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Abstract

Itis well-known that the conversion of normal colon epithelium to adenoma and then to car-
cinoma stems from acquired molecular changes in the genome. The genetic basis of colo-
rectal cancer has been elucidated to a certain extent, and much remains to be known about
the identity of specific cancer genes that are associated with the advancement of colorectal
cancer from one stage to the next. Here in this study we attempted to identify novel cancer
genes that could underlie the stage-specific progression and metastasis of colorectal can-
cer. We conducted a stage-based meta-analysis of the voluminous tumor genome-
sequencing data and mined using multiple approaches for novel genes driving the progres-
sion to stage-Il, stage-Ill and stage-1V colorectal cancer. The consensus of these driver
genes seeded the construction of stage-specific networks, which were then analyzed for
the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology pro-
cesses. Our study identified three novel driver genes as hubs for stage-Il progression:
DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-Il|
progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs
for stage-1V progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver
genes that appeared to underscore the progression of colorectal cancer. Our study yielded
potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug
targets for rational intervention. Our methodology is extendable to the analysis of other
types of cancer to fill the gaps in our knowledge.

Introduction

Colorectal cancer is the third most common cancer in men, and the second in women world-
wide according to International Agency for Research on Cancer, World Health Organization
[1]. In recent years, the incidence of colorectal cancer has significantly increased in newly
developed countries where the risk was once low. Despite the existence of screening and pre-
ventive strategies, colorectal cancer remains a major public health problem. Cancer mortality is
significantly correlated with the stage of development of the cancer and could be reduced if
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cases are detected and treated early. The 5-year survival rate of colorectal cancer patients
declines significantly with the stage of the cancer. Most importantly, the 5-year survival rate for
patients with distant metastases is only 10%. Considering the fact that metastases are the cause
0f 90% of cancer deaths[2], there are no effective drugs available to curtail the process of cancer
spreading to different organ systems. Treatment of metastases remains a major challenge, not
least because our knowledge of factors responsible for cancer progression and metastases is far
from complete. With an increased trend in incidence and death rates of colon cancer, and the
unpredictability of factors responsible for the metastatic potential of the localized tumor, we
prioritized our efforts towards identifying the genes responsible for colon cancer progression.
Increasing our current knowledge of the genes and pathways that play important roles in the
progression of cancer from one stage to the next could prove very useful in early-stage diagno-
sis as well as identifying targets for personalized cancer therapy.

We have earlier published on important roles of two genes on colon cancer, CELF2 a puta-
tive tumor suppressor gene [3,4] and RBM3 a proto-oncogene [5]. Here we have attempted to
identify more novel and key genes underpinning colon cancer progression using the available
data from the TCGA consortium [6]. Mutations in colon cancer are complex and unclear due
to the presence of passenger and driver genes even within the same tumor. Much effort has
focused towards identifying driver genes. The aim of the current study is to utilize methods of
network analysis to identify novel biomarkers responsible for the colorectal cancer progression
to each stage. The differential anatomical penetration of the cancer for each stage is shown in
Fig 1.

Materials and Methods
Dataset

TCGA datasets annotated by the stage of cancer were retrieved from the DriverDB [7] by per-
forming the following meta-analysis. We selected colon adenocarcinoma as the tissue of inter-
est, and specified ‘tumor stage” as the clinical criteria. We obtained datasets for each stage of
colon adenocarcinoma, namely stage I, stage II, stage III, and stage IV of colon
adenocarcinoma.

Identification of consensus driver genes

Framing the stage of tumor as the unit of analysis, we used the following tools to identify driver
genes: ActiveDriver[8], Dendrix[9], MDPFinder[10], Simon[11], Netbox[12], OncodriveFM
[13], MutSigCV [14], and MEMo [15]. To obtain the consensus driver genes, we determined
the overlap between the predictions of the various tools for a given stage. The selective advan-
tage conferred by driver genes to the growth of tumor cells could be either gain of function or
loss of function events (for e.g., oncogenes are gain-of-function and insensitivity to tumor-sup-
pressor is a loss of function). We filtered for driver genes that were identified by at least three
tools and obtained the consensus prediction of driver genes for each stage.

Novel driver genes

To identify novel driver genes, we subtracted the driver genes of stage I from the driver genes
of stage II to ensure stage II-specific driver genes in the progression of cancer. In a similar man-
ner, we obtained stage III-specific and stage IV-specific driver genes. To eliminate non-specific
driver genes from the analysis, we screened each stage against a background of driver genes
obtained from pooling all samples of colon adenocarcinoma regardless of stage of cancer. This
set of non-redundant stage-specific driver genes was further screened against the Cancer Gene
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Fig 1. Staging of colon cancer. The American Joint Committee on Cancer (AJCC) has staged the colorectal cancer
based on the anatomical extent of the disease. Stage I: Tumor that is limited to the mucosal layer (T1) or muscularis
propria (T2), without involvement of any lymph node or distant metastatic organs. Stage Il: Tumor that penetrates the
muscularis propria (T3) or invades nearby organs or structures (T4), without involvement of any lymph node or distant
metastatic organs. Stage Ill: Tumor stages with lymph node metastasis but without distant metastasis. Stage IV: Any
tumor stage and lymph node status with distant organ metastasis.

doi:10.1371/journal.pone.0156665.g001

Census v68[16] to filter out any remaining known cancer genes. Thus we obtained novel and
stage-specific driver gene sets for further analysis.

