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Abstract

Background: Drug-induced alterations to the dopamine system in stimulant use disorder (SUD) are hypothesized to impair 
reinforcement learning (RL). Computational modeling enables the investigation of the latent processes of RL in SUD patients, 
which could elucidate the nature of their impairments.
Methods: We investigated RL in 44 SUD patients and 41 healthy control participants using a probabilistic RL task that 
assesses learning from reward and punishment separately. In an independent sample, we determined the modulatory role 
of dopamine in RL following a single dose of the dopamine D2/3 receptor antagonist amisulpride (400 mg) and the agonist 
pramipexole (0.5 mg) in a randomised, double-blind, placebo-controlled, crossover design. We analyzed task performance 
using computational modelling and hypothesized that RL impairments in SUD patients would be differentially modulated by 
a dopamine D2/3 receptor antagonist and agonist.
Results: Computational analyses in both samples revealed significantly reduced learning rates from punishment in SUD 
patients compared with healthy controls, whilst their reward learning rates were not measurably impaired. In addition, the 
dopaminergic receptor agents modulated RL parameters differentially in both groups. Both amisulpride and pramipexole 
impaired RL parameters in healthy participants, but ameliorated learning from punishment in SUD patients.
Conclusion: Our findings suggest that RL impairments seen in SUD patients are associated with altered dopamine function.
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Introduction
Stimulant drug addiction, or stimulant use disorder (SUD), is a 
major public health problem that causes significant harm to in-
dividuals, their families, and society (Degenhardt et  al., 2014). 
The behavior of chronic stimulant drug users often seems 
maladaptive and ill-judged, as they frequently behave in ways 
that are detrimental to their own interests, regardless of the 
negative consequences. One possibility is that drug-induced 

neuroadaptations may change how individuals learn from the 
consequences of their actions, an impairment that might ex-
tend beyond drug-taking (Maia and Frank, 2011).

Reinforcement learning (RL) is an influential account 
of adaptive instrumental behavior that provides a norma-
tive framework of how humans use past consequences to 
guide future behavior (Sutton and Barto, 1998). Optimal RL 
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includes multiple processes such as valuation, reward pre-
diction, and action selection (Niv, 2009), and many of these 
processes are suggested to be modulated by dopamine (Bayer 
and Glimcher, 2005; Frank et al., 2007; Steinberg et al., 2013), 
a neurotransmitter affected by stimulant drugs such as co-
caine and amphetamine. Chronic stimulant drug use has been 
associated with a downregulation in dopamine neurotrans-
mission in fronto-striatal circuits (Volkow et  al., 2004) that 
underpin learning and value-based decision-making (Ernst 
and Paulus, 2005; Glimcher, 2011; O’Doherty et  al., 2017). 
Animal studies shown that cocaine exposure disrupts key 
aspects of RL, including reward prediction (Burton et al., 2018; 
Takahashi et al., 2019) and reinforcement value (Schoenbaum 
and Setlow, 2005; Groman et  al., 2020). Although similar ob-
servations have also been reported in human stimulant drug 
users (Harlé et al., 2015; Parvaz et al., 2015; Ersche et al., 2016), 
the exact profile of impairments remains elusive. While it 
is widely assumed that impairments in RL in SUD patients 
are dopaminergic in nature, it is unclear how these disrup-
tions are modulated by dopaminergic agents. There is some 
evidence for modulatory effects of dopamine manipulations 
on cognitive dysfunction in SUD (Ersche et  al., 2010, 2011a; 
Goldstein et al., 2010). However, compared with control parti-
cipants, SUD patients show different behavioral and neural re-
sponses following dopaminergic drug challenges, suggesting 
that such medication alters RL differentially in SUD patients 
(Volkow et al., 2005; Ersche et al., 2010, 2011a; Goldstein et al., 
2010). The precise actions of dopaminergic drugs are difficult 
to determine in human studies, but drug challenges may pro-
vide insight into the neurochemical underpinnings associated 
with RL in SUD patients.

