furthermore, nanoparticles can be stimulated both internally and externally to trigger drug release, with these triggering factors potentially
doubling as therapeutic strategies
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permeating substances, the unique brain microenvironment,
and the deep-seated location of GSCs, possess robust che-
motherapy resistance for GSCs.1002 Overcoming these obstacles
and effectively targeting CSCs is pivotal. Knauer et al. demon-
strated in vitro inhibition of GSCs and modulation of tumor cell
surface markers such as PD-L1, TIM-3, and CD47 using a
polycationic phosphorus dendrimer-based approach for siR-
NAs.1003 Aptamer technology has also shown promise in GSCs.
Behrooz et al. reported that B19 aptamer-conjugated PAMAM
G4C12 dendrimer nanoparticles simultaneously deliver paclitaxel
and temozolomide into U87 CSCs, effectively eliminating U87
CSCs without toxic side effects.1004 Multi-drug therapy by
employing nanotechnology is gaining traction. Smiley et al.
utilized functionalized nanoparticles to co-deliver TMZ and the
MDM2 inhibitor idasanutlin to target GSCs.1005 Gold nanoparti-
cles releasing retinoic acid and TMZ upon low-intensity
ultrasound stimulation sensitize GSCs to chemotherapy.1006

Nanostructured lipid carriers co-deliver paclitaxel and doxorubi-
cin to inhibit GSCs proliferation via PI3K/AKT/mTOR signal
pathway.1007 Peptides also exhibit anti-GSCs properties. Multi-
functional tandem peptide R8-c (RGD) destroys vasculogenic
mimicry to suppress GSCs proliferation.1008 Additionally, func-
tional curcumin liposomes, layered double hydroxide nanopar-
ticles, and other formulations demonstrate therapeutic efficacy
against GSCs.1009

Moreover, nanoparticles or liposomes capable of penetrating
the BBB may play a pivotal role. Engineered high-density
lipoprotein-mimetic nanoparticles effectively deliver SHH inhibi-
tors to stem-like cells in medulloblastoma.1010 Lu et al. synthesized
folic acid-modified albumin nanoparticles to enhance BBB
permeability and cellular uptake. These nanoparticles loaded with
paclitaxel and autophagy inhibitor chloroquine effectively inhibit
GSCs.1011 Curcumin-loaded chitosan-poly (lactic-co-glycolic acid)
nanoparticles, processing with sialic acid to enhance BBB
permeability and target the brain CSCs via anti-ALDH, demon-
strate therapeutic potential.1012 Furthermore, liposomes capable
of crossing the BBB induce necrosis, apoptosis, and autophagy in
glioma and GSCs.1013 These advancements offer promising
avenues for combating brain tumors and targeting CSCs
effectively.
Séhédic et al. reported that radiopharmaceutical nanoparticles

penetrated the BBB and demonstrated therapeutic efficacy
against glioblastoma in mice.1014 Despite numerous drug
delivery systems proving effective in inhibiting tumors by
traversing the BBB, studies targeting CSCs remain relatively
scarce.1015,1016 Although few treatments targeting GSCs have
reached clinical trials, continued research into potential path-
ways and treatment strategies is imperative.1001 Mechanical or
chemical disruption of the BBB via MRI-guided focused
ultrasound, convection-enhanced diffusion, microdialysis cathe-
ters, hypertonic agents, hydrophilic surfactants, and other
methods have been explored to modulate BBB permeability.
However, the BBB serves as a highly selective diffusion barrier,
shielding the brain from toxins and other blood compounds.1017

Balancing the beneficial opening of the BBB for drug delivery
with the preservation of its protective barrier function poses a
critical question. Brain tumors such as GBM, brain parenchymal
metastasis, and leptomeningeal metastasis exhibit high malig-
nancy, with patients experiencing extremely short survival times.
While technologies like intrathecal injection and Omaya reservoir
enable localized treatment of the nervous system and increase
drug concentration, their potential combination with CSCs-
targeting approaches requires further investigation.1018–1020

Phase I/II clinical trials (NCT03566199) have demonstrated the
safety of the panobinostat nanoparticle formulation MTX110 for
newly-diagnosed diffuse intrinsic pontine glioma. However,
nanotechnology specifically targeting brain CSCs remains an
area lacking in research.