Network analysis

The construction and analysis of stagewise networks were aided by Cytoscape[17]. The driver
gene sets identified above were used to seed the construction of the corresponding stage-spe-
cific network using the Genemania tool [18]. We searched for the following types of interac-
tions of the stage driver genes: ‘physical’, ‘protein-protein interactions’ and ‘predicted’. This
yielded stage-wise networks. To analyze the topological properties of each network, we used
NetworkAnalyzer[19]. The degree distribution of each network was calculated and the
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goodness of fit with a power-law distribution was determined using the coefficient of determi-
nation (R?). A high R* implied the existence of fat tails in the degree distribution, indicating
that some genes played the role of hubs. Alteration of function of these genes due to mutation,
translocation or copy number variation could result in deleterious genes damaging cellular
activity. To analyze the structure of the stage-wise networks, we performed centrality analysis,
modularity analysis and Gene Ontology analysis. Centrality analysis identified the central
nodes in each stage-specific network by various metrics using Centiscape [20]. Three metrics
of centrality were used to rank the genes, viz. the between-ness centrality, closeness centrality
and bottleneck centrality. These metrics were chosen for their measurement of complementary
properties of node importance. The top 15 genes from each measure were chosen, and their
intersection was determined to yield a consensus set of central genes for each stage (Fig 2).
These are the “hub” genes identified in our work and discussed individually below. This stage-
specific consensus set was compared with the set of driver genes for each stage. A gene com-
mon to both sets is a driver and a hub. Such genes are termed ‘hub’ driver genes for each stage.
We then analyzed the clustering pattern of the stage-wise networks using the ModuLand algo-
rithm [21]. The clusters obtained are indicative of driver sub-networks for the stage-wise pro-
gression of cancer. Finally, we interrogated each of these networks for Gene Ontology (GO)

driverDB STAGE NETWORK

Vet N
S genes
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~ /\ |

— Bottleneck

/
|

Stage Specific

\
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Genes (hubs)

Hub Driver Genes

Fig 2. Identification of hub driver genes. Consensus novel driver genes were identified for each stage from driverDB data. Consensus central
genes (‘hubs’) were identified from each stage-specific network. The overlap between these two sets of genes yields ‘hub driver genes for each
stage.

doi:10.1371/journal.pone.0156665.9g002
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enrichment using BINGO [22]for three GO terms: biological process, molecular function and
cellular component. To correct for the false discovery rate with p-values in multiple hypothesis
testing, we applied the Benjamini-Hochberg filter in BINGO and obtained the q-values[23].

Results and Discussion

Table 1 shows the number of driver genes at each step of our screening procedure. The final set
of novel driver genes for each stage used in the subsequent Genemania search is shown in S1
Table. We analyzed the degree distribution of each of the stage wise networks and found that
the node distribution of all the three networks conformed better to a power law distribution
than a linear model (S2 Table). A power-law fit implies the presence of a few highly connected
nodes (i.e. hubs)in the network. In general, hubs could predispose vulnerability to disease.
Mutations in hub genes could lead to functional alterations in the corresponding protein which
could lead to changes in its interactions with other proteins. This could lead to a cascading fail-
ure in the network and cause disease [24]. In this context, a power law behavior implies that
mutations in hub genes could increase susceptibility to the hallmarks of cancer[25]and facili-
tate the spread of the perturbation in the network. Therefore, identification of the hub nodes
could pinpoint the key genes whose failure would underscore the progression of cancer.
Though our method of network construction was blind to the number of components, all our
resultant network models were single connected giant components (S3 Table).

Analysis of progression to stage Il

The reconstructed stage-II specific network (with node and edge attributes) is given in S1 File.
Table 2 shows the central genes identified by centrality analysis for the stage II network. For
progression to stage II, three hub driver genes were identified: DYNC1H1, GRIN2A, GRMI1.
Eight non-driver hub genes were identified: DLG4, SMC2, PLCG1, GRIN2B, RHOG, SMCI1A,
GRIN1, CAMK2A. Table 3 shows the modules in the network obtained by ModuLand analysis.
Seven significant modules were obtained each centered at a different gene (Fig 3). Each module
could function as a driver subnetwork for the progression of cancer to stage II. The most inter-
esting module was that centered at DLG4, which also had the driver genes GRIN2A, GRM1,
LRRC?7 as its members. Of these, GRIN2A and GRM1 are also central genes. A gene ontology
analysis for biological process yielded the key pathways in which these central driver genes
played a role. The glutamate signaling pathway was identified as a key enriched biological pro-
cess (q-value < 0.001). GRIN1, GRIN2A and GRIN2B emerged as key hub genes that could
modulate this pathway. Among molecular functions, the glutamate receptor activity emerged
significant (q-value < 0.001) in which GRM1 was implicated. The cellular component ontology
was enriched in ionotropic glutamate receptor complex and the synapse (q-values < 0.001)
(Table 4).

Table 1. From tumor genome-sequencing data to network reconstruction.

Stage No. of Consensus driver
Samples genes

Il 108 52

11l 75 56

1\ 28 49

Subtraction of Screening Against Screening against Network reconstruction
previous stage background Cancer Gene Census #node; #edge

47 34 27 109; 396

43 35 31 109; 199

43 32 30 115; 297

The number of driver genes at each step leading to the network reconstruction.

doi:10.1371/journal.pone.0156665.1001
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Table 2. Centrality analysis of stage-Il network.