A conventional approach to quantify RL performance is to 
compute summary scores that reflect performance accuracy and 
analyze them with a frequentist approach (e.g., Strickland et al., 
2016). As RL impairments can also result from latent processes 
that are not directly measured by summary scores, such as mo-
tivational deficits, slower contingency learning, or inconsisten-
cies in choice behavior, complementary approaches are needed. 
An increasingly popular method is to use computational models 
to describe RL, allowing the quantification of latent RL param-
eters (Sutton and Barto, 1998). Individual differences in RL are 
then reflected in model parameters, which can be compared 
between groups (Daw, 2011). Although simple RL models might 
not perfectly capture all the RL-related cognitive processes, the 
model parameters can provide sensitive behavioral measures 
(Heinz et al., 2016; Robbins and Cardinal, 2019).

Here, we combine both conventional and computational ap-
proaches to address the following objectives: (1) to characterize 
the RL profile in a large community sample of SUD patients 
using a behavioral task that assesses learning from reward and 

punishment separately; (2) to explore the modulatory effects 
of a dopamine D2/3 receptor agonist and an antagonist on RL in 
an independent sample of SUD patients. We used 2 pharma-
cological agents that selectively target the D2/3 system: the 
dopamine receptor antagonist amisulpride and the dopamine 
receptor agonist pramipexole (Wright et  al., 1997; Rosenzweig 
et al., 2002). For the computational analysis, we employed a well-
established RL model (Watkins and Dayan, 1992) and adopted 
the learning rate, the impact of reinforcement on choices, as our 
key outcome measure. We also modeled other processes that 
support learning, such as the extent to which behavior is motiv-
ated by learned values (reinforcement sensitivity) and tendency 
to perseverate. We hypothesized that these latent learning 
parameters are impaired in SUD patients and would be modu-
lated differentially by dopamine agonist and antagonist agents. 
Since SUD patients have abnormal dopamine transmission, 
we predicted that these dopaminergic agents would modulate 
RL performance differentially in SUD patients compared with 
healthy controls.

Methods

We studied two independent samples of stimulant-addicted 
individuals and matched healthy volunteers. For inclusion, 
participants had to be at least 18 years old and able to read 
and write in English. Stimulant drug users needed to meet the 
DSM-IV-TR criteria for stimulant drug dependence (American 
Psychiatric Association, 2000), whereas control participants 
had to be healthy without a personal history of substance use 
disorders. Participants were recruited from the local commu-
nity in Cambridge (UK) by advertisement and word of mouth. 
Both studies were approved by a Cambridge Research Ethics 
Committee. All participants provided written informed  con-
sent prior to enrollment and were screened for psychiatric 
disorders using the Mini-International Neuropsychiatric 
Inventory (Sheehan et  al., 1998); psychopathology in drug 
users was further evaluated using the Structured Clinical 
Interview for DSM-IV (First et al., 2002). All SUD patients were 
actively using stimulant drugs, which was confirmed by posi-
tive urine screens prior to testing, suggesting that they had 
been using the drug within the past 72 hours. All urine sam-
ples provided by control participants tested negative for all 
drugs; participants were also breathalyzed to verify sobriety. 
Exclusion criteria for all participants included a lifetime his-
tory of a psychotic disorder, neurological illness or traumatic 
head injury, and acute alcohol intoxication. All participants 
completed the National Adult Reading Test (Nelson, 1982) and 
the Barratt Impulsiveness Scale (Patton et  al., 1995) to esti-
mate the verbal intelligence quotient (IQ) and impulsive per-
sonality traits, respectively. Participants also reported their 
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One of the defining aspects of drug addiction is the continued use of drugs despite their harmful effects that perpetuate over 
time. Chronic drug use alters the dopamine system, and this is widely believed to account for such maladaptive behaviour by 
impairing the ability to learn from consequences. Here, we investigated reinforcement learning in people addicted to stimulant 
drugs with a task that separately measures learning from reward and punishing feedback. We then analyzed these data using 
computational modelling, a method that is sensitive to subtle changes in learning. Our analysis showed that stimulant-addicted 
patients have a selective impairment in learning from negative feedback. In a subsequent study, we showed that the pharmaco-
logical modulation of dopamine D2/3 receptors improved stimulant users’ difficulties learning from negative feedback, thus sup-
porting the dopamine dysfunction hypothesis. Our findings provide novel insights into why stimulant-addicted patients often 
fail to learn from their negative experiences.



