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Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is
characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material
for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical,
enzymatic, or microbial transformation.
Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial
strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis
WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion
products using LC-MS/MS mass spectrometer.
Results: L. mesenteroidesWiKim19 and Pediococcus pentosaceusWiKim20 converted ginsenoside Rb1 into
the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis
WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with
b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other
strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of
b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB).
Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from w2.6 mg/mL to 6.5 mg/mL and
increased in accordance with the incubation periods. Our results indicate that the enzymatic activity
along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.
� 2016 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lactic acid bacteria (LAB) have been used as probiotics and are
present in many fermented foods (cheese, yogurt, butter, and
kimchi), where they influence the taste and preservation by pro-
ducing lactic acid and/or alcohol. Some enzymes produced by LABs
can efficiently utilize ingested nutrients to benefit the host, i.e.,
linoleic acid isomerase from Lactobacillus acidophilus produces
conjugated linoleic acid, which has biological properties, from
linoleic acid [1], and b-glucosidase from Lactobacillus para-
plantarum converts isoflavone glucosides, which are not absorbed
by enterocytes [2], to absorbable aglycones [3]. Recent studies re-
ported the bioconversion of ginsenosides using Lactobacillus
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pentosus and Leuconostoc citreum isolated from fermented foods
due to b-glucosidase activity [4,5].

The major commercial ginsengs such as Panax ginseng Meyer
(Korean Red Ginseng), Panax quinquifolium (American ginseng), and
Panax notoginseng (Burk.) F.H. Chen (Notoginseng) have beenwidely
used as traditional herbal medicines [6]. Ginsenosides (ginseng
saponins) are the major pharmacological constituents of ginseng,
and over 100 ginsenosides have been identified [5,7]. Major ginse-
nosides (80% of the ginsenosides) are composed of Rb1, Rb2, Rc, Rd,
Re, and Rg1; minor ginsenosides are their deglycosylated forms and
composed of Rg3, Rh2, Rh1, F2, C-K, Rg2, Rh1, Rg5, and F1 [8].

Minor ginsenosides are known to have a greater pharmaceutical
potential than major ginsenosides [9e14]. However, naturally
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occurring minor ginsenosides are present at very low concentra-
tions. Therefore, hydrolysis of sugar moieties from abundant major
ginsenosides are needed to produce minor ginsenosides. Gut
microbiota metabolize orally administered ginseng and help
transport across the epithelial membrane [15] and human intesti-
nal microbiota convert major ginsenosides to minor ginsenosides
[10,16,17]. However, ginsenoside metabolism varies between in-
dividuals depending on the population of gut microbiota, such as
Ruminococcus spp., Bacteroides spp., and Bifidobacterium spp. [17].
Acidic environments as well as intestinal microbiota have impor-
tant influences on the bioconversion of ginsenoside and the low pH
of gastrointestinal environment could activate the deglycosylation
of ginsenoside by acidic hydrolysis response [18e20].

Kimchi is a traditional Korean food that is fermented vegetables
including cabbage and various seasonings. Kimchi has antioxidative
and antidiabetic properties and bacteria isolated from kimchi
produce beneficial enzymes [21e23]. Various LABs play important
roles during kimchi fermentation: Lactobacillus and Leuconostoc are
the predominant genera of the kimchi microbiome in the kimchi
fermentation [24]. Lactobacillus species have neuroprotective,
antifungal, and anticolitic properties [25e27] and Leuconostoc
species play key roles in decreasing foodborne pathogen growth,
viral activity, and the effects of lipid profiles [28e30]. Recent
studies have suggested that LABs from kimchi produce hydrolytic
enzymes that catalyze ginsenoside bioconversion by removing the
glycosyl group of major ginsenosides [4,5].