S.No.

0 N o b~ WN =

©

10
11
12
13
14
15

Betweenness centrality

DLG4
SMC2
DYNC1H1
PLCG1
GRIN2B
GRIN2A
RHOG
SMC1A
GRM1
NF2
GRIN1
NCAPH
CAMK2A
SOX9
CHEK1

Closeness centrality

Bottleneck centrality

Consensus Centrality (hubs) Hub+driver genes

DLG4 DLG4 DLG4 DYNC1H1
GRIN2B DYNC1H1 SMC2 GRIN2A
GRIN2A SMC2 DYNC1H1 GRM1
GRIN1 PLCG1 PLCG1

CAMK2A CAMK2A GRIN2B

PLCG1 RHOG GRIN2A

DYNC1H1 NF2 RHOG

RHOG SMC1A SMC1A

LRRC7 GRIN2A GRM1

GRIA1 GRM1 GRIN1

GRM1 HRSP12 CAMK2A

DLG2 GRIN2B

DYNLL1 LRRC7

SMC2 RAD21

SMC1A GRIN1

The top 15 genes obtained by applying each centrality metric are given. The genes at the intersection of all the three metrics are designated as ‘hubs’.
Genes that are both hub and driver are shown.

doi:10.1371/journal.pone.0156665.t002

Analysis of progression to stage Il

The reconstructed stage-III specific network (with node and edge attributes) is given in S2 File.
Table 5 shows the central genes identified by centrality analysis for the stage III network. For
progression to stage III, four hub driver genes were identified: IGF1R, CPS1, SPTA1, DSP. Six
non-driver hub genes were identified: HEATR1, MAPK9, ARAF, PRKCE, PLEC, MSN.

Table 6 shows the modules in the network identified by the ModuLand algorithm. All the four
hub driver genes were classified as core members of the network clusters (Fig 4). The most sig-
nificant enrichment in the GO analysis of the biological process was the regulation of actin
cytoskeleton organization (q-value < 0.001; Table 7). The GO enrichment in the molecular
function (“actin binding”) and cellular component (“actin cytoskeleton”, “spectrin”) provided
turther evidence for the involvement of SPTA1 and PLEC. DSP seemed to modulate the cell
adhesion properties in advancing the cancer malignancy.

Table 3. Moduland decomposition of stage-Il network.

S. No

N O A 0N =

Module centre

DLG4
SMC2
DYNC1H1
PPP1R12B
UBE4B
CLSPN
SOX9

Eff. size of module

43

-
~

a » O © O

Driver gene members

GRIN2A, GRM1, LRRC7
NCAPD2, STAG1
DYNC1H1
PPP1R12B, KCNQ5
UBE4B
CLSPN
SOX9

Hub gene members
CAMK2A, DLG4, GRIN1. GRIN2A, GRIN2B, GRM1, PLCG1, RHOG

SMC1A, SMC2
DYNC1H1

Each module is represented by its centre and effective size. Hub genes identified by centrality analysis and driver genes are indicated by their module
membership. Modules with the maximum number of hub genes could function as driver subnetworks in the pathogenesis of disease progression.

doi:10.1371/journal.pone.0156665.t003
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Fig 3. Network of cluster centres of stage-Il network. Clustering was done using Moduland.

doi:10.1371/journal.pone.0156665.g003

Analysis of progression to stage IV

The reconstructed stage-IV specific network (with node and edge attributes) is given in S3 File.
Table 8 shows the central genes identified by centrality analysis for the stage IV network. For
progression to stage IV, three hub driver genes were identified: GSK3B, GGT1, EIF2B5. Seven
non-driver hub genes were identified: AKT1, PXN, SEN, GNAI2, CHKB, HSPA5, PLCGI1. A
ModuLand analysis of the network yielded a module centered at EIF2B5, which included all
the three hub driver genes noted above (Table 9; Fig 5). A GO biological process enrichment
analysis yielded ‘negative regulation of translational initiation in response to stress’ (q-

value < 0.001; Table 10). This hit contained the EIF2B5 gene, which was also a member of the
enriched cellular component ‘eukaryotic translation initiation factor 2B complex’ (q-

value < 0.001). The GO molecular function enrichment analysis yielded the following: adenyl
nucleotide binding containing hub genes GSK3B and HSPA5 (q-value = 0.001) and gamma-
glutamyl transferase activity containing hub gene GGT1 (q-value ~ 0.01). A connection with
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Table 4. GO enrichment analysis of Stage-Il network.

GO-  g-value % Description Hub genes Other genes in the network
ID size > 20
7059 3.10E-12 N chromosome segregation SMC2, SMC1A PDS5B, SMC3,SMC4,NCAPD2,NCAPH,RAD21,
NDEL1, NCAPG, STAG2,NEK6,STAG1
7215 1.62E-10 Y glutamate signaling pathway GRIN1,GRIN2A,GRIN2B HOMERS, GRIN3B, GRIA4,HOMER1, HOMER2
45202 1.62E-10 N Synapse GRIN1,GRIN2A,GRIN2B, GABBR1,NLGN2,GRIN3B,GRIA4,CDH2,HOMERT,
GRM1, DLG4, CAMK2A ADORA1,HOMER2,SLC17A7,SLC32A1,GRIA1,
HOMERS, DLG2
279  5.55E-10 N M phase DYNC1H1, SMC1A, SMC2 SSSCA1,FZR1,PDS5B,PDS5A,CHEK1,SMC3,SMC4,
NCAPD2,NCAPH,RAD21,NCAPG,STAG2,NEK6,NUDC,
STAG1
8328 7.06E-09 Y ionotropic glutamate receptor GRIN1,GRIN2A,GRIN2B GRIA1, GRIN3B, GRIA4
complex
8066 2.31E-08 Y glutamate receptor activity GRM1, GRIN1,GRIN2A, GRIA1, GABBR1, GRIN3B, GRIA4
GRIN2B
7216  1.60E-04 Y metabotropic glutamate HOMERS3, HOMER1, HOMER2
receptor signaling pathway
50839 1.18E-02 N cell adhesion molecule GRIN2A,GRIN2B PTPRT
binding

