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Abstract

Background

Placental elasticity may be modified in women with placental insufficiency. Shear wave elas-

tography (SWE) can measure this, using acoustic radiation force, but the safety of its use in

pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer

alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear

wave speed (SWS) as a function of frequency has received relatively little study for placental

tissue, although it might improve the accuracy of biomechanical assessment.

Objective

To explore the feasibility and reproducibility of TE for placental analysis, to compare the val-

ues of SWS and Young’s modulus (YM) from TE and SWE, and to analyze SWS dispersion

as a function of frequency ex vivo in normal placentas.

Materials and methods

Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear

waves were generated by a vibrating plate and by using an Aixplorer system.

The frequency analysis provided the value of the exponent n from a fractional rheological

model applied to the TE method. We calculated intra- and interobserver agreement for SWS

and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agree-

ment, and estimated the intraclass correlation coefficient (ICC).

Main results

The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and

1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central

and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC

for SWS was 0.68 (0.50–0.82), and the interobserver ICC for SWS 0.65 (0.37–0.85). The
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mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with

variable values of n for any given SWS.

Conclusions

TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS pro-

vides additional information about placental elasticity and appears to be able to distinguish

differences between placental structures.

Introduction

In clinical practice, placental function is generally assessed by the following standard ultra-

sound (US) measurements: fetal growth, amniotic fluid index, fetal Doppler indexes (umbilical

artery, middle cerebral artery, ductus venosus, and aortic isthmus), and the uterine artery

Doppler. The placenta is usually considered primarily from a hemodynamic perspective, but

can also be studied as a tissue by investigating its biomechanical properties. US elastography is

a relevant tool for such an analysis, because it makes it possible to observe by US waves the

deformation of an environment subjected to a constraint. This technology has already been

successfully applied in many fields of medicine, such as hepatology [1,2], breast cancer [3], and

renal [4], prostate [5] and thyroid conditions [6]. One of the other organs that are candidates

for elastography (for example, skin [7], vessels [8], and brain [9]) is the placenta. Moreover,

evidence supports the hypothesis that placental insufficiency (preeclampsia or intrauterine

growth restriction (IUGR)) may modify elasticity. Significant changes in placental microarchi-

tecture have already been described in these situations, including, for example, increases or

decreases in the number of villi ramifications and in fibrin deposits in term villi [10–18]. These

changes may affect the stiffness of the entire placenta, probably from early pregnancy, and can

potentially be detected by elastography.

Some authors have recently studied the placenta by US elastography [19–36], but we pro-

pose a new method for this analysis. The field of elastography covers many different US tech-

niques, based on physical approaches that are sometimes quite distant from one another [37–

40] (Fig 1). Two basic methods of elastography can be distinguished: quasi static and dynamic.

The first, quasi static elastography, measures relative deformation of the target (strain ε), most

often by applying a stress T with the probe. This method use the linear relation between stress

and strain in an isotropic elastic tissue (T = Eε) with E the Young modulus. The inverse prob-

lem E ¼ T
ε is difficult to solve because the stress T is unknown inside the tissue (T is only

known at the surface of the body). The stiffness is then estimated qualitatively by measuring

only the strain ε everywhere in the region of interest. The second, dynamic elastography,

involves generating a shear wave and measuring its speed (shear wave speed: SWS) by an ultra-

fast US device to deduce the elastic modulus (most of the time, ultrafast imaging is necessary).

There are two possible ways to generate this shear wave: either radiation force (point SWS

measurement, also known as acoustic radiation force impulse ARFI quantification, or SWS

imaging, for example ShearWave™ Elastography SWE™, Supersonic imagine, France), or exter-

nal vibrators (shakers/actuators) for transient elastography (TE). Recently, ARFI and Super-

sonic Imaging SSI have been used for placental exploration [20–22,27,34,35], but the safety of

applying US radiation force in vivo to pregnant women has not yet been demonstrated [41].

These methods generate a considerably higher thermal index (TI) than a conventional US

examination does. For that reason, some authors have studied SWE™ on animals (pregnant
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baboons) rather than pregnant women [23,42]. Although the early data appear reassuring, it is

currently too early to generalize the use of these techniques on pregnant women and their

fetuses. TE methods, on the other hand, use US only in imaging mode and thus have the

advantage of generating fewer thermal and mechanical effects than radiation force methods

(which use US in both imaging and push modes). For that reason, they may be safer for the

fetus. The use of external shakers/actuators for US elastography is common in other areas of

medicine (e.g., in hepatology [43]) but not in obstetrics. Nonetheless, similar devices could be

developed for pregnant women. Operators could place them on the woman’s abdomen, facing

the uterus, while a US probe records the SWS.

TE methods have thus far not been applied to the placenta. While waiting to complete the

safety data for the use of this type of vibrating shaker in pregnant women, we propose an ex
vivo study of delivered placentas to assess the feasibility of a new 2D TE method and compare

its results with those of SWE.

Fig 1. Main elastography methods. In strain elastography (or quasi static elastography) (A), the operator press the tissue with imaging transducer. In the second case,

the shear wave is generated by acoustic radiation force impulse excitation. Several methods use this technique: point shear wave speed measurement (average shear wave

speed in a region of interest) or shear wave speed imaging (in ShearWave™ Elastography SWE™, pushes are applied in several zones, and the corresponding structure of

diffraction is controlled) (B). The last method (C) is transient elastography: the shear wave pulse is generated by a surface impulse—thumper. In clinical practice, this

technique is used by the Fibroscan™ 1-D system (Echosens, France), especially for the application of liver stiffness measurement.

https://doi.org/10.1371/journal.pone.0194309.g001
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The second aim of our study is to analyze the SWS variation according to the frequency.