In this study, we isolated LABs associated with kimchi fermen-
tation from homemade kimchi, and compared availability for
ginsenoside bioconversion of five LABs such as Leuconostoc men-
senteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactoba-
cillus brevisWiKim47, Leuconostoc lactisWiKim48, and Lactobacillus
sakei WiKim49 by quantitating transformed ginsenoside using a
sensitive and reliable LC-MS/MS method.
2. Materials and methods

2.1. Materials

Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus
WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis
WiKim48, and Lactobacillus sakei WiKim49 were isolated from
homemade kimchi using de Man, Rogosa, and Sharpe (MRS) media.
MRS brothwas purchased fromDifco (Miller, Becton Dickinson, and
Co., Sparks, MD, USA). Ginsenosides Rb1, Rg3, digoxin (internal
standard), and b-glucosidase activity assay kit were purchased from
Sigma Aldrich (St. Louis, MO, USA). Ginsenoside -F2, -Rg1, -Rf, -Ro,
-Rg2, -R1, -Ra1, -Rb2, -Rb3, -F1, -Rd, -Rg5, -compound K; -Rh2,
-Rh4, and gypenoside XVII were purchased from Ambo Institute
(Daejeon, Korea). API 50 CH and inoculating fluid was purchased
from bioMérieux (Lyon, France) [31].
2.2. Determination of 16S rRNA gene sequences and phylogenetic
analysis

To identify the isolates using 16S rRNA sequencing, the isolates
were sent to Macrogen Inc., Korea sequencing service (www.
macrogen.com, Seoul, Korea). The obtained sequences were
compared with available 16S rRNA sequences in the EzTaxon Server
[32] to evaluate sequence similarity. Multiple sequence alignment
of the 16S rRNA sequences from five lactic acid bacteria and these
related species were performed with CLUSTAL W [33]. The phylo-
genetic trees were constructed using MEGA6 [34] with neighbor-
joining [35] based on 1,000 random bootstrap replicates for each.
2.3. Assay of ginsenoside Rb1 bioconversion by lactic acid bacteria

L. mensenteroides WiKim19, P. pentosaceus WiKim20, L. brevis
WiKim47, L. lactis WiKim48, and L. sakei WiKim49 were inocu-
lated in MRS broth, until absorbance reached 600 nm of 1.0. The
strains were cultured at 30�C for 1 d, 3 d, and 7 d with ginsenoside
Rb1 (a final concentration of 200mM) dissolved in MeOH. After
centrifugation at 5,000g for 10 min, 2 mg/mL digoxin as an in-
ternal standard was added and purified using Sep-Pak Light C18
cartridges (Waters, Milford, MA, USA) and then dissolved in
MeOH.

2.4. Assay of ginsenosides by LC-MS/MS

Ginsenosides Rb1 and minor ginsenosides in the reactions
were analyzed by using UPLC (Waters), coupled to a TripleTOF
5600 plus system with electrospray ionization (ESI; AB SCIEX,
Framingham, MA, USA). To investigate and separate the precursor
and fragmentation ions of ginsenosides Rb1, minor ginsenosides,
an Acquity UPLC BEH C18 column (2.1 mm� 100 mm, 1.7 mm
particle size) from Waters was used at a flow rate of 0.5 mL/min.
UPLC conditions were as follows: solvent A, water containing
10mM ammonium acetate; solvent B, acetonitrile containing
10mM ammonium acetate; gradient, 0e0.5 min (5% B), 0.5e
14.5 min (5e30% B), 14.5e15.5 min (30e32% B), 15.5e16.5 min
(32e40% B), 16.5e17 min (40e55% B), 17e19 min (55% B), 19e
25 min (90% B), and 25e30 min (5% B). Two microliters of each
sample were injected for the UPLC analysis, and peaks were
identified by comparing their retention times and fragment ion
with that of reference compound.

The mass spectrometry conditions were optimized under
the negative ion mode as follows: curtain gas, 30; collision
energy, �30; declustering potential, �80; nebulizer gas (Gas 1), 40
at MRM mode; heater gas (Gas 2), 50. The ion spray voltage
was�4,500V. Ginsenosides in all reactionmixtureswere quantified
withmultiple reactionmonitoring (MRM) using selected transitions
as follows: Rb1, m/z 1,107/945; Rg3, F2, m/z 783/621; Rg5, m/z
765/603; digoxin, m/z 779/649, Rg1, Rf m/z 799/637; Ro, m/z
955 / 793; Rg2, m/z 783/637; R1, m/z 931/769; Ra1, m/z
1,209/1,077; Rb2, Rb3,m/z 1,077/ 945; F1,m/z 637/475; Rd,m/z
945/783; XVII, m/z 945/323; compound K, m/z 621/459; Rh2,
m/z 621/459; and Rh4 m/z 619/161.