Significant GO terms enriched in stage Il network are given. If the ratio of the genes in the network for a given GO term to the total number of genes in that
GO term is greater than 20%, ‘Y’ is indicated, otherwise ‘N’ is indicated. Hub genes identified in our analysis are indicated for each GO term.

doi:10.1371/journal.pone.0156665.1004

neurogenesis and oligodendrocyte development was seen (q-values < 0.001), which might
seem surprising, but recent studies indicated a crucial link of these signaling pathways with the
metastasis of colon cancer [26].

We performed the literature survey for these novel driver genes, to provide an insight into
the possible roles of these genes in cancer progression. To our surprise, most of the genes were
under studied in connection with colon cancer.

Table 5. Centrality analysis of stage-lll network.

S.No Betweenness centrality Closeness centrality Bottleneck centrality Consensus Centrality (hubs) Hub+driver genes
1 HEATR1 MACF1 ARAF HEATR1 IGF1R
2 IGF1R MAPK9 MAPK9 IGF1R CPSH1
3 MAPK9 IGF1R PLEC MAPK9 SPTA1
4 ARAF SPTA1 MSN ARAF DSP

5 XRN1 PRKCE HEATR1 PRKCE

6 PRKCE XRN1 IGF1R CPS1

7 CPS1 DSP CPS1 PLEC

8 PLEC ARAF SPTA1 MSN

9 MSN PLEC UTP20 SPTA1

10 MTOR HEATR1 RICTOR DSP

11 MACFA CPS1 MTOR

12 UTP20 MSN PIK3R3

13 SPTA1 NRXN2 DSP

14 DSP COL17A1 COL17A1

15 MAPK6 MAPK6 PRKCE

The top 15 genes obtained by applying each centrality metric are given. The genes at the intersection of all the three metrics are designated as ‘hubs’.
Genes that are both hub and driver are shown.

doi:10.1371/journal.pone.0156665.t005
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Table 6. Moduland decomposition of stage-Ill network.

S. No

© 00 N O OB~ WwN =

- a a
N = O

13

Module centre

MTOR
SPTA1
DSP
SPTB
NRXN2
XRN1
TEK
MAPK9
IGF1R
FBN2
MYLK
CHRM2
AIFM1

Eff. size of module Driver gene members Hub gene members
15 RICTOR, UTP20, MAGECH1 HEATR1
11 SPTA1, MACF1 SPTA1, PLEC
12 DSP, ADAM28, PKD2L 1 DSP, PRKCE
7 MACF1
8 NRXN3
16 XRN1, CPS1 CPSH1
7 TEK
14 MAPK®6, ANK3 MAPK9, ARAF
7 IGF1R IGF1R, MSN
6 FBN2
7 MYLK
4 CHRM2
5 AIFM1

Each module is represented by its centre and effective size. Hub genes identified by centrality analysis and driver genes are indicated by their module
membership. Modules with the maximum number of hub genes could function as driver subnetworks in the pathogenesis of disease progression.

doi:10.1371/journal.pone.0156665.t006

Stage Il hub genes

Dynein, Cytoplasmic 1, Heavy Chain 1(DYNCIHI). DYNCI1H]1 has been shown to func-
tion in intracellular motility like protein sorting, movement of the organelles and dynamics of
the spindles. A recent study has reported that DYNCIHI is mutated in ovarian cancer, pancre-
atic neuroendocrine neoplasms, and glioblastoma multiforme (GBM) [27]. In addition, the
expression of DYNCIHI was significantly upregulated in three drug-resistant gastric cancer
cell lines (5-fluorouracil (5FU), paclitaxel (TA) and cisplatin (DDP)-resistant gastric cancer
cell lines) [28].

Glutamate Receptor, Ionotropic, N-methyl D-aspartate 2A (GRIN2A). GRIN2A isa
member of the glutamate-gated ion channel proteins. It is a subunit of N-methyl-D-aspartate
receptor. The activation of these receptors will increase the influx of calcium resulting in the
triggering of several signaling cascades. In 2011, Wei et al,, has identified that GRIN2A was
mutated in 33% of melanoma samples [29]. Furthermore, D’'mello et al., has provided evidence
that the mutations in this gene are correlative to the progression of melanoma[30].

Glutamate receptor, metabotropic 1 (GRM1I). GRMI1 was shown to activate phospholi-
pase C. GRM1 was associated with various diseases such as depression and cancer. GRM1 has
been implicated in prostate cancer [31], following identification of novel mutations and single
nucleotide polymorphisms. In addition, GRMI was over expressed in melanoma and ectopic
overexpression of this gene in melanocytes resulted in neoplastic transformation [32]. Finally,
studies with breast epithelial cells demonstrated that GRM1 cooperates with other factors in
the hyperplastic mammary epithelium resulting in progression of breast cancer [33].