Theoretical and physical considerations indicate that microscopic obstacles in a tissue may

influence not only the absolute value of viscoelastic tissue parameters, but also their relation to

frequency [44]. To date, among the elastographic methods that have been applied to the pla-

centa, only one of them has analyzed the SWS as a function of frequency: a method called

Shear Wave Absolute Vibro-Elastography (SWAVE) [36]. In our study, we propose to use a

new method, different from SWAVE, to perform this frequency analysis. We hypothesize that

this type of frequency analysis of SWS would provide additional information about the struc-

ture of the placental tissue. If so, it may be possible to improve the identification of placental

insufficiency by using a tool more suitable for this tissue. In this preliminary feasibility study,

we considered only normal placentas.

Materials and methods

Study population

The study sample included 10 normal placentas from pregnant women who gave birth vagi-

nally between 37 and 41 weeks’ gestation. The local ethics committee Espace de Réflexion Ethi-

que Région Centre ERERC specifically approved this study (RNI 2017–037). Participants

provided their verbal informed consent. This consent was collected and archived in the study

data by two of the authors (ES and FP). Written consent was not sought in accordance with

French legislation. The procedure for obtaining consent was approved by the ethics commit-

tee. These women had no diseases, had singleton pregnancies, a normal-weight fetus during

previous US scans (estimated fetal weight between the 10th and 90th percentile), a normal

amniotic fluid index, and normal fetal Doppler findings (pulsatility indexes of the umbilical

artery and the middle cerebral artery). The exclusion criteria were cesarean delivery, manual

removal of retained placenta, preexisting or gestational diabetes mellitus, preexisting or gesta-

tional hypertension, preeclampsia, sonographic suspicion of IUGR, small-for-gestational-age

newborn (birth weight below the 10th percentile), macrosomia (birth weight above the 90th

percentile), fetal malformation, uterine malformation, or multiple pregnancy. In all cases, the

gestational age was determined from the first trimester US scan, between 11 and 14 weeks’

gestation.

Table 1 presents the clinical characteristics of the study population.

Multi-frequency elastography system

The elastography method we developed is based on a previously published TE method [45],

adapted to the placenta and extended to measure the dispersion of the shear modulus. The

experimental setup was as follows: a rigid Plexiglas plate was used to produce mechanically a

plane shear wave in the placenta (Figs 2 and 3). The plane shear wave propagates in the x direc-

tion along the aperture of the US probe. This shear wave is purely transversally polarized, i.e.,

the transient displacement induced by the wave to the tissue is only in the z direction. An ultra-

fast US system (Aixplorer™, Supersonic imagine, France) capable of acquiring 5000 frames per

second was used with a 2.8 MHz linear probe (128 elements, Vermon SA, France) to record IQ

(in-phase and quadrature) data (Pulse Repetition Frequency: 5 kHz). On each acquisition, the

scanner triggered a signal generator (Tektronix AFG 31023), driving an electromechanical

actuator (Bruel & Kjaer 4826). The plate was connected to the actuator generating a plane, low

amplitude shear wave in the placenta. The signal use to drive the vibrator was a Gaussian

shaped wave, providing a single, broadband acquisition [20–80 Hz]. The IQ data are obtained
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from the Aixplorer™ scanner and we finally recorded a 3D matrix IQ(x,z,t) with t ¼ nDtPRF ¼
n

PRF (Fig 2A and 2B).

The IQ signal can be written:

IQðx; z; tÞ ¼ Iðx; z; tÞ þ jQðx; z; tÞ ¼ Aðx; z; nÞej�ðx;z;tÞ

where A is the signal amplitude, ϕ(x,z,t) the signal phase at position (x,z) and t the time. An

algorithm was developed to compute tissue velocity from the IQ data, based on a subsample

Doppler mean frequency estimation method [46]. The velocity estimator is an extension of the

autocorrelation estimator developed by Hoeks et al. [47] and can be expressed mathematically

as follows:

V x; z; tð Þ ¼
l

4pT
� argð

XNa

a¼0

XNb

b¼0

IQðx; z � a; t � bÞ IQ� ðx; z � a; t � b � 1ÞÞ

where λ is the US wavelength (550μm) and T the time interval between two acquisitions,

T ¼ 1

PRF ¼ 200ms. Na is the number of samples defining the volume of interest (Na = 30) and

Nb the number of temporal samples in the autocorrelation over which the mean velocity is esti-

mated (Nb = 10).

This algorithm estimates the tissue particle velocity V(x,z,t) from the temporal evolution of

the IQ data between two successive acquisitions separated by the time T ¼ 1

PRF. The phase vari-

ation is averaged over Nb acquisitions to improve the performances of the algorithm [48].

Hoeks et al. proposed to average also the phase estimation over Na spatially contiguous IQ

samples in spatial dimension [47]. In this case the wavelength of the shear wave (λS’ 2cm)

have to be much higher than the spatial resolution of IQ data to obtain local resolve estimates.

Finally, we obtain a movie of the shear wave propagation (Fig 2C) Vz(x,z,t) from this tissue

Doppler method. From the Doppler equation, we measure the projection of the tissue particle

velocity Vz along the direction of propagation of IU, i.e. on the z direction. This direction is

exactly the direction of the motion induced by the shear wave. We select a specific z0 position

Table 1. Clinical characteristics of the study population.