Data acquisition and processing were carried out using Analyst
TF 1.6 and PeakVeiw 1.2 software (AB SCIEX), respectively. The data
obtained from multiple reaction monitoring (MRM) mode were
quantitated using MultiQuant software (AB SCIEX). The standard
solutions containing 10e200mM were injected into the UPLC with
2 mg/mL digoxin. The linear calibration curve for peak area ratio
(ginsenoside/digoxin) was obtained for the quantification of gin-
senoside. The amounts of the ginsenosides in each sample were
determined from corresponding calibration curves.

2.5. Assay of b-glucosidase activities using cell lysates

L. mensenteroides WiKim19, P. pentosaceus WiKim20, L. brevis
WiKim47, L. lactis WiKim48, and L. sakei WiKim49 were cultured
for 1 d in MRS broth at 30�C. The supernatant was removed after
centrifugation at 12,000g for 10 min, and cell lysates including
intracellular b-glucosidase were prepared by bead beating in
50mM sodium phosphate buffer (pH 7.0). Protein concentrations
of cell lysates were determined using a Pierce BCA Protein Assay
Kit (Thermo, Rockford, IL, USA). The proteins were diluted to the
concentration of w0.5 mg/mL to assay enzyme activity. The
enzyme activity was determined using b-glucosidase activity
assay kit (Sigma-Aldrich, St. Louis, MO, USA) according to the
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manufacturer’s protocol. The release of p-nitrophenol was
measured at 405 nm (SPECTROstar Nano, BMG Labtech, Orten-
berg, Germany). Analysis was performed in duplicate for each
strain. One unit of b-glucosidase is the amount of enzyme that
catalyzes the hydrolysis of 1.0 mmole substrate per min at pH 7.0.
The results were reported as mean� standard deviation. Statis-
tical analyses were performed using GraphPad Prism 6 (Graph-
Pad software, La Jolla, CA, USA). One-tailed Student t test for
unpaired samples were used to assess significance of the
Fig. 1. Phylogenetic trees constructed from 16S rRNA gene sequences. The phylogenetic rel
Lactobacillus brevisWiKim47, Leuconostoc lactisWiKim48 and Lactobacillus sakeiWiKim49 w
The numbers at the nodes represent bootstrap values (> 60%) are expressed as percentage
accumulated changes per nucleotide.
differences between the three LABs. Differences with p
values < 0.05 were considered statistically significant.
2.6. Measurement of pH and acidity

The LABs were cultivated in the MRS broth at a temperature of
30�C for 0 d and 3 d. The pH about 10 mL of each culture broth was
measured using electrode pH meter (Mettler Toledo, Columbus,
ationships of Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20,
ith other species are shown. Trees were constructed using the neighbor-joining method.
s of 1,000 replicates. Escherichia coli ATCC 11775 T was used as an outgroup. Bar, 0.01
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USA). Acidity was measured by titration against 0.1N NaOH to a
phenolphthalein endpoint, pH 8.3.

3. Results and discussion

Although minor ginsenosides have various beneficial effects,
only small percentages are found in ginseng. Therefore, many
studies have investigated methods such as heating, mild acid hy-
drolysis, and enzymatic transformation for conversion of major
ginsenosides [36e38].

Lactic acid bacteria strains were isolated from kimchi previously
and the strains were identified by 16S rRNA sequencing. The
identified 16S rRNA sequences were deposited on NCBI GenBank
under accession No. KT759681 (L. mesenteroides WiKim19),
KX890131 (P. pentosaceus WiKim20), KX886794 (L. brevis
WiKim47), KX886799 (L. lactis WiKim48), and KX886806 (L. sakei
WiKim49). The constructed phylogenetic trees clusteredWiKim 19,
20, 47, 48, and WiKim 49 with the Lactobacillus, Leuconostoc, and
Pediococcus genera and well matched with reference strains (Fig. 1).

The API 50 CH (bioMérieux) was used to determine the carbo-
hydrate assimilation profile of five LABs. The test preparations were
incubated at 30�, and readings were made after 48 h. The
biochemical characteristics are listed in Table 1. L. mesenteroides
WiKim19 showed the utilization of diverse a (1/4), b (1/4), a
(1/6), a (1/2) linkage. L. brevis WiKim47 could not use maltose,
lactose, inulin, and cellobiose which have a (1/4) and diverse b
(1/4) linkage. P. pentosaceus WiKim20 showed the similar carbon
utilizing profile with L. mesenteroides WiKim19. Both could use
inulin and gentiobiose, which have b (1/2) and b (1/4) linkage,
Table 1
Distinctive features of the carbohydrate fermentation profiles of five LABs determined u

Characteristic Lactobacillus brevis
WiKim47

Pediococcus pentosaceus
WiKim20

Glycerol � w
Erythritol � w
�D-arabinose � w
L-Arabinose þ þ
D-Ribose þ þ
D-Xylose þ þ
D-Galactose þ þ
D-Glucose þ þ
D-Fructose þ þ
D-Mannose þ þ
D-Mannitol w �
D-Sorbitol � �
Methyl-a D-glucopyranoside þ �
N-Acetylglucosamine þ þ
Amygdalin � þ
Arbutin � þ
Esculin ferric citrate � þ
Salicin � þ
D-Cellobiose � þ
D-Maltose þ þ
D-Lactose (bovine origin) þ �
D-Melibiose þ þ
D-Saccharose (sucrose) þ þ
D-Trehalose � þ
Inulin � þ
D-Melezitose � �
D-Raffinose þ þ
Amidon (starch) � �
Gentiobiose � þ
D-Turanose � �
D-Tagatose � þ
D-Arabitol � �
Potassium gluconate � �
Potassium 2-ketogluconate � W

�, negative; þ, positive; 1, Leuconostoc mesenteroidesWiKim19; Strain 2, Pediococcus pent
WiKim48; Strain 5, Lactobacillus Sakei WiKim49; w, weak reaction
respectively. However, P. pentosaceus WiKim20 did not use lactose,
which has galactopyranosyl b (1/4) linkage.

To investigate the bacterial bioconversion of ginsenoside Rb1
intominor ginsenosides, ginsenoside bioconversionwas performed
by incubation of five LABs with 200mM of Rb1 and measured the 15
minor ginsenoside components (ginsenoside -Rg3, -F2, -Rg5, -Rg1,
-Rf, -Ro, -Rg2, -R1, -Ra1, -F1, -Rd, -compound K, -Rh2, -Rh4,
gypenoside XVII).

In the results, five LABs did not produce the other minor gin-
senosides except ginsenoside Rg3 and Rg5 (Figs. 1A and 1B). The
content of ginsenoside Rg3 increased in L. mesenteroides WiKim19
(5.2�1.1 mg/mL), P. pentosaceus WiKim20 (4.5� 0.9 mg/mL) and
other lactic acid bacteria produced from w0.8� 0.4 mg/mL to
1.1�0.6 mg/mL. Interestingly, we detected the ginsenoside Rg5
from five LABs ranged from 2.6� 0.7 mg/mL to 6.5� 3.0 mg/mL
concentration at 7 d of incubation. L. mesenteroides WiKim19
(6.5� 3.0 mg/mL) and P. pentosaceus WiKim20 (4.6� 0.8 mg/mL)
showed the higher ginsenoside Rg5 content among the five LABs
(Fig. 2B).

It is reported that bacterial b-glucosidase activity has been
particularly involved among many glycosyl hydrolases to transform
ginsenoside Rb1, which removes two glucose molecules at 20-C of
protopanaxadiol into ginsenoside Rg3 [39]. To determine whether
b-glucosidase influences the bioconversion of ginsenoside, we
tested the b-glucosidase enzyme activity. L. mesenteroides
WiKim19, which used diverse glycosidic linkage substrates
(Table 1), showed the highest b-glucosidase activity supporting the
maximum bioconversion capacity. L. lactis WiKim48 and L. sakei
WiKim49 exhibited the reduced productions of Rg3 along with the
sing API 50 CH (bioMérieux, Lyon, France)

Leuconostoc Lactis
WiKim48

Lactobacillus sakei
WiKim49

Leuconostoc mesenteroides
WiKim19

� � �
� � �
� � �
þ þ þ
þ þ þ
þ � þ
þ þ þ
þ þ þ
þ þ þ
þ þ þ
� � þ
� � þ
þ � þ
þ þ þ
� � þ
þ � þ
þ þ þ
þ þ þ
þ þ þ
þ � þ
� þ þ
þ þ þ
þ þ þ
þ þ þ
� � þ
� � þ
þ � þ
w � �
� � þ
þ � þ
� � þ
� � �
þ w þ
� � þ

osaceusWiKim20; Strain 3, Lactobacillus brevisWiKim47; Strain 4. Leuconostoc lactis



Fig. 2. Comparison of ginsenoside Rb1 bioconversion into Rg3 in cell culture supernatant of Leu. mesenteroides WiKim19, P. pentosaceus WiKim20, Lac. brevis WiKim47, Leu. lactis
WiKim48 and Lac. sakeiWiKim49. Concentrations of ginsenoside Rg3 (A) and Rg5 (B) after 1 d, 3 d, and 7 d incubation of each LAB strain with Rb1 at a concentration of 200mM. Data
are presented as mean� standard deviation. *p< 0.05.
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low b-glucosidase activities. Interestingly P. pentosaceus WiKim20
showed an elevated production of Rb3 in spite of lack of b-gluco-
sidase activity (Fig. 3).

A recent study reported that the conversion of ginsenoside Rb1
into Rg3 and Rg5 with organic acid such as D-, L-tartaric acid, citric
acid, and acetic acid [40]. Under acidic conditions, the low pH
environment enhances the deglycosylation of ginsenoside by acidic
hydrolysis response. Lactic acid bacteria are well known for their
Fig. 3. Comparison of b-glucosidase activity in different LABs. The proteins were
diluted to the concentration ofw0.5 mg/mL to assay enzyme activity and the release of
p-nitrophenol was measured at 405 nm. One-tailed Student t test for unpaired samples
was used to assess significance of the differences between the three LABs. One unit of
b-glucosidase is the amount of enzyme that catalyzes the hydrolysis of 1.0 mmole
substrate per min at pH 7.0.
organic acid production, which lowered the pH during the
fermentation and help the long-term storage by preventing
contamination. Even with varying degrees of acidity among the
LABs, all culture showed the acidic property and increased accor-
dance to the growth of bacteria.

To determine whether media acidity influences the biocon-
version of ginsenoside, we measured pH and acidity of
bacterial cultures (Figs. 4A and 4B). The culture supernatant of
P. pentosaceus WiKim20 had a pH w3.8, and acidity is 1.9, while
L. mensenteroides WiKim19 had pH 4.4, and acidity is 1.1. The b-
glucosidase activity and ginsenoside Rg3 production was corre-
lated with L. mensenteroides WiKim19 which have higher enzyme
activity and relatively low acidity among the five LABs. The
elevated Rg3 production of P. pentosaceus WiKim20 could be
explained by acidic hydrolysis instead of b-glucosidase activity.
The five LABs could produce the ginsenoside Rg5 and this in-
crease did not show the correlation with b-glucosidase enzy-
matic activity, supporting the theory that the organic acid could
contribute to the production of Rg5.

In the present study, we monitored the ginsenoside Rb1
bioconversion in LABs isolated from Kimchi with sensitive and
accurate LC-MS/MS techniques. Among them, L. mesenteroides
WIKim19 transformed ginsenoside Rb1 into ginsenoside Rg3
and showed a correlation with enzymatic activity, whereas,



Fig. 4. pH (A) and acidity (B) during bioconversion of ginsenoside in different LABs.
The pH of 10 mL of each culture broth was measured using electrode pH meter and
acidity was measured by titration against 0.1N NaOH to a phenolphthalein endpoint,
pH 8.3. * p< 0.05. **p< 0.01. ***p< 0.001. - Lactobacillus brevis WiKim47; : Ped-
iococcus pentosaceus WiKim20; ALeuconostoc lactis WiKim48; C Lactobacillus sakei
WiKim49; , Leuconostoc mesenteroides WiKim19.
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P. pentosaceus WiKim20 showed an elevated production of Rb3 in
spite of lack of b-glucosidase activity but have the highest acidity
among the five LABs. This result suggests that ginsenoside
bioconversion by microorganisms might review with the enzyme
activities and the environmental conditions such as production of
organic acid. Also, lactic acid bacteria are useful to convert minor
ginsenoside by enzymatic conversion together with mild acidic
condition.
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