Discs, Large Homolog 4 (DLG4). DLG4(also called as postsynaptic density protein 95)
has shown to be expressed in normal cervical keratinocytes. The expression of DLG4 is signifi-
cantly decreased in cervical cancer cell lines. Also, the tumorigenicity of CaSki cells was
repressed following overexpression of DLG4[34]. In addition, Hering et al., has shown that
DLG4 cooperates with Frizzled proteins to regulate the WNT signaling pathway, which has
been implicated in multiple types of cancer progression, including colon cancer [35]. Table 3
shows that DLG4 is the module center of a key module of the stage II network.

PLOS ONE | DOI:10.1371/journal.pone.0156665 May 31,2016 9/21
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Fig 4. Network of cluster centres of stage-lll network. Clustering was done using Moduland.

doi:10.1371/journal.pone.0156665.9004

Structural maintenance of chromosomes 2 (SMC2). SMC2 plays a role in chromosomal
stability. It is a subunit of condensing protein complexes that are shown to be involved in the con-
densation of the chromosomes. Table 3 shows that SMC2 is located at the center of a module of the
stage II network. Je et al,, has reported that SMC2 is mutated in gastric and colon cancer tissues sug-
gesting its involvement in cancer progression [36]. Interestingly, beta-Catenin a key molecule in
colorectal cancer has been shown to directly bind and regulate the transcription of SMC2[37].

Phospholipase C gamma 1 (PLCG1). PLCGI has been shown to play a significant role in
intracellular signaling pathways as well as an increased apoptotic resistance and invasiveness of
the cells [38]. PLCGL levels were significantly increased in breast cancer tissues compared to
normal [39]. Raimondi et al., has demonstrated a link between PLCG1 and phosphoinositide-

PLOS ONE | DOI:10.1371/journal.pone.0156665 May 31,2016 10/21
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Table 7. GO enrichment analysis of stage-lll network.

GO- g-value % Description Hub genes Other genes in the network
ID size > 20
7059 3.10E-12 N chromosome segregation SMC2, SMC1A PDS5B,SMC3,SMC4,NCAPD2,NCAPH,RAD21,NDEL1,
NCAPG,STAG2,NEK6,STAGH
7215 1.62E-10 Y glutamate signaling pathway GRIN1,GRIN2A,GRIN2B HOMERS, GRIN3B,GRIA4,HOMER1, HOMER2
45202 1.62E-10 N Synapse GRIN1,GRIN2A,GRIN2B, GABBR1,NLGN2,GRIN3B,GRIA4,CDH2,HOMERH1,
GRM1, DLG4,CAMK2A ADORA1,HOMER2,SLC17A7,SLC32A1, GRIA1,
HOMERS3, DLG2
279  5.55E-10 N M phase DYNC1H1, SMC1A, SMC2 SSSCA1,FZR1,PDS5B,PDS5A,CHEK1,SMC3,SMC4,
NCAPD2,NCAPH,RAD21,NCAPG,STAG2,NEK6,NUDC,
STAG1
8328 7.06E-09 Y ionotropic glutamate receptor ~ GRIN1,GRIN2A,GRIN2B GRIA1, GRIN3B, GRIA4
complex
8066 2.31E-08 Y glutamate receptor activity GRM1,GRIN1,GRIN2A, GRIA1, GABBR1, GRIN3B, GRIA4
GRIN2B
7216  1.60E-04 Y metabotropic glutamate HOMERS3, HOMER1, HOMER2
receptor signaling pathway
50839 1.18E-02 N cell adhesion molecule GRIN2A,GRIN2B PTPRT
binding

Significant GO terms enriched in stage Il network are given. If the ratio of the genes in the network for a given GO term to the total number of genes in
that GO term is greater than 20%, ‘Y’ is indicated, otherwise ‘N’ is indicated. Hub genes identified in our analysis are indicated for each GO term.

doi:10.1371/journal.pone.0156665.t007

dependent kinase 1 (PDK1), and their significance in the process of cancer cell invasion[40]. In
addition, Park et al., has reported that PLCG1 levels are significantly high in adenomas and car-
cinomas compared to the normal colonic mucosa suggesting its role in progression of colon
cancer[41].

Table 8. Centrality analysis of stage-IV network.

S.No. Betweenness centrality Closeness centrality Bottleneck centrality Consensus Centrality (hubs) Hub+driver genes
1 GSK3B GSK3B GSK3B GSK3B GSK3B
2 AKT1 PXN AKT1 AKT1 GGT1
3 PXN AKTA HSPA5 PXN EIF2B5
4 GGT1 VEGFA CHKB GGT1

5 SFN PLCGH1 GGT1 SFN

6 PPIF EIF2B5 PXN GNAI2

7 GNAI2 CHKB SFN CHKB

8 CHKB GNAI2 PLCGH1 HSPA5

9 HSPA5 FLT1 EIF2B5 EIF2B5

10 EIF2B5 HSPA5 QARS PLCG1

11 PLCG1 SFN SSR4

12 SF3B3 GGT1 GNAI2

13 IARS SF3B1 HECW1

14 NTRK2 ITGAV NTRK2

15 MAGI1 ITGA9 SF3B3

The top 15 genes obtained by applying each centrality metric are given. The genes at the intersection of all the three metrics are designated as ‘hubs’.
Genes that are both hub and driver are shown.

doi:10.1371/journal.pone.0156665.t008
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Table 9. Moduland decomposition of stage-IV network.