Copyedited by:  

Reinforcement Learning in Stimulant Use Disorder | 869

monthly disposable income and rated their willingness to 
pick up £0.50 off the floor on a visual analog scale (always—
never) as a proxy for the subjective value of monetary reward. 
SUD participants additionally completed the Obsessive-
Compulsive Drug Use Scale (Franken et al., 2002) as a measure 
of compulsive drug use.

Study 1

Sample—Forty-four men who met the DSM-IV-R criteria for 
cocaine dependence, referred to as cocaine use disorder (CUD), 
had been using cocaine for a mean of 13.7 years (SD = ±8.0) and 
the majority also met the criteria for dependence on another 
substance (55% opiates, 7% alcohol, 14% cannabis). Participants 
with co-morbid opiate dependence were either prescribed 
methadone (32%; mean daily dose  =  49  mg, SD  =  ±13.0) or 
buprenorphine (18%; mean daily dose = 7.5 mg, SD = ±3.5). Some 
CUD patients were taking prescribed medication, including 
antidepressants (14%), benzodiazepines (9%), painkillers (16%), 
antibiotics (5%), and anticoagulants (5%). The 41 healthy control 
participants did not use prescribed mediation and reported low 
levels of drug and alcohol use, as reflected in low total scores 
on the Alcohol Use Disorder Identification Test (Saunders et al., 
1993) (mean score = 3.4, SD = ±1.7) and Drug Abuse Screening 
Test (Skinner, 1982) (mean score = 0.08, SD = ±0.3). CUD patients 
reported a significantly lower monthly disposable income than 
controls (t83 = 2.6, P = .012; see Table 1).

RL Task—Our task evaluated learning from financial gains and 
losses (Bland et al., 2016) (Figure 1). Participants were presented 
with pairs of colored circles and asked to learn by trial and error 
to select the stimulus that maximized their overall earnings. 
The 2 conditions of reward and punishment were differentiated 
by feedback. Specifically, feedback was explicitly framed as wins 
(“you win 50 pence” and “you win 0 pence”) and losses (“you lose 

50 pence” and “you lose 0 pence”) in the reward and punishment 
conditions, respectively. Participants completed 120 learning 
trials, with each reinforcement condition represented by unique 
stimulus pairs and repeated 60 times, interspersed randomly 
throughout the task. Optimal choices for each stimulus pair 
were reinforced 70% of the time either by winning £0.50 (reward) 
or avoid losing £0.50 (punishment).

Study 2

Sample—Thirty-six volunteers were recruited from the community: 
18 fulfilled the DSM-IV-TR criteria for stimulant drug dependence 
(10 cocaine, 8 amphetamine), referred to as SUD henceforth. The 
remaining 18 recruits were healthy with no personal drug-taking 
history. SUD patients had been using stimulant drugs for an 
average of 12.3 years (SD = ±6.7), had no comorbid dependencies, 
and were not taking prescribed medication. The two groups did 
not differ in their disposable income (t33 = −0.66, P = .514). Data from 
this sample have been published elsewhere (Ersche et al., 2010, 
2011a, 2011b; Kanen et al., 2019).

RL Task—This task has a similar design to that of study 1 but 
has 3 different conditions distinguished by distinct stimulus 
pairs and outcomes: reward, punishment, and neutral (Murray 
et al., 2019). Specifically, outcomes for the reward, punishment, 
and neutral conditions were intentionally phrased as monetary 
gains (i.e., you win 50 pence), losses (i.e., you lose 50 pence), and 
no financial consequences (i.e., no change), respectively. Unlike 
study 1, reward omission (i.e., win 0 pence) and punishment 
avoidance (i.e., lose 0 pence) were not explicitly signaled during 
the feedback phase; participants did not receive any explicit 
feedback for these outcomes (Figure 1). There was one stimulus 
pair per condition, each repeated 40 times in randomized order. 
Optimal choices for each stimulus pair were also reinforced 70% 
of the time.

Table 1. Sample Demographics and Task Performance of the Two Studies.