Clinical features Study population

Maternal age (years) Mean +/- SD 30.7 +/- 4.08

Parity

- Nulliparous women n (%) - 5 (50.00)

- Parous women n (%) - 5 (50.00)

BMI: mean +/-SD 21.99+/- 2.22

Median gestational age at delivery (weeks + days) (range) 39 + 6 (38 + 1; 40 + 2)

Birth weight (g): mean +/- SD 3430 +/- 439

Apgar score (1 min) n (%)

- 10 - 9 (90.00)

- <10 - 1 (10.00)

-�5 - 0 (0.00)

Apgar score (5 min) n (%)

- 10 - 10 (100.00)

- <10 - 0 (0.00)

-�5 - 0 (0.00)

Arterial pH value: mean +/- SD 7.27+/- 0.08

Time of elastographic examination after childbirth (min): mean +/- SD 492 +/- 262

https://doi.org/10.1371/journal.pone.0194309.t001
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and analyze the propagation of the shear wave following Vz(x,t,fixed position z0) (Fig 2D).

After Fourier transform, we obtain Vz(x,ω) and we can analyze for different fixed pulsations ωf

the tissue particle velocity Vz(ωf,x) assuming a plane wave model:

Vz of ; x
� �

¼ V0 of

� �
e

j
of

csðof Þ
x
e� aðof Þx

with f the frequency, ωf a fixed pulsation (ω = 2πf), and α the attenuation coefficient.

This device has been further modified and adapted for in vivo use (S1 Appendix). This new

TE system is based on the propagation of a shear wave generated by two vibrating rods placed

on either sides of the US probe (same probe as before). The electrodynamical exciters (Visaton,

Germany) are completely decoupled from the US probe and generate the vibration of the two

rods. In this configuration, the shear wave is generated in the vibration direction in front of

the US probe elements, between the two rods. The shear wave propagation, measured by the

US probe, is due to the constructive interference between the two waves generated by the two

rods.

Fig 2. Experiment setup and data processing. The plate moves along the horizontal axis (z axis) (A). The probe is placed perpendicular to it, along the x axis.

Beamformed demodulated IQ data is acquired with the scanner (B) and is only sensitive to Vz displacement velocity. Particle velocity map at a given time t0, confirming

the plane nature of the shear wave (C). Particle velocity map for a given z0(D): Vz(x,z,t0). The slope of the curve provides a quick approximation of the group velocity.

Then, we calculate the spatial FFTs of Vz(x,t) to obtain Vz(x,ω).

https://doi.org/10.1371/journal.pone.0194309.g002
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Microscopic architecture, shear wave dispersion, and rheology

Theoretical and physical considerations suggest that the presence of microscopic obstacles

influences not only the absolute value of viscoelastic tissue parameters, but also their relation

to frequency. The propagation of shear waves in a viscoelastic medium is physically associated

with the viscoelastic properties of the medium. In particular, the frequency behavior of tissue

mechanical parameters can be modeled as a power law; it cannot, however, be modeled by the

classical Voigt or Maxwell viscoelastic models widely used in elastography (Fig 4). We used a

fractional rheological model that is capable of describing power law behavior for the complex

shear modulus G�(ω) [49]:

G�ðioÞ ¼ Geþ K:½io�n

In this model, G� is the elastic modulus (Pa), Ge is the shear modulus at equilibrium (Pa), K

is a constant (consistency coefficient, Pa.sn), and n is a linear parameter (without unit). This

exponent parameter n represents a mechanical property inherent to a given materiel [44] and

was assumed in our study to provide information about the microscopic form of the tissue.

Measurements were made in the bandwidth [20 Hz-80 Hz].

Fig 3. General setup of the experiment. A. A placenta is folded in half in a specially designed box. The umbilical cord is extended out to

prevent interference with the measurements. A plate produces the plane shear wave, which is recorded by the Aixplorer™ probe. B.

Presentation of the experiment showing the ultrafast US imaging system (Aixplorer™), the US probe, the electromechanical shaker/actuator,

and the placenta.

https://doi.org/10.1371/journal.pone.0194309.g003

Fig 4. Dispersion of the shear wave speed according to frequency in one placenta. Blue points are the experimental

data. The black dashed line represents the Voigt model, which is widely used in elastography, but does not accurately

simulate viscoelastic behavior as a function of frequency variation. The red curve is a fractional rheological model,

which fits the data better; n, its exponent, provides a simple quantitative interpretation of the measurements.

https://doi.org/10.1371/journal.pone.0194309.g004
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This method has been validated on calibrated viscoelastic gels [46]

Description of the protocol

The placentas were analyzed < 12 hours after delivery (mean time: 8 h, Table 1). The placental

membranes were resected, and the umbilical cord was extended out, horizontally, so that only

the shear wave propagation within the cotyledons would be analyzed. The placenta was then

placed in a specially designed box (Fig 3). Detection of the plane shear wave required that the

probe be positioned perpendicularly to the fetal surface of the placenta. Because the placenta

was too thin for this, however, it was folded over, in half. If we had not folded it, our area of

exploration would have been very limited, and reflections of the support could have consti-

tuted an additional difficulty.

Measurements for each placenta were made in two different regions: in the central region

(near the umbilical cord) and in the peripheral region (on the placental border). Accordingly,

the placental position in the box was modified after the first measurement.

IQ data were recorded for each measurement, and the complex shear modulus was deter-

mined. In addition, Young’s modulus (YM) and SWS were calculated with the SSI method for

comparison with the values of our TE method.

In the SSI method, the central frequency of the shear wave depends on the duration of the

push. The characteristics of this pulse are very variable, for example with the explored organ,

and constitute information internal to the system. We did not have access to this frequency

information. To compare the SSI and TE methods, we considered the SWS values at 50 Hz in

TE, as it was the central frequency of the excitation signal of the shaker/actuator.