S. No Module centre

EIF2B5
FLT1
GSK3B
NTRK2
EPRS
SF3B3
HLA-C
ROR2
FGG
GABRG2

© 00 N O OB~ WwN =

-
o

Eff. size of module Driver gene members Hub gene members
14 EIF2B5 EIF2B5, CHKB, GGT1, GSK3B
29 FLT1, TNC, ADCY8 GNAI2, PXN, PLCG
34 GSK3B, MAGI1, LCT GSK3B, AKT1, HSPA5, SFN
7 NTRK2, SLAMF7
8 EPRS
12 SF3B3, GGT1, SYT14 GGT1
5
4
3 F13B
4 GABRG2

Each module is represented by its centre and effective size. Hub genes identified by centrality analysis and driver genes are indicated by their module
membership. Modules with the maximum number of hub genes could function as driver subnetworks in the pathogenesis of disease progression.

doi:10.1371/journal.pone.0156665.t009

Glutamate receptor, ionotropic, N-methyl D-aspartate 2B (GRIN2B). GRIN2B is a glu-
tamate-gated ion channel with very high calcium permeability. Park et al., has shown that the
GRINZ2B promoter region is hypermethylated during breast cancer progression[42]. Similar
epigenetic changes at the GRIN2B locus could be involved in driving the progression of colon
cancer.

Ras Homolog Family Member G (RHOG). RHOG is a member of Rho family of
GTPases. RHOG is lesser characterized among Rho family members, and its role in cancer pro-
gression is unknown. It has been shown to regulate morphological changes in cells. Also,
RHOG has been demonstrated to promote cell survival through activation of PI3Kinase and
Akt[43]. RHOG has been shown to be upregulated in glioblastoma compared to a non-neoplas-
tic brain. In addition, it has been shown to mediate glioblastoma cell invasion following cMet
and EGFR stimulation [44].

Structural maintenance of chromosomes 1A (SMCIA). SMC protein family contains 6
members from SMC1 to SMC6 with varying functions. SMCIA is mutated in various malig-
nant carcinomas. Down regulation of SMCIA resulted in growth inhibition in lung adenocarci-
noma cells [45]. Furthermore, knockdown of SMCIA significantly suppressed the proliferation
of the glioblastoma cells [46]. Recently, Wang et al., has published that SMCIA is a predictive
factor for poor prognosis of colon cancer[47].

Glutamate Receptor Ionotropic, NMDA 1 (GRINI). GRINI is the under studied mem-
ber of the glutamate receptor family with regards to cancer. There is only one study showing
the interaction of GRIN1 and GRIN2A and their role in anchorage independent growth of mel-
anoma cells[48].

Calcium/Calmodulin-Dependent Protein Kinase IT Alpha (CAMK2A4). CAMK2A isa
serine/threonine protein kinase. Yuan et al., has demonstrated that CaMKII played a very
important role in osteosarcoma proliferation, and this could be a therapeutic target for osteo-
sarcoma[49].

Stage Il hub genes

Insulin-like Growth Factor 1 Receptor (IGFIR). This tyrosine kinase receptor plays a
critical role in cellular transformation events following binding of insulin-like growth factor. It
is overexpressed in various malignant tissues, and it enhances cancer cell survival by inhibiting
apoptotic cell death. In addition, there was a significant correlation between the expression of
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Fig 5. Network of cluster centres of stage-IV network. Clustering was done using Moduland.
doi:10.1371/journal.pone.0156665.9005

IGFIR with colorectal tumor size and depth of tumor invasion [50]. Finally, Kucab et al., has
clearly highlighted the role of IGFIR in breast cancer metastasis[51].

Carbamoyl phosphate synthetase 1 (CPS1). CPSI1 is a mitochondrial enzyme involved in
the urea cycle. Recent studies have mentioned that the expression of CPS1 is a negative prog-
nostic factor in rectal cancers that receive concurrent chemoradiotherapy[52]. In addition, Li
et al., has demonstrated the utilization of the anti-CSP1 for the detection of circulating tumor
cells in hepatocellular carcinoma (HCC)[53]. Finally, studies have also shown that CPS!
expression in human HCC cells is silenced by DNA methylation [54].CSP1 could be a potential
biomarker for HCC.Milinkovic et al., has identified CPS1 as genetically altered in malignant
glioma patient samples [55].

Spectrin, alpha, erythrocytic 1 (SPTA1). SPTALI is a scaffold protein that functions in
determining cell shape and organization of organelles. These families of proteins are primarily
composed of spectrin repeats involved in dimer formation. Recent studies have shown that
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Table 10. GO enrichment analysis of stage-1V network.