CHALLENGES IN CANCER STEM CELL RESEARCH
Given the pivotal role of CSCs in tumor relapse and resistance
mechanisms, extensive research efforts are being dedicated to the
task of identifying and targeting CSCs. However, the identification
of CSC-specific antigens or biomarkers remains a formidable
challenge. Potential CSC biomarkers, identified through aberrant
signaling and metabolic pathways, can be broadly classified into
two categories: cell surface markers and intracellular markers. Cell
surface markers, particularly transport proteins, and signaling
receptors have garnered attention for their potential to facilitate
the diagnostic and precise delivery of therapeutic agents to
CSCs.1021,1022 Yet, the non-specificity and low abundance of these
markers pose significant obstacles to their practical application.
The surface markers identified to date lack specificity for any
single CSC type, as they are also expressed on non-CSCs or healthy
cells, albeit at lower levels.1023 Large libraries of intracellular
molecules may reveal concentration differences between CSCs
and other cell populations, overexpressed intracellular enzymes in
CSCs remain key molecular targets for CSC-specific strategies.
These enzymes, exemplified by ALDH, can be targeted with
prodrugs activated in the presence of specific enzymes, thereby
preferentially killing CSCs.1024 Additionally, transcription factors
regulating CSC proliferation and differentiation, such as BMI-1 and
c-Myc, offer avenues for the design of inhibitors to induce CSC
apoptosis.1025,1026 Other crucial CSC-related transcription factors,
essential for maintaining CSC tumorigenicity and stemness, like
OCT3/4 and SOX2, have also garnered widespread interest.1027,1028

However, a critical issue is that these intracellular transcription
factors are not unique to CSCs, as most signaling and metabolic
pathways are shared among CSCs, non-stem cells, and
healthy cells.
Secondly, although existing CSCs-target therapy shows promise

in cancer treatment, numerous limitations persist. CD133, as a
potential molecular target, poses challenges in terms of reliable
detection and specific antibody recognition.47 Its expression is
influenced by various factors, including oxygen levels, cell density,
and cell cycle, all of which can affect its protein expression within
the microenvironment. Currently, detection of CD133 primarily
relies on immunohistochemistry and flow cytometry, both of
which require specific antibodies. However, CD133 is sensitive to
glycosylation modifications, potentially impacting antibody bind-
ing. Commonly used CD133 antibody clones, including CD133/1
(AC133 or W6B3C1) and CD133/2 (AC141 or 293C3), recognize
different glycosylated epitopes in the CD133 EC3 region. Yet,
glycosylation differences may lead to selective splicing and
masking of epitope binding sites, thereby reducing detection
accuracy.40 Additionally, it is noteworthy that both CD133+/−

cancer cells can initiate tumors, raising questions about the
validity of current CSC biomarkers as true tumor-initiating cells.1029

Recent studies have also discovered that CSCs exhibit high
plasticity, capable of phenotypic transitions under specific
conditions. For instance, in xenograft mouse cancer organoids,
gene knockout of LGR5+ CSCs can limit tumor growth but not
eliminate it. Tumors can be sustained by proliferative LGR5− cells
and, upon cessation of the knockout, LGR5+ CSCs reemerge,
leading to rapid tumor regeneration.1030 This suggests that tumor
cells with a higher degree of differentiation, following CSC
depletion, possess plasticity to revert to the CSC state to
compensate for CSC loss. Furthermore, CSC niches created by
different cells within the microenvironment can facilitate the
evolution of distinct CSC dominant clones.1031 However, current
research on the microenvironment and CSCs relies heavily on
tumor implantation analyses in mouse models, which cannot fully
replicate the microenvironment of primary tumors and the
interactions between human CSCs and their microenvironment,
thus introducing certain limitations.
Given the challenges associated with CSCs-target therapy,