Each measurement (from TE and SSI) was repeated 3 times by repositioning the probe each

time, and with two different operators (ES and SC). It was thus possible to calculate intra- and

inter-operator reproducibility.

Statistical analysis

Categorical data are presented as numbers and percentages (n (%)), and continuous data as

means with their standard deviations. All comparisons used the Mann–Whitney U-test. To

assess intra- and inter-observer reproducibility, we calculated intraclass correlation coeffi-

cients (ICC). Bland-Altman plots with 95% intervals of agreement were generated for SWS

and YM.

Differences were considered significant for P-values <0.05. R 3.3.2 software was used to

perform the analyses.

Results

Measured with the SSI method, the mean YM value was 10.50 kPa +/- 1.73 in the central

regions and 10.60 kPa +/- 2.17 in the peripheral regions (P = 0.791) (Table 2 and S1 Table).

Measured with our new TE method, the corresponding YM values were 11.34 kPa +/- 4.49 in

the central and 9.78 kPa +/-2.72 in the peripheral location (P = 0.579, and not significant for

comparison between SSI and TE, P = 0.796 for the central and 0.384 for the peripheral

regions).

The mean SWS values from SSI were 1.82 m/s +/- 0.15 (central) and 1.82 m/s +/- 0.18

(peripheral) (P = 0.684), and the corresponding values from TE were 1.86 m/s +/- 0.39 (cen-

tral) and 1.75 m/s +/- 0.24 (peripheral) (P = 0.570). The SSI/TE comparisons were not signifi-

cant either: P = 0.791 and 0.436 for the central and peripheral regions. The mean value for the

n parameter calculated from TE was 1.15 +/- 0.18 in the central and 1.25 +/- 0.11 in the periph-

eral regions (P = 0.069).
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Table 3 and S1 Table present the SWS values calculated by both methods (SSI/TE) and the

values of n (TE) for each placenta.

For TE, reproducibility was good for the calculation of SWS, both for the same and different

examiners (ICC = 0.68 (95% CI 0.50, 0.82), and 0.65 (95% CI 0.37, 0.85) respectively)(Table 4).

This reproducibility of SWS was lower for SSI (0.54 (95% CI 0.09, 0.75) and -0.13 (95% CI

-0.59, -0.35) respectively). Bland-Altman plots are shown in Fig 5.

YM and SWS values measured at a fixed frequency by SWE and TE were of the same order

of magnitude for both regions (Table 2). Moreover, the value of the parameter n appeared to

be independent of the YM and SWS values. In the peripheral regions of placentas n˚1 and n˚8

(Table 3), the SWS values calculated from TE were very similar: 1.87 m/s +/- 0.19 (placenta n˚

1) and 1.86 m/s +/- 0.24 (placenta n˚8), but the corresponding parameters n obtained from the

fractional rheological model were quite different: 1.10 +/- 0.05 (placenta n˚1) and 1.35 +/- 0.07

(placenta n˚8). The SWS (TE method) in the central regions of placentas n˚1 and n˚10, were

also similar: 2.27 m/s +/- 0.47 (placenta n˚1) and 2.27 m/s +/- 0.25 (placenta n˚10), while their

n values were 1.17 +/- 0.06 and 0.93 +/- 0.19 respectively. In these examples, a difference in the

SWS value of a few hundredths corresponded to a difference of a few tenths for n. This differ-

ence in these orders of magnitude suggests that the parameter n constituted additional infor-

mation about placental elasticity.

Table 2. Values of Young’s modulus, shear wave speed at 50 Hz, and n among 10 normal placentas, ex vivo.

Method and comparison General Central region Peripheral region Comparison central/peripheral: P
value

E (kPa) Mean+/-standard deviation SSI 10.57 +/-

1.53

10.50 +/- 1.73 10.60 +/- 2.17 0.791

TE 10.56 +/-

3.25

11.34 +/- 4.49 9.78 +/- 2.72 0.579

P value 0.912 0.796 0.384

SWS (m/s) 50 Hz Mean+/-standard

deviation

SSI 1.82 +/- 0.13 1.82 +/- 0.15 1.82 +/- 0.18 0.684

TE 1.80 +/- 0.28 1.86 +/- 0.39 1.75 +/- 0.24 0.570

P value 0.912 0.791 0.436

n Mean+/-standard deviation TE 1.21 +/- 0.12 1.15 +/- 0.18 1.25 +/- 0.11 0.069

E (Young’s modulus), SSI (supersonic shear imaging), SWS (shear wave speed), TE (transient elastography), n (exponent of the fractional rheological model)

All comparisons were tested with the Mann–Whitney U-test

https://doi.org/10.1371/journal.pone.0194309.t002

Table 3. Values of the shear wave speed from supersonic shear imaging and transient elastography.