GO-
ID

5851

22008

30817

30554

43409

3840

q-value

7.11E-09
1.23E-05
3.76E-05

1.04E-03

1.10E-03

1.27E-02

%
size > 20

Y

N

Description Hub genes Other genes in the network
eukaryotic translation EIF2B5 EIF2B2, EIF2B1,EIF2B, EIF2B4
initiation factor 2B complex
Neurogenesis EIF2B5, WNT5A,NTF3,PTPRZ1,NF1,DLL1,FZD2,EIF2B1,BDNF,DYNLL2,TNR,
AKTA VEGFA,ROR2,EIF2B2,EIF2B3,EIF2B4,DISC1
regulation of cAMP GNIA2 ADCY1,ADCY2,ADCY8,DRD5,ADCY5,NF1,NTRK2
biosynthetic process
adenyl nucleotide binding GSK3B, ADCY1,FLT1,ADCY2,SGK3,MAGI1,TAOK1,ADCY8,ADCY5,CHKB,
HSPA5 EPRS,QARS,CLPX,MARK1,IARS,AKT1,MUSK,CBWD1,RARS,NTRK2,
ROR2,EIF2B2,DUS2L
negative regulation of AKT1 SPRY2, MAGI1,NF1
MAPKKK cascade
gamma-glutamyl transferase GGT1 GGT2
activity

Significant GO terms enriched in stage IV network are given. If the ratio of the genes in the network for a given GO term to the total number of genes in
that GO term is greater than 20%, ‘Y’ is indicated, otherwise ‘N’ is indicated. Hub genes identified in our analysis are indicated for each GO hit.

doi:10.1371/journal.pone.0156665.t010

B2-spectrin is implicated in colorectal and pancreatic cancer, where it regulates the transcrip-
tional activators SMAD to affect transforming growth factor beta (TGF) signaling pathway.
Dysregulation of TGFp signaling through loss of f2-spectrin inappropriately activates Wnt sig-
naling and promotes tumorigenesis [56]-[57]. In addition, spectrin family of proteins has been
shown to play a role in hepatocellular cancer through regulation of cyclin D1 [58]. Interest-
ingly, they have been shown to contribute to drug resistance in ovarian cancer [59]. Further-
more, the increase in the expression and heterogeneity of the cytoplasmic spectrin is associated
with the invasiveness of malignant melanoma and squamous-cell carcinoma [60].

Desmoplakin (DSP). DSP is an essential component of intercellular junctions called des-
mosomes. Loss of DSP expression has been shown to play an important role in breast cancer
progression and metastasis [61]. Papagerakis et al., has demonstrated the utility of DSP as a
marker for evaluating the risk of oropharyngeal cancer metastasis[62].

HEAT Repeat Containing 1 (HEATRI). HEATRI is known to be to be involved in the
biogenesis of ribosomes. Liu et al., has recently demonstrated that HEATRI plays a significant
role in pancreatic cancer cell drug resistance, and that HEATR1 regulates Akt pathway[63]. In
addition, Wu et al., has demonstrated that the overexpression of HEATRI in glioblastoma cells
resulted in the induction of a cytotoxic T lymphocyte response to its epitopes, which allowed
for the selective targeting of the glioblastoma cells and glioma stem like cells[64].

Mitogen-activated protein kinase 9 (MAPK9). MAPKO also called as c-Jun N-terminal
kinases (JNK2), belongs to the family of MAPK kinases, and has shown to regulate multiple
cellular processes including proliferation, differentiation, and transcription regulation. Ahmed
et al., has demonstrated that JNK2 mediated suppression of JNK1 apoptotic pathway is
required for the survival of cancer cells[65]. In addition, blocking the expression of JNK2 has
significantly inhibited the migration ability of breast cancer cells [66].

A-Raf serine/threonine kinase (ARAF). ARAF proto-oncogene is a member of RAF sub-
family, and has been implicated in cell growth and development. Mutations in this gene have
been shown to transform immortalized human airway epithelial cells [67]. In addition, Mooz
et al,, has shown that ARAF has an essential part in stimulating MAPK activity and cell migra-
tion[68].
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Protein Kinase C, Epsilon (PRKCE). PRKCE is another serine- and threonine-specific pro-
tein kinase activated by calcium and diacylglycerol. PRKCE is correlated with cell transformation
and tumorigenesis. It has been shown to suppress apoptotic death of cells. The oncogenic poten-
tial of PRKEC in thyroid cancer was demonstrated by Zhang et al [69]. PRKCE has been shown
to play an important role in promoting an aggressive metastatic breast cancer phenotype [70].

Plectin (PLEC). PLEC is the cytolinker protein shown to regulate the tissue integrity, actin
organization and cell migration. Yoneyama et al., has demonstrated the role of plectin in facili-
tating cancer cell invasion and metastasis[71]. In addition, plectin has been shown to regulate
invasiveness by modulating actin assembly in SW480 colon cancer cells [72].

Moesin (MSN). MSN is a membrane-organizing extensions spike protein. Moesin is iden-
tified to be present in the filopodia and other membranous projections that play a critical role
in cell movement and cell signaling. A recent study has demonstrated that microRNA 200b
inhibited breast cancer metastasis through regulation of moesin expression. In addition,
increased expression of moesin has been shown to have an association with poor relapse-free
survival [73]. Interestingly, phosphorylation of moesin by G protein-coupled receptor kinase
has been shown to regulate prostate cancer metastasis [74].

Stage IV hub genes

Glycogen synthase kinase-3 (GSK3B). GSK-3 is a serine-threonine kinase and shown to
play a role in a wide range of cellular processes. Inhibition of GSK3B activity by Akt has been
shown to influence the cancer progression. Furthermore, studies have shown that inhibition of
GSK3 induced invasiveness of the breast cancer. Wnt signaling plays a critical role in colon
cancer progression, and GSK3B is known to regulate this pathway[75]. Understanding the
mutations in GSK3B will lead to improved therapies for colon cancer.