Study 1 Study 2

Groups Control CUD Control SUD

Demographics Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Sample size (n) 41 44 18 18
Age (years) 40.1 (12.6) 40.9 (9.2) 32.7 (6.9) 34.3 (7.2)
Gender (% male) 100 100 83 83
Verbal IQ (NART score) 115 (6.2) 103 (7.1) 108 (6.0) 109 (8.1)
Disposable income (£/month) 657 (501) 387 (462) 470 (389) 621 (866)
Subjective value of 50 pence (% rating) 81.5 (23.0) 87.1 (19.6) 72.9 (31.0) 87.4 (18.8)
Trait impulsivity (BIS-11, total score) 56.1 (6.7) 79.5 (11.4) 62 (7.2) 82 (9.5)
Duration of stimulant drug use (years) — 13.7 (8.0) — 12.3 (6.7)
Compulsive drug use (OCDUS total score) — 34.1 (10.1) — 25.6 (7.9)
Task performance Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total % correct (reward)
 Placebo 73.0 (21.6) 57.9 (22.5) 87.1 (24.5) 81.1 (18.6)
 Amisulpride — — 87.9 (23.7) 75.8 (27.3)
 Pramipexole — — 75.7 (30.9) 61.8 (35.2)
Total % correct (punishment)
 Placebo 63.6 (12.0) 54.3 (10.6) 73.3 (19.3) 61.7 (13.5)
 Amisulpride — — 78.5 (17.5) 62.4 (19.8)
 Pramipexole — — 72.9 (15.2) 64.7 (18.8)

Abbreviations: BIS-11, Barratt Impulsiveness Scale; CUD, cocaine use disorder; NART, National Adult Reading Test; OCDUS, Obsessive-Compulsive Drug Use Scale; SUD, 

stimulant use disorder.
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Drug Administration—Participants were administered a single 
dose of 400 mg amisulpride or 0.5 mg pramipexole in a double-
blind, placebo-controlled, crossover design. Prior to each drug 
administration, participants also took a dose of domperidone 
(30  mg), a peripheral dopamine D2 receptor antagonist, as a 
pre-treatment to the potential side effect of nausea/vomiting. 
We initially administered pramipexole at a dose of 1.5  mg 
to the first 6 participants (3 SUD and 3 control participants), 
which was tolerated by SUD but not by control participants. 
These control participants were subsequently administered 
0.5  mg pramipexole on a separate session, which was well-
tolerated. Thereafter, all remaining participants received 0.5 mg 
pramipexole. In total, we included data from 18 control and 
18 SUD participants, but we subsequently excluded the 3 SUD 
participants who received a higher dose of pramipexole from 

the analysis. Participants completed the RL task approximately 
1.5 hours after dosing and blood samples were drawn at 1 and 
2.5 hours post-dosing.

Statistical Analyses

Conventional Analyses—Demographic and performance data 
were analyzed using SPSS v25 (IBM). We computed accuracy 
scores for the RL tasks, defined as the proportion of optimal 
choices made in 10-trial blocks. We used ANOVA models with a 
2-tailed alpha value of .05, with trial block and condition (reward 
vs punishment) as within-subject factors and group (control 
vs SUD) as a between-subjects factor. We decided a priori to 
analyze the effects of amisulpride and pramipexole separately.

Computational Analyses—To examine latent learning 
parameters, we modeled trial-by-trial choice values using a 
delta-rule learning algorithm (Rescorla and Wagner, 1972), 
with the final choice selection process following a softmax rule 
(Sutton and Barto, 1998). Details of modeling procedures are 
reported in the supplementary Material. In its simplest form, 
a model consists of two parameters: learning rate (impact of 
feedback on choice values) and reinforcement sensitivity (how 
much choice values motivate actual behavior). Since different 
neural systems are thought to subserve learning from different 
valences (Pessiglione and Delgado, 2015), we decomposed the 
learning rate by the feedback received on that trial. For example, 
if a participant receives a reward (“you win 50 pence”) or a 
punishment (“you lose 50 pence”), we modeled that trial with 
the learning rate from reward and punishment, respectively, 
whereas trials with a reward omission (“you win 0  pence”) or 
punishment avoidance (“you lose 0 pence”) feedback were 
modeled with the learning rate from non-reward and non-
punishment, respectively. However, it is not possible to model 
the learning rate from non-reward or non-punishment in study 
2, because reward and punishment omission feedback were not 
explicitly framed within a win/loss domain. Thus, we modeled 
learning from these outcomes with a general extinction rate. It 
is noteworthy that perseveration is frequently reported in SUD 
patients (Ersche et  al., 2008) and stimulant-exposed animals 
(Schoenbaum et al., 2004). We would not expect an RL task to 
be optimized for investigating perseverative responses, unlike 
a probabilistic reversal learning task (Cