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QLCA and Entangled States as
Single-Neuron Activity Generators

Yehuda Roth*

Oranim Academic College, Science Department, Kiryat Tiv’on, Israel

Each neuron in the central nervous system has many dendrites, which provide input

information through impulses. Assuming that a neuron’s decision to continue or stop

firing is made by rules applied to the dendrites’ inputs, we associate neuron activity with

a quantum like-cellular automaton (QLCA) concepts. Following a previous study that

related the CA description with entangled states, we provide a quantum-like description

of neuron activity. After reviewing and presenting the entanglement concept expressed

by QLCA terminology, we propose a model that relates quantum-like measurement to

consciousness. Then, we present a toy model that reviews the QLCA theory, which is

adapted to our terminology. The study also focuses on implementing QLCA formalism

to describe a single neuron activity.

Keywords: eigenconcepts, quantum cellular automata, quantum observer, QCA operators, entanglement,

collapse, single neuron activity

1. INTRODUCTION

It is recognized that brain activities such as thoughts, actions, and percepts are a result of the
simultaneously coordinated activities of many neurons Cooper (1973), Hopeld (1982). Since the
microscopic approach that analyzes the internal interactions system is complex for analysis, scaling
methods such as the coarse-graining procedures are implemented (Meshulam et al., 2019). We
assume that once a scaling approach succeeds in describing the system by “macroscopic” rules,
cellular automaton (C.A) techniques can be implemented.

CA is a set of rules that need to be followed by the components of a system to define a discrete
time evolution by using generations of error corrections. A quantum CA process (QCA) integrates
quantum concepts with CA; that is, it refers to quantum systems that evolve according to the CA
rules (Arrighi, 2019; Farrelly, 2019). Studies have shown that it is possible to define entangled states
that represent all alternatives before implementing the CA rule (Roth, 2019a; Roth and Roth, 2021),
and considering entanglement as an exclusive quantum phenomenon, CA systems described by
entangled states are considered as quantum systems.

Recently, a classical analogy of entanglement was suggested using classical light beams (Spreeuw,
1998; Chitambar andGour, 2019; Friis et al., 2019; Konrad and Forbes, 2019). Hence, the traditional
approach of viewing entangled states as a pure quantum phenomenon was refuted. Consequently,
based on Roth (2019a) we can now say that whenever a system evolution is determined by a
CA process, the corresponding rules associated with the entangled state need not be related to
quantum mechanics. This enables the implementation of a quantum-like technique on a non-
quantum system, such as the brain, thereby referring to the associated mathematical framework
as QLCA.

In this paper, we describe neuron behavior through a QLCA process. Since a neuron decision
of firing or halting follows some rules imposed by various incoming dendritic pulses, we associate
each neuron decision with QLCA rules (Wolfram, 1983; Schiff, 2011; Beiki and Shahidinejad, 2014),
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which can be associated to a concept according to our
description. In other words, by implementing the entangled
states description, we assume that the multi-neuron pulses
that arrive to an observed neuron are already arranged as a
kind of concept. Models associating CA for studying brain
activities have already been proposed, but in different contexts.
In Fraile et al. (2018), the CA Game of Life model was
implemented. Other CA models have been used in several
problems related to neuroscience (Hopfield, 1982; Hoffman,
1987; Ermentrout and Edelstein-Keshet, 1993; Kansal et al.,
2000; Tsoutsouras et al., 2012; Acedo et al., 2015). An extensive
approach was presented in Gilpin (2019), where the CA rules
were implemented between different layers of convolutional
neural networks (Aloysius and Geetha, 2017).

The present paper presents the corresponding mathematical
formalism, thereby introducing operators that describe brain
activities. In our model, the encryption of information that
ascends from the subconsciousness to the consciousness is
related to an observable operator that detects and interprets
this information (relations between quantum measurement and
interpretation are shown in Roth, 2013a,b, 2017). Furthermore,
some subconsciousness activities are described by unitary
operators that correct processes that may disobey the CA rules.

2. ENTANGLEMENT AS CONCEPT

GENERATION

In this section, we demonstrate the relation between entangled
states to concepts, where the term “concept” is associated with
an entangled state. This term has not been used in previous
studies, but it is suitable for our formalism. However, scaling
models such as coarse-graining, it can refer to the dimensionality
reduction of the system into a cluster (Meshulam et al., 2019).
At this stage, we present the entangled states as another
description for macroscopic clusters in the coarse graining
model. In this approach, statistical models can be replaced by the
operator formulation.

In this section, we use the quantum terminology of particles.
Suppose that we have N particles with two states |0〉 or |1〉,

which will later be associated with the firing or misfiring of a
neuron. A possible basis for states to span the Hilbert space is
the distinguishable states:

|ψ〉 =
N
∏

i=1

∣

∣kψ
〉

i
, ψ = 1, 2, . . . , 2N (1)

where k can have the values 0 or 1, and ψ denotes a set of
{

kψ
}

combinations out of the 2N possible products. To bridge
the gap between the “descriptive brain terminologies” and the
operator-oriented mathematical language, we use the descriptive
term “concept.” For example, if we have an entangled state,

|=〉 =
1
√
2

{

N
∏

i=1

|0〉i +
N
∏

i=1

|1〉i

}

(2)

regardless of the specific individual state |0〉 or |1〉, the
appropriate concept will be the same.

Another example is when we divide the states into subgroups
with various concepts, such as the following pairs:

The i and the i+ 1 items are always in opposite states

|6=〉 =
1
√
2

{

|0〉i |1〉i+1 + |1〉i |0〉i+1

}

, (3)

The i and the i+ 1 items are always in the same states

|=〉 =
1
√
2

{

|0〉i |0〉i+1 + |1〉i |1〉i+1

}

, (4)

Thus, it is seen that, for many states, it is possible to generate
many concepts that represent various relations between states.

In the next section, we introduce the mathematical
formalism of measuring concepts. The term concept is
represented by a mathematical feature eigenconcept. Using
this terminology, we associate a concept measurement with a
new approach, considering the ascendance of information
from unconsciousness to consciousness as a quantum
measurement process.

2.1. Consciousness Information Presented

as an Observer Who Detects

Eigenconcepts
Following the coarse-graining or dimensionality reduction
approach, an approach was proposed for describing unconscious
and conscious states related to the multiple microscopic
configurations of cells arranged in clusters. For example,
Velazquez et al. (2019) presents a possible framework that
characterizes the dynamics of the nervous system and its
organization in the conscious and unconscious states, derived
from the perspective of brain cell ensembles.

The entanglement approach can be considered as a
mathematical alternative for describing scaling methods
where the entangled state replaces the coarse-graining clusters.
However, we further implement quantum ideas to provide a
new perspective for understanding the concepts of unconscious
and conscious.

Embedding the quantum collapse into our formalism,
we integrate our approach with a publication titled “Does
Consciousness Cause Quantum Collapse?” which referred
to “Radical Theories of Consciousness” (McQueen, 2017).
This yields a mathematical framework for describing
the concepts of consciousness and unconsciousness
using an observer (consciousness) and a measured
environment (unconsciousness).

The theory of quantum measurement introduces the collapse
concept. That is, after macroscopic measurement, a microscopic
system that was in a state different from the set of possible
measurement outputs, collapses into one of the measuring
device eigenstates (Ghirardi et al., 1986; Bassi et al., 2013;
Pokorny et al., 2020; Bassi, 2021). Recently, it was suggested
that non-quantum systems can also possess collapse scenarios.
For example, the implementation of a CA rule corresponds to a
collapse (Roth, 2019a). In addition, suggestions for a collapse in
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classical mechanics were introduced (Roth, 2019b). Considering
these non-quantum collapses allows us to consider the collapse
scenarios in brain activities.

Roughly speaking, subconsciousness activities can end by
floating the subconsciousness content to recognized and
interpreted in the consciousness part. In the same manner an
observer recognizes reality through measurements, we suggest
that content recognition in consciousness should be represented
by an abstract observer who reveals the hidden unconsciousness
content as outputs of quantum-like measurements.

The conventional mathematical platform for describing a
measuring device is represented by a series of projecting
operators, each multiplied by its individual eigenvalue. We
extend this description by replacing the numerical eigenvalues
with descriptive visual objects defined as eigenconcepts. These will
serve as the descriptive output of the measurement.

To demonstrate this formalism, we consider N = 2 for the
state of Equation (1) and consider the following entangled states:

The states are always in the opposite states

|6=〉 =
1
√
2
{|0〉1 |1〉2 + |1〉1 |0〉2} , (5)

The states are always in the same states

|=〉 =
1
√
2
{|0〉1 |0〉2 + |1〉1 |1〉2} , (6)

Suppose that brain activity is focused on comparing two
objects, that is, it implements the concepts “the same” or the
“opposite.” Hence, the consciousness encryption corresponds to
the observable.

O = “ 6= “ |6=〉 〈6=| + “ = “ |=〉 〈=| (7)

where the strings “ 6=” and “=” describe the role of eigenconcepts.
After adapting all aspects of the measurement theory

and, in particular, the radical collapse phenomenon (Ghirardi
et al., 1986; Bassi et al., 2013; Pokorny et al., 2020; Bassi,
2021), we can include the consciousness interpretation in
our description (Roth, 2013a,b, 2017). If the subconsciousness
generates a state that is a superposition of the possible
measured states (i.e., a superposition of the eigenstates of
the observable), Then, the uploaded consciousness information
when measured will collapse into one of the eigenstates to form
an interpretation (Roth, 2013a,b, 2017).

3. TOY MODEL

In the previous sections, we demonstrated how an entangled
state represents a concept. Herein, we show how CA iterations
generate entangled states. For simplicity, this process is
demonstrated using a toy model.

3.1. Entangled States as a Representative

of Quantum-like Cellular Automaton Rules
To understand the mechanism of a QLCA system, let us consider
a simple model (toy model), as shown in Roth (2019a). Consider
a one-dimensional grid of cells labeled by the index i. Each cell
can be in the state |0〉 or |1〉. In our model, the evolution of the
system was determined by the following rules:

• Set of rules A

– Rule aI : An i cell will be in the state |1〉 if the neighboring
cells are in different states

– Rule aII : An i cell will be at |0〉 when both neighbors are in
the same state.

• Set of rules B

– Rule bI : An i cell will be in the state |0〉 if the neighboring
cells are in different states

– Rule bII : An i cell will be at |1〉 when both neighbors are in
the same state.

An appropriate state to describe possible relations between cells
is as follows:

• Neighbors of the i-cell are in different states:

|6=〉i
def=

1
√
2

(

|0〉i−1 |1〉i+1 + |1〉i−1 |0〉i+1

)

. (8)

This implies that regardless of a specific cell’s state, the
neighboring states are always in different states.

• Neighbors of the i-cell are in the same states:

|=〉i
def=

1
√
2

(

|0〉i−1 |0〉i+1 + |1〉i−1 |1〉i+1

)

. (9)

This implies that regardless of a specific cell’s state, the
neighboring states are always in the same state.

This yields the CA-state definition for an i-cell,

• States for set A

Rule aI |aI〉i = |1〉i · |6=〉i ,
Rule aII |aII〉i = |0〉i · |=〉i , (10)

• States for set B

Rule bI
∣

∣bI
〉

i
= |0〉i · |6=〉i ,

RulebII
∣

∣bII
〉

i
= |1〉i · |=〉i ,

(11)

3.2. QLCA Operators in the Toy Model
We distinguish between two types of operators:

• Correction operators: By observing a CA net at some time,
we may find areas that disobey the CA rules. The purpose
of the correction operations is to fix these errors. Note that
fixing the local sites can cause new errors in other locations.
These were fixed in the subsequent iterations. Thus, the system
evolution is composed of the generation of correction phases.
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This regular procedure in CA systems is now expressed in
terms of the correction operators. We consider the correcting
operations as a subconsciousness process.

• Observable operators: These represent the state to an observer
after the entire QLCA process is complete. Recall that we
associate the observable part with consciousness activities, in
which a concept is generated by the entangled output state.

For the toy model, the operators are as follows:

i. Correction operators

• Set A

– Local correction operator

C
{A}
i = |aI〉i

〈

bI
∣

∣

i
+ |aII〉i

〈

bII
∣

∣

i
(12)

– Global correction operator for k generations

C
{A}
n =

(

∑

i

C
{A}
i

)k

(13)

• Set B

– Local correction operator for set B

C
{B}
i =

∣

∣bI
〉

i
〈aI |i +

∣

∣bII
〉

i
〈aII |i (14)

– Global correction operator for k generations

C
{B}
n =

(

∑

i

C
{B}
i

)k

(15)

ii. Observable: Quantum measurement corresponds to a
macroscopic system (the measuring device) that, when
implemented on a quantum system (usually microscopic),
collapses the detected state into one of the eigenstates of the
measuring device (Ghirardi et al., 1986; Pokorny et al., 2020).

According to many estimates, the human brain contains
approximately 1011 neurons (Lent et al., 2012). Although
not all neurons participate in a specific brain activity, many
relevant neurons establish a so-called macroscopic ensemble
that allows a quantum-like measurement. This includes
collapses into eigenstates, or eigenconcepts, which can be
referred to as brain interpretation, as described in Roth
(2013a), Roth (2013b), and Roth (2017).