Gamma-Glutamyl transferase 1 (GGT1). GGT1 is a membrane-bound enzyme cataboliz-
ing reduced glutathione to cysteine and glycine. GGT is a marker of oxidative stress in cells.
Increased expression of GGT has shown to elevate the risk of progression of cervical cancer
[76]. In addition, elevated levels of GGT are shown to be associated with increased invasion of
melanoma cells in both in vitro and in vivo studies [77].

Eukaryotic Translation Initiation Factor 2B, Subunit 5 Epsilon (EIF2B5). EIF2B5isa
regulator of protein synthesis. It has been associated with ovarian cancer, and angiogenesis
[78]. In addition, genome-wide array study has identified EIF2B5 gene copy alteration in
esophageal squamous-cell carcinoma patients [79]-[80].

Paxillin (PXN). PXN is a cytoskeleton protein shown to be involved in cell adhesion. PXN
mutations are associated with lung adenocarcinoma and are an independent predictor of sur-
vival and relapse of non-small cell lung cancer[81]. In addition, there are studies showing the
role of PXN in the metastasis of osteosarcoma and prostate cancer [82,83]. A very recent study
reported that PXN regulates tumor invasion, and is responsible for poor patient outcome in
colorectal cancer patients [84].

Stratifin (SFN). SFN is an adapter protein shown to regulate several signaling pathways.
The promoter regions of SFN in most of the invasive lung adenocarcinoma samples are methyl-
ated to silence SFN expression[85]. In 2015, Shiba et al demonstrated the role of SFN on lung
tumor development and progression[86].

Guanine Nucleotide Binding Protein, Alpha Inhibiting Activity Polypeptide 2
(GNAI2). GNAI2 has shown to be involved as modulators or transducers in several trans-
membrane signaling pathways. GNAI2 has been implicated in ovarian cancer, where it acts as
a driver of cancer progression[87]. Jiang et al., has reported the proto-oncogenic role of GNAI2
in tongue squamous-cell carcinoma initiation and progression[88].
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Choline Kinase Beta (CHKB). CHKB has been shown to be involved in the biosynthesis
of phospholipids. There is very little information on the role of CHKB on cancer. However,
TP53 and CHKB may regulate CDK4/6 collaboratively to suppress the progression of ovarian
cancer[89]. Gallego-Ortega et al., has attempted to determine the involvement of CHKA and
CHKB in cancer[90].

Heat Shock 70kDa Protein 5 (HSPA5). HSPAS is involved in the folding and assembly of
proteins. It has been shown to regulate the anti-apoptotic unfolded protein response signaling
network, which provides a ready mechanism for promoting cancer progression and metastasis
[91]. Recent study by Chang et al., has demonstrated the role of HSPA5 on breast cancer cell
migration and invasion[92]. Interestingly, Booth et al., 2014, has reported that OSU-03012, a
cyclo-oxygenase inhibitor, targets HSPAS5 and induces cancer cell death[93].

AKTI1. AKT1 is a well-known driver of cancer [94]-[95], hence its appearance in our analysis
might seem surprising. Despite the elimination of AKT1 at the screening stage, repopulating the
network with interacting partners seemed to have led to the emergence of AKT1 in the network. In
fact, it was the only entry in the Cancer Gene Census that re-appeared as a hub. This could be inter-
preted as additional evidence of the essential role of AKT1 in the metastasis of cancer.

In summary, for each stage of colon cancer, we have identified consensus driver genes, con-
sensus hub genes, and the genes at their intersection referred as ‘hub driver’ genes. Each of
these genes is a potential novel diagnostic biomarker of the stage of colorectal cancer. We have
discussed the probable association of each biomarker with the progression of cancer, and in
each case, we have found ample evidence that the gene in question constituted a missing link in
the current understanding of the progression of colorectal cancer. It would appear that some of
these biomarkers might even be involved in the progression of multiple unrelated cancers.
Each identified biomarker represents a potential target for chemotherapeutic intervention in
colorectal cancer. The modularity analysis reaffirmed these key genes, identifying the larger
subnetworks of which they are a part. More than individual genes, it could be the subnetworks
that are critical to the cancer progression and hence these subnetworks could serve as diagnos-
tic biomarkers for the stage of colorectal cancer as well as provide targets for therapy. The
Gene Ontology analysis has shed light on certain novel mechanisms that might underlie the
progression of colorectal cancer to its next malignant stage. Our study design has been effective
in revealing novel biomarkers and mechanisms that are driving each stage of cancer.

Conclusion

Our study has yielded many novel stage-specific biomarkers which would boost current strate-
gies towards critical early-stage diagnosis of the stage of colorectal cancer as well as target selec-
tion for rational and personalized cancer treatment. We have identified DYNCIHI,GRIN2A,
and GRM1 as novel hub driver genes for the stage-II progression of colon adenocarcinoma.
IGFIR, CPS1, SPTA1 and DSP were identified as novel hub driver genes for the stage-III pro-
gression, and GSK3B, GGT1 and EIF2B5 were identified as novel hub driver genes for stage-IV
progression. Prognosis is clearly inversely correlated with the stage of cancer and hence the bio-
markers discussed above could predict the prognosis based on the stage-specificity. Our results
provide multiple concrete directions for the deeper investigation of the biology of colorectal
cancer malignancy in the future. Our methodology is extendable to the analysis of multiple
types of cancer progression to yield novel useful biomarkers.
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