Central region Peripheral region

Placenta SWS SSI (m/s) +/- SD SWS TE (m/s)+/- SD n+/- SD SWS SSI (m/s) +/- SD SWS TE (m/s) +/- SD n +/- SD
1 1.82+/- 0.10 2.27+/-0.47 1.17+/-0.06 1.76+/-0.09 1.87+/-0.19 1.10+/-0.05
2 1.86+/-0.16 2.26+/-0.05 1.09+/-0.07 1.83+/-0.23 2.21+/-0.04 1.25+/-0.02
3 1.63+/-0.02 2.10+/-0.08 1.06+/-0.08 1.60+/-0.30 2.00+/-0.12 1.18+/-0.05
4 1.79+/-0.18 1.76+/-0.27 1.08+/-0.02 1.89+/-0.09 1.49+/-0.04 1.36+/-0.04
5 2.04+/-0.30 1.32+/-0.19 1.15+/-0.04 1.70+/-0.09 1.60+/-0.37 1.38+/-0.14
6 1.58+/-0.41 2.17+/-0.21 1.25+/-0.06 1.90+/-0.48 1.80+/-0.04 1.32+/-0.10
7 1.99+/-0.35 1.60+/-0.11 1.52+/-0.08 1.83+/-0.37 1.55+/-0.05 1.28+/-0.13
8 1.90+/-0.09 1.49+/-0.07 1.31+/-0.03 1.70+/-0.16 1.86+/-0.24 1.35+/-0.07
9 1.72+/-0.19 1.40+/-0.13 0.96+/-0.39 1.86+/-0.22 1.46+/-0.05 1.08+/-0.22

10 1.98+/-0.24 2.27+/-0.25 0.93+/-0.19 2.26+/-0.03 1.66+/-0.18 1.25+/-0.09

SSI (Supersonic Shear Imaging), SWS (Shear Wave Speed), TE (Transient Elastography)

https://doi.org/10.1371/journal.pone.0194309.t003
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Discussion

Interpretation of main findings

Our study is the first application of a 2D TE method to the placenta. This method is feasible

and reproducible on delivered normal placentas. The elastic parameters calculated at 50 Hz

were quite similar to those obtained by SWE. The small differences observed can be explained

by the fact that TE values were calculated at 50 Hz, which probably did not correspond to the

same frequency in SWE. Moreover our method provides information about the variation law

of these parameters as a function of frequency. This information is given by the exponent

parameter of the power law, called “parameter n”. Values of n should be interpreted as a result

independent of the SWS and the YM, but specific to a given tissue architecture. This quantita-

tive value of n can be simply interpreted for solids: the more n tends to 0, the more elastic its

behavior, and conversely, the more n deviates from 0, the more viscous its behavior.

Recently, Abeysekera et al. published a multifrequency analysis of SWS in placenta using a

3-D motorized probe connected to an Ultrasonics SonixTouch platform with a conventional

B-mode ultrasound transmission sequence [36]. The SWAVE system applies a longitudinal

vibration to the surface of the placenta using a 3cm diameter circular steel plate connected to a

voice exciter. This system uses monochromatic harmonic excitation to generate shear waves

like in Magnetic Resonance Elastography and five excitation frequencies at 60, 80, 90, 100 and

120Hz are sequentially emitted. Since the radiated shear wave is not spread in a large band-

width like in TE, this method allows a good penetration of the shear wave in the placenta even

at 120Hz where we are limited at 80Hz in our experiments. The disadvantage is to repeat sev-

eral times the measurement for each frequency unlike our TE method where the duration of

the measurement is 51ms.

Regardless of the method used, TE or SWE, the orders of magnitude of SWS and YM in our

study were consistent with previously published data (Table 5). In addition, consistent with

the literature, we found no significant difference between the central and peripheral regions of

these placentas [20–22,29].

Clinical meaning

The use of placental elastography is based on the hypothesis that placental insufficiency

modifies the elasticity of this organ. This is a credible hypothesis already suggested by studies

(Table 5). Among this literature, several ex vivo studies [20,26,36] and in vivo studies [19,22,27,

32–35] compared normal and insufficient placentas in humans (either preeclampsia, IUGR or

both).

Almost all of these studies found that YM or SWS was elevated in cases of placental

insufficiency.

Table 4. Reproducibility of Young’s modulus and shear wave speed from supersonic shear imaging and transient elastography.

Method: SSI or TE E or SWS Intraobserver variability Interobserver variability

95% limits ICC (95% CI) 95% limits ICC (95% CI)

SSI E (kPa) -5.37, -5.45 0.54 (0.07, 0.76) -9.80, -7.16 -0.09 (-0.57, -0.42)

SWS (m/s) -0.48, -0.49 0.54 (0.09, 0.75) -0.84, -0.62 -0.13 (-0.59, -0.35)

TE E (kPa) -7.51, -4.47 0.64 (0.48, -0.81) -5.76, -6.81 0.66 (0.41, 0.82)

SWS (m/s) -0.59, -0.61 0.68 (0.50, 0.82) -0.51, -0.60 0.65 (0.37, 0.85)

Parameter n -0.46, -0.44 0.39 (0.02, 0.80) -0.35, -0.30 0.60 (0.42, -0.80)

E (Young’s modulus), SSI (supersonic shear imaging), SWS (shear wave speed), TE (transient elastography)

https://doi.org/10.1371/journal.pone.0194309.t004
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Most of the in vivo studies have investigated preeclampsia rather than IUGR (except

Ohmaru et al [34] and Arioz Habibi et al [35]), whereas the ex vivo studies have tended to

examine IUGR instead. On the whole, although these studies are fairly numerous, their sample

sizes have been small and the levels of evidence generally very low.

Moreover, they have employed a diverse range of elastography techniques: strain elastogra-

phy [19,26,30], ARFI [20,28,32–34], or SWE [21,22,25,27,29]. The orders of magnitude of the

measurements sometimes differed from one study to another. For example, the mean YM in

preeclampsia cases ranged from 7.01 kPa (range 3.79–13.3) [22] to 21 kPa (range 3–71) [27],

Fig 5. Intraobserver and interobserver variability of Young’s modulus, shear wave speed, and parameter n values with 95% limits of

agreement. Measurements in the central region of the placenta are represented by black triangles (▲) and those in the peripheral region by red

dots (●).

https://doi.org/10.1371/journal.pone.0194309.g005
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Table 5. Literature review of placental elastography.

Reference Method Placentas Results Histopathological

evaluation

Safety data

Animal studies

Quarello E.

et al, 2015 [23]

SWE 21 pregnant baboons. Second half of

pregnancy.

Reproducibility study. Intra- and inter-

observer ICC: (i) for single values,

respectively 0.657 (95% CI 0.548 to

0.752) and 0.458 (95% CI 0.167 to

0.675); (ii) for mean values: 0.852 (95%

CI 0.784 to 0.901) and 0.628 (95% CI

0.286 to 0.806).

Not reported The offspring of these

pregnancies were born

without incident and the

clinical follow-up was

normal (10 months).

Quibel T. et al,
2015 [24]

SWE 18 Sprague Dawley rats. 217 feto-

placental units. Ligation of the left

uterine artery on embryonic day 17,

ultrasound and elastography on

embryonic day 19.

Mean YM+/-SD: Left horn 11.7 kPa +/-

1.5; Right horn 8.01 kPa +/- 3.8 (P<
0.001). Relation between placental

elastography and fetal weight (r = 0.42;

P< 0.001).

Yes High rate of fetal mortality

due to surgical ligation

Ex vivo studies

Sugitani M.

et al, 2013 [20]

ARFI 115 placentas (26–41 weeks gestation):

74 normal, 24 IUGR, 17 PIH.

Mean SWS values +/- SD. Normal: 1.31

m/s +/-0.35, IUGR: 1.94 m/s +/-0.74,

PIH: 1.49 m/s +/-0.52.

Yes No apparent histological

damage to placental tissue

McAleavey S.

A. et al, 2016

[25]

SWE 11 women: Uncomplicated term

pregnancies. After cesarean deliveries,

the placentas were placed in a plastic

container with an open perfusion

system (as a living placenta).

Vasoactive substances employed.

SWS color images heterogeneous.

Mean SWS: 1.92 m/s +/- standard error

0.05. After vasoconstrictor or

vasodilator, heterogeneous and

localized response.

No Not reported

Durhan G.

et al, 2017 [26]

SE 55 women:25 with IUGR (median

gestational age: 38 weeks 2 days), 30

controls (median gestational age: 39

weeks 2 days).

Elasticity index (EI) and

histopathological findings were

compared between groups. Greater

placental stiffness and more

histopathological changes were

observed in the IUGR group than in

controls (P<0.05). Histopathological

findings were associated with lower EI

values, but no specific pattern of

histologic abnormalities was identified

except for villitis and delayed villous

maturity.

Yes Not applicable

Abeysekera J.

M. et al, 2017

[36]

SWAVE 61 women. 37–41 weeks gestation.

Clinically normal placentas. The

elasticity and viscosity were estimated

through rheological modeling.

SWS (± SD) at: 60 Hz: 1.23 m/s ± 0.44;

80 Hz: 1.67 m/s ± 0.76; 90 Hz: 1.74 m/

s ± 0.72; 120 Hz: 1.80 m/s ± 0.78. No

difference between placentas with or

without abnormalities.

Yes. Microscopic

examination: 16 placentas

had significant

abnormalities.

Not reported

In vivo studies

Cimsit C. et al,
2014 [19]

SE 144 women (20–23 weeks’ gestation):

101 normal, 28 with preeclampsia, 15

with mild proteinuria or previous

preeclampsia. Posterior-lying placentas

excluded.

Elasticity ratio (mean, 95% CI):

Normal: 0.9 (0.82–0.97); Preeclampsia:

1.56 (1.12–2.16); Proteinuria or

previous preeclampsia: 0.72 (0.58–0.9).

P<0.0001.

No Not applicable

Cimsit C. et al,
2015 [22]

SWE 129 women (20–23 weeks’ gestation):

101 normal, 28 with preeclampsia.

Posterior-lying placentas excluded

Mean elastic modulus (range): Normal:

2.53 kPa (2.29–2.80); Preeclampsia:

7.01 kPa (3.79–13.3). No difference

between the center or edge of the

placenta.

No Not reported

(Continued)
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Table 5. (Continued)

Reference Method Placentas Results Histopathological

evaluation

Safety data

Li W.J. et al,
2012 [21]

SWE 30 women. Normal pregnancies (28–41

weeks’ gestation). Posterior-lying

placentas excluded

Mean elastic modulus +/- SD: Placental

edge (15 measurements per case, 30

cases): 7.60 kPa +/- 1.71; Central

placenta: (15 measurements per case, 30

cases): 7.84 kPa +/- 1.68; Average for all

measurements: 7.70 kPa +/- 1.61. No

significant difference between the

central placenta and the edge. No

correlation with uterine or umbilical PI

values.

Not reported Not reported

Ohmaru T.

et al, 2015 [34]

ARFI 199 women, 5 groups: 143 normal, 21

with IUGR, 15 with PIH, 13 with

collagen disease

The correlation between SWS and

gestational weeks was not significant.

Mean SWS +/- SD: Normal group: 0.98

m/s +/- 0.21; IUGR: 1.28 m/s +/- 0.39;

PIH: 1.60 m/s +/-0.45. SWS was

significantly higher for IUGR and PIH.

SWS and the expression ratio of

collagen fibers were significantly

correlated.

Yes Not reported

Kilic F. et al,
2015 [27]

SWE 50 women (second or third trimester):

23 with preeclampsia, 27 normal.

Median elastic modulus (range):

Preeclampsia: 21 kPa (3–71); Normal: 4

kPa (1.5–14). P< 0.001. Cut-off value

maximizing the accuracy of diagnosis:

7.35 kPa. AUC: 0.895 (95% CI 0.791–

0.998).

No Not reported

Alan B. et al,
2016 [28]

ARFI 74 women (18–28 weeks): 40 structural

anomalies (thickened nuchal

translucency, short femur, short

humerus, pyelectasis, hyperechoic

bowel, echogenic intracardiac focus,

choroid plexus cyst, heart defects,

omphalocele, ventriculomegaly, and

limb abnormalities) or non-structural

findings, 34 normal.

Mean SWS +/- SD: Study group: 1.89

m/s +/- 0.7; Control group: 1.59 m/ +/-

0.5. P = 0.04.

No Not reported

Yuksel M.A.

et al, 2016 [29]

SWE 76 women (mean gestational age at

SWE: 30.5 weeks’ gestation): 33 with

gestational diabetes mellitus (GDM), 43

healthy pregnant women.

Mean YM+/-SD. Mean elasticity values

of both the central and peripheral parts

of the placentas were significantly

higher in women with GDM

(P<0.001): Central part: 10.63 kPa +/-

5.97 for women with GDM vs 5.47 kPa

+/- 1.74 for control cases. Peripheral

part: 10.67 kPa +/- 7.41 for GDM vs

5.23 kPa +/- 1.31 for control cases. The

mean elasticity values did not differ

between the central and peripheral

placentas in either group (P>0.05).

No Not reported

Albayrak E.

et al, 2016 [30]

SE 70 women (second trimester). This

study investigated the ability of the

placental strain ratio to predict

spontaneous preterm birth (sPTB).

Mean gestational age at the time of the

procedure: 22.51 weeks’ gestation.

sPTB group: 10 women, term birth

group: 60 women.

Calculation of muscle-to-placenta

strain ratio (MPSR) and fat-to-placenta

strain ratio (FPSR). Gestational age at

birth was slightly negatively correlated

with MPSR (r = -0.300, P = 0.012) and

moderately negatively correlated with

FPSR (r = -0.513, P<0.001). The

multivariate linear regression analysis

showed that the FPSR (β = 0.609,

P = 0.002) was a significant predictor of

sPTB.

No Not applicable

(Continued)
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and the mean SWS value ranged from 1.34 m/s (IQR 1.31–1.39) [32] to 1.93 m/s (+/- SD 0.62)

[33]. In normal placentas in vivo, mean YMs have varied from 2.53 kPa (range 2.29–2.80) [22]

to 7.84 kPa (+/- SD 1.68) [21] and mean SWS from 0.91 m/s (+/- SD 0.20) [33] to 1.59 m/s (+/-

SD 0.5) [28]. The values of SWS or YM found in our study are therefore slightly higher than

those found in the literature, even in comparison with other ex vivo studies [20,25,26,36].

These heterogeneous results underline the need to improve tools for quantifying placental

elasticity.

We can make some pathophysiological assumptions about changes in placental elasticity.

The main interest of elastography does not lie in identifying localized placental lesions related

to preeclampsia or IUGR. Conventional US can identify or at least call attention to suspicious

lesions such as infarcts or hematomas. Furthermore, their absence does not exclude a diagnosis

of placental insufficiency (whether preeclampsia or IUGR), and their presence is not patho-

gnomonic of it [50,51]. These lesions are sometimes unrecognized when a large part of the pla-

centa is hidden by the fetus, as in posterior locations. The identification of lesions that affect

Table 5. (Continued)

Reference Method Placentas Results Histopathological

evaluation

Safety data

Wu S. et al,
2016 [31]

ARFI 50 healthy pregnant women during the

second trimester. 50 healthy pregnant

women during the third trimester.

Mean SWS +/- SD: 0.983 m/s +/-0.260.

Minimum SWS: 0.63 m/s. Maximum

SWS: 1.84 m/s. No significant

difference in SWS between the second

and third trimesters (0.978 m/s

+/-0.255 vs 0.987 m/s +/-0.266,

P = 0.711).

No Not reported

Alan B. et al,
2016 [32]

ARFI 86 women: 42 with preeclampsia, 44

controls.

Mean SWS (IQR): Preeclampsia group:

1.39 m/s (1.32–1.53); Control group:

1.07 m/s (1.00–1.14). P< 0.001. Mean

SWS (IQR) among women with

preeclampsia: Mild preeclampsia

(n = 26): 1.34 m/s (1.31–1.39); Severe

preeclampsia (n = 16): 1.56 m/s (1.53–

1.59).

No Not reported

Karaman E.

et al, 2016 [33]

ARFI 107 women: 38 healthy control

subjects, 34 with gestational

hypertension, 35 with preeclampsia.

Mean SWS (+/-SD): Controls: 0.91 m/s

+/- 0.20; Gestational hypertension:1.27

m/s +/- 0.36; Preeclampsia: 1.93 m/s

+/- 0.62. P = 0.001. SWS was higher in

the preeclampsia group than in the

other groups in all three regions of the

placenta (fetal edge, maternal edge,

central part of the placenta). P = 0.01.

No No new data

Arioz Habibi

H. et al, 2017

[35]

SWE 84 women: 42 IUGR, 42 controls. Median YM (IQR): (i) IUGR central

part: Maternal side: 28 kPa (16.8–35),

Fetal side: 21.5 kPa (13.5–28.3); (ii)

IUGR peripheral part: Maternal side: 22

kPa (13.8–31.3), Fetal side: 22.5 kPa

(14.8–29.5); (iii) Control group central

part: Maternal side: 6 kPa (4.38–7.45),

Fetal side: 5 kPa (3.73–6.55); (iv)

Control group peripheral part:

Maternal side: 5.35kPa (4.78–6.28),

Fetal side: 5.3 kPa (4–6.85).

No Not reported

ARFI: acoustic radiation force impulse, GDM: gestational diabetes mellitus, IUGR: intrauterine growth restriction, AUC: area under the curve, PIH: pregnancy-induced

hypertension, IQR: interquartile range, SD: standard deviation, SE: strain Elastography, sPTB: spontaneous preterm birth, SWE: shear wave elastography, SWS: shear

wave speed.

https://doi.org/10.1371/journal.pone.0194309.t005
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the entire placenta is a more ambitious challenge, especially if these lesions are not visible on a

standard US scan. Among the many abnormalities of the placental parenchyma that have been

described, we do not know which ones might give rise to elasticity changes. However, the frac-

tional rheological model that we used is known to be sensitive to a shape factor of the consid-

ered tissue [44]. We make the hypothesis that structural modifications of the placental

parenchyma, whatever their type, have an impact on SWS dispersion. For example, tropho-

blastic fibrin deposits, calcifications, and changes in villi phenotype might be related to placen-

tal elasticity. Deposition of fibrinoid materials around the syncytium is often observed in case

of preeclampsia or IUGR [17]. Furthermore, although an increased risk of adverse maternal

and fetal outcomes in cases of preterm placental calcifications has not yet been proven, the

studies suggesting such an association cannot be ignored [52]. According to the fetal hypoxia

paradigm, fetal capillary morphology may differ in cases of preeclampsia and of IUGR, with

and without severe Doppler abnormalities [11]. These changes in cotyledon microarchitecture

are not currently accessible by conventional US exploration, but they could be interesting can-

didates for SWS dispersion analysis. The exponent parameter n of the power law has already

been studied in several types of tissue, and different approaches have been used to model the

dispersion of the shear modulus. Interesting results have been obtained in breast tumors [53]

and liver tissue [54,55], with, for example, a multiparameter approach enabling the characteri-

zation of liver fibrosis and inflammation [54]. These results have served as a starting point for

studying shear modulus dispersion in the placenta.

Strengths and limitations

The main strength of our study is to demonstrate the feasibility of placental exploration by TE

and thus to pave the way of a new approach for biomechanical investigations of the placenta.

The weakness of this approach is the limited depth of exploration possible with TE—about

8 cm with our probe, although we note that other elastographic techniques are also subject to

this depth constraint, and all the studies using SE or SWE have excluded posterior-lying pla-

centas. Nonetheless, the literature suggests that there is no difference in elasticity between the

central and peripheral regions of the placenta. In clinical situation in pregnant women, the

posterior-lying placenta (46% of the cases in the Torricelli et al. cohort [56]) is more difficult

to access, and anterior placenta seems to be a better candidate for the TE system that we have

developed (S1 Appendix). But under certain conditions, it could be sometimes possible to

access an edge of the posterior-lying placenta when the US probe is positioned very laterally

on the abdomen (on the woman’s lumbar or iliac region). For that reason, the question of pla-

cental heterogeneity remains important, and we did not find any differences between central

and peripheral regions. In addition, ex vivo results should be interpreted with caution, as little

is currently known about SWS variations as a function of placental vascularization. However,

the only studies of delivered and non-perfused placentas found mean SWS values of 1.31 m/s

[20], 1.23 m/s (60 Hz), 1.67 m/s (80 Hz), 1.74 m/s (90 Hz) and 1.80 m/s (120 Hz) [36]. These

values are consistent with in vivo studies.

Folding the placenta in half could theoretically modify the elasticity of the latter, and

SWAVE makes it possible to avoid this difficulty [36]. However, we did not observe any signif-

icant change in shear wave propagation at the interface between the two folded parts of the

placenta.

Our study did not include a histopathological analysis of the placentas, as our main goal

here was to determine the feasibility of this method as a first step. Moreover, routine anatomi-

cal analysis would not have made it possible to draw any further conclusions. In this type of

study, it would be interesting to have more advanced analyses of the villous phenotypes, for
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example by morphometry, especially for comparison between normal and abnormal situa-

tions. The next step of this study is to compare the values of SWS, YM, and n in normal and

abnormal placentas, first ex vivo and then in vivo.

Finally, our TE method using a vibrating plate is not suitable for clinical application to preg-

nant women. But this preliminary study enabled us to build a new device for in vivo examina-

tions (S1 Appendix). With this new method the shear wave is followed in a different axis, and

the question of folding the placenta no longer arises. For that reason, we have not continued

these experiments on a larger sample of placentas. Our current experiments are applying our

new device in vivo.

Conclusion

In this ex vivo study, our frequency approach (measurement by TE) provided a new quantita-

tive parameter, the “exponent n” of the fractional rheological model for assessing placental

elasticity, in addition to the standard parameters such as YM or SWS at a particular frequency.

This parameter n is variable for any given value of SWS and should be considered to provide

additional information about the placental tissue. In the perspective of clinical application, it

will be necessary to evaluate the performance of this frequency analysis, comparing the values

of n in normal and abnormal situations.

Supporting information

S1 Appendix. New device for 2-D transient elastography. (A) This system has been devel-

oped for clinical application in vivo. (B) 2-D transient elastography system applied to a homo-

geneous elasticity phantom. (C) Ex vivo measurement on placenta.

(TIF)

S1 Table. Clinical features and data from ten placentas.

(XLSX)
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