Because all the rule states of Equations 10 and 11
are orthogonal, we can express an observable with the
projecting operators:

• Set A

– Local observable

O
{A}
i = |aI〉i 〈aI |i + |aII〉i 〈aII |i . (16)

– Global observable for set A

O
{A} = “σa“

∑

i

O
{A}
i (17)

• Set B

– Local observable for set B

O
{B}
i =

∣

∣bI
〉

i

〈

bI
∣

∣

i
+
∣

∣bII
〉

i

〈

bII
∣

∣

i
(18)

– Global observable for set B

O
{B} = “σb“

∑

i

O
{B}
i (19)

Note that neither the states |aI〉i and |aII〉i nor the states
∣

∣bI
〉

i
and

∣

∣bII
〉

i
form a complete set. Therefore, we have

∑

i
O

{A}
i 6= 1 and

∑

i
O

{B}
i 6= 1 to obtain a non-trivial expression for the observable.

To describe the measurement outputs, we use eigenconcepts
“σa” and “σb” instead of numeric eigenvalues. These symbols can
serve as a mathematical platform to describe how an observer
experiences a concept.

Without concrete data on expressing total brain activity by
operator terms, many models can be proposed. We suggest the
following model. First, a type of set is selected, say, set A. The
system runs C k times in what we associate with an unconscious
activity; then, by implementing O, a measurement is conducted
to float a consciousness result. The associated operators are
as follows:

Ak = O
{A} (

C
{A})k

Bk = O
{B} (

C
{B})k

(20)

As mentioned, other models are legitimate. We leave this to
future research.

4. QLCA AND BRAIN ACTIVITY

In previous sections, we introduced simple scenarios of two-
state system and a toy model to demonstrate a phenomenological
procedure in the brain, described within the QLCA model. We
introduced two operators: correcting operators that fix possible
errors, and observable operators that represent the state to an
observer after the entire QLCA process is complete. We now
implement our theory to describe a real picture of the brain. In
this paper, we limit our discussion to a single neuron, where all
brain activities are described as neuron connections.

Dendrites on individual neurons process information by
generating electrical input signals. Our proposed model includes
the conventional threshold model (Koch et al., 1995); however,
because we let the entanglement coefficients be arbitrary, we
allow more possibilities.

We consider a network consisting of Nn relevant (i.e., that
participate in the process) neurons, where each relevant neuron
is denoted by an integer n (n = 1, 2, . . . ,Nn). A dendrite attached
to an n- relevant neuron is associated with the index δ (δ =
1, 2, . . .Nd). Each δ-dendrite carries a voltage Vδ , which is an
additive quantity. Therefore, we can identify a δ-dendrite that
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carries an impulse Vδ with a state |Vδ〉. Thus, we can define state
products as

|V〉n =
∏

δ

|Vδ〉n , (21)

where V denotes the total voltage generated among all dendrites.
The neurotransmitters that arrive at a dendrite interact with
receptors and spread along the dendrite surface. We recall that
the output voltage of a receptor is not fixed. It depends on the
type of neurotransmitter, such that a receptor that interacts with
a neurotransmitter to generate a voltage firing tendency can
inhibit firing when interacting with another neurotransmitter.
In other words, different types of activities that evolve various
types of neurotransmitters can generate different values of Vn.
Consequently, an n-neuron possesses two contrasting groups
of |V〉n, exciting or inhibiting states. By associating each group
with QLCA rules and following our previous discussion, we can
identify each group with an entangled state as follows:

Excitation states that allow the neuron to fire (ǫ and E for

excitatory)

|ǫ〉n =
∑

V
EV |V〉n , (22)

Inhibitory states that prevent the neuron from firing (ι and I

for preventing)

|ι〉n =
∑

V
IV |V〉n , (23)

where E and I are entanglement coefficients. Note that because
the overlap between these groups is forbidden (a neuron cannot
excite or inhibit an impulse simultaneously), |ǫ〉n and |ι〉n
are orthogonal.

By denoting the misfire and fire activities of an n-neuron as
|0〉n and |1〉n, we can express the QLCA states as

States for set A

Excitation states |aI〉n = |0〉n |ǫ〉n
Inhibitory states |aII〉n = |1〉n |ι〉n

(24)

States for set B

Excitation states
∣

∣bI
〉

n
= |1〉n |ǫ〉n

Inhibitory states
∣

∣bII
〉

n
= |0〉n |ι〉n ,

(25)

to yield the QLCA operators for an n-neuron.