combination therapy emerges as a promising strategy to eradicate
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CSCs and thereby improve patient outcomes.1032 Combination
therapy is recognized for its potency, as it targets multiple
pathways to effectively address tumor heterogeneity and enhance
efficacy. Moreover, the concurrent use of multiple drugs can tackle
drug resistance, aiding in the elimination of CSCs.1033 Although
traditional chemotherapy may not directly target CSCs, its
foundational and critical role in treating various cancers, especially
in early-stage patients, cannot be overlooked. Perhaps their
combination with other CSCs-target therapy could overcome the
issue of relapse.1034 When applying combination therapy in
clinical practice, several issues need to be considered.1035 Firstly,
drug interactions may affect efficacy, with one drug potentially
interfering with the metabolic activity of another, thereby
reducing overall effectiveness. Additionally, the pharmacokinetics
of concurrent administration become exceedingly complex due to
differences in drug metabolism and uptake. Secondly, the
combined use of multiple drugs might provoke cumulative side
effects, complicating the assessment of treatment dosages. If two
drugs have similar side effects, this could negatively impact
patient survival. Identifying the specific drug responsible for side
effects also poses a challenge, sometimes necessitating the
cessation of all drugs. Lastly, CSCs might acquire an MDR
phenotype through mechanisms such as overexpression of drug
efflux pumps, alterations in DNA repair mechanisms, and
modulation of cell death pathways, rendering combination
therapy ineffective.611–613 However, a judicious sequence of
combination therapy could delay the onset of resistance, thus
eliminating CSCs before they become drug-resistant. Therefore,
developing a rational sequence of combination therapy is crucial.
Moreover, devising novel and effective methods for targeting
CSCs remains a focus of research.1036 Nanotherapy, as a potential
strategy, offers possibilities for sustained treatment by enhancing
drug specificity for CSCs, reducing off-target effects, increasing
drug load, optimizing penetration of biological barriers, and
controlling drug release.1037 Additionally, nanomaterials can carry
multiple therapeutic agents, achieving synergistic effects and
potentially reducing resistance. Improved pharmacokinetic prop-
erties and protection against enzymatic degradation further
consolidate the status of nanomaterials as an effective and
versatile platform for targeting CSCs.
Currently, the most prominent and likely direction for the next

decade revolves around identifying novel CSC-specific biomarkers
and leveraging them for cancer treatment. There’s an active
exploration into introducing artificial biomarkers into CSCs.
Metabolic glycoengineering of unnatural sugars offers a straight-
forward tool for incorporating artificial chemical receptors into the
cell membrane for subsequent targeting purposes. One such
example, the azidosugar AAMCO, can label cells in an ALDH1A1-
activated manner, thus preferentially tagging CSCs overexpressing
ALDH1A1 with azide groups. This method transforms intracellular
ALDH1A1 into a clickable tag on the cell surface, paving a new
pathway for developing CSC-targeting technologies.1038 In prin-
ciple, other unnatural sugars that can be reactivated by other
overexpressed CSC enzymes could also be used for CSC labeling
and targeting. However, a challenge is the relatively low labeling
efficiency of AAMCO, as the ALDH1A1 response is partly at the
expense of overall metabolic labeling efficiency. A delicate
balance between labeling efficiency and selectivity is necessary.
This issue could be mitigated by deploying strategies to improve
the delivery of enzyme-activatable unnatural sugars to tumors,
such as using nanoparticles. Metabolic lipid labeling could
also serve as an alternative method for chemical labeling of
CSCs.1039 Given the aberrant lipid metabolism in CSCs, rational
design of unnatural lipids based on structural lipids (like
dioleoylphosphatidylcholine, DOPC) or signaling lipids (like
ceramides, phosphatidylinositol lipids) could achieve preferential
labeling of CSCs over non-stem cancer cells or healthy cells.
Chemical tags, such as azide groups, could then target therapeutic

drugs to CSCs.1040 Compared to metabolic glycoengineering
pathways involving multiple reactions, lipid metabolism pathways
involve fewer steps and may lead to higher labeling efficiency.1041