• Set A

– QLCA-observable of an n-neuron,

O
{A}
n = |aI〉n 〈aI |n + αII |aII〉n 〈aII |n (26)

– Correction operator for set A

C
{A}
n = |aI〉n

〈

bI
∣

∣

n
+ |aII〉n

〈

bII
∣

∣

n
(27)

• Set B

– QLCA-observable of an n-neuron,

O
{B}
n =

∣

∣bI
〉

n

〈

bI
∣

∣

n
+ βII

∣

∣bII
〉

n

〈

bII
∣

∣

n
(28)

– Correction operator for set B

C
{B}
n =

∣

∣bI
〉

n
〈aI |n +

∣

∣bII
〉

n
〈aII |n (29)

If we could implement the CA evolution to describe neuron
behavior, we would probably find CA systems that reach a steady
phase. In the simplest scenario, they would probably belong to
class 1 type (see for example, Wolfram, 1983). This study focuses
only on a single neuron activity, while excluding interactions
between different neurons. Hence, tools for tracking this CA
evolution are lacking. Nevertheless, we can still implement the
operator’s tools for the toy model proposed in section 3.2 if we
consider that after sufficiently large k iterations (see Equation
20), the system reaches a steady phase. For this scenario, we can
describe the brain activity in operator form as

An = O
{A} (

C
{A})k

Bn = O
{B} (

C
{B})k

(30)

with

O
{A} = “σA“

∑

n
O

{A}
n O

{B} = “σB“
∑

n
O

{B}
n

C
{A} =

∑

n
C
{A}
n C

{B} =
∑

n
C
{B}
n

(31)

where the eigenconcepts σ describe the manner in which the
observer experiences the process. Note that in all cases, the n
summations were over the relevant neurons.

4.1. Threshold Model
An acceptable model for a neuron to be excited is that the sum of
the voltages provided by the dendrites will pass a threshold Vm

(Koch et al., 1995). This does not mean that to excite a neuron, all
dendrites should have their maximum potential. In fact, there are
many possibilities for reaching this threshold potential. Because
each combination is described by a product of the dendrite
states, and there are many combinations of dendrite voltages that
can exceed Vm, all products will be in a superposition to form
an entangled state to define a QLCA rule. If all combinations
contribute equally to firing the neuron, the coefficients E1 or
I1 in Equations (22)–(23) will be identical. Different coefficients
indicate that dendrites with high coefficients have priorities for
influencing neuron activity.

5. DISCUSSION

In this paper, we showed that the decision for a neuron
to fire or misfire is controlled and managed by rules that
can be represented mathematically by the QLCA processes.
Implementing a mathematical model in brain research
corresponds to the definition of parameters, which in our
description are the entanglement coefficients. These parameters
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can characterize various processes and have the potential
to denote the associated brain diseases as anomalies in the
magnitude of the coefficient. In the threshold model, where all
coefficients are equal, even a few unequal parameters can indicate
abnormal functioning. Our formalism, which aimed to describe a
single neuron reaction, can be extended to describe further brain
processes, such as the behavior of dendritic spines (Popovic et al.,
2015; Beaulieu-Laroche et al., 2019; Roome and Kuhn, 2019):
dendritic spines are small protrusions on the surface of dendrites
(Irie and Yamaguchi, 2009) that generate a pulse by interacting
with a neurotransmitter. By assuming that the total magnitude
of a dendritic pulse is determined by rules imposed on the
individual’s neurotransmitter-receptor outputs, it is possible to
impose a QLCA formalism to describe the output of a dendritic
spine. Note that the current understanding of the electrical
behavior of dendritic spines is limited because it is difficult to
record input signals with satisfactory resolution (Popovic et al.,
2015; Beaulieu-Laroche et al., 2019; Roome and Kuhn, 2019).
Until proven wrong, we can consider the complicated behavior
of rules that may include entanglement with unequal coefficients.

We showed that for each QLCA activity, there are two
“mirror” sets, referred to as set A and set B. From a mathematical
and logical point of view, the existence of two alternatives (fire or
misfire) enforces the existence of two sets. However, if we observe
the threshold model, it seems more reasonable that a neuron will
fire when the total volume reaches a threshold voltage, rather
than stopping firing. Although mathematically, we obtain two
alternatives for each action, and reality probably forces us to
consider only one side of the mirror.
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