Similar to metabolic glycan labeling, strategies to improve the
delivery of unnatural lipids to tumors and enhance CSC uptake of
unnatural lipids could further increase labeling efficiency and
subsequent CSC targeting efficacy.
Despite the numerous challenges faced in CSC research,

ongoing studies and technological advancements offer hope for
a deeper understanding of the nature of cancer. Such progress
promises to unveil novel cancer treatment strategies by navigat-
ing the complexities of tumor biology to reveal new avenues of
intervention.

CONCLUSION
Although CSCs originate from differentiated cells, normal stem/
progenitor cells, or hybrids from cell-cell fusion, environmental
factors in CSC niches are essential in the formation and
maintenance of CSCs. Characterized by self-renewal and pluripo-
tency, CSCs play pivotal roles in cancer initiation, proliferation,
metastasis, and therapeutic resistance. Identification of CSCs relies
on specific biomarkers, including intracellular and cell-surface
markers, which serve as tools to predict patients’ prognosis
regarding specific treatments. Multiple signaling pathways are
excessively activated in CSCs, with intricate crosstalk among them.
Extensive evidence indicates that the activation of pathways such
as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β,
PI3K/AKT, and PPAR contributes to various malignant behaviors of
CSCs, offering potential therapeutic targets.
Despite facing numerous challenges, researchers remain

dedicated to exploring innovative approaches to eradicate CSCs,
thereby enhancing the responsiveness to chemotherapy. In-depth
research into the characteristics of CSCs, including novel markers,
signaling pathways, and the microenvironment, is expected to be
a hot theme in the coming decades. Although there is currently a
lack of sufficient high-quality clinical trials to confirm the efficacy
of these strategies, the deepening of research gives us reason to
anticipate the discovery of more effective methods for eliminating
CSCs to overcome chemotherapy resistance in the future. The
rapid advancement of immunotherapy has ushered in a new era
in anti-tumor treatment. In-depth investigations into the immu-
nological characteristics of CSCs have laid a theoretical foundation
for immunotherapy targeting CSCs and validated its technical
feasibility. Extensive preclinical research has thoroughly demon-
strated the potential benefits of CSC-targeted immunotherapy.
However, to translate this approach into clinical practice, we still
face a host of challenges. These include identifying specific
antigens of CSCs, unraveling the mechanisms by which CSCs
evade immune surveillance, and understanding the impact of the
immunosuppressive tumor microenvironment on therapy. Addres-
sing these issues may pave the way toward successful anti-tumor
treatment.
Radiation can induce CSC formation, and CSCs are generally

radioresistant. Although it is mechanically reasonable to target
CSCs to improve radiosensitivity, few clinical studies succeeded.
While preclinical studies consistently demonstrate that the
presence of CSCs correlates positively with resistance to targeted
therapies, their eradication has the potential to reverse this
resistance. However, clinical trials currently lack supportive
evidence for this proposition. Therapeutic approaches aimed at
eliminating CSCs primarily involve targeting CSC markers, signal-
ing pathways, and their microenvironmental niche. Although
numerous clinical trials have been undertaken, substantial, high-
quality clinical evidence supporting the efficacy of these strategies
remains elusive.
CSCs, a rare subset within tumors, exert significant influence

over various malignant processes, including tumor initiation,
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proliferation, and metastasis. Notably, CSCs exhibit resistance to
diverse therapeutic interventions, encompassing chemotherapy,
immunotherapy, radiotherapy, and targeted therapy. Comprehen-
sive understanding of CSCs’ involvement in treatment resistance,
coupled with strategies to specifically target CSCs, is crucial for
advancing patient outcomes. Preliminary findings from preclinical
studies indicate the potential efficacy of CSC-targeted interven-
tions in overcoming treatment resistance. Moreover, the forth-
coming results from ongoing clinical trials hold promise for further
advancing the understanding and therapeutic management in
this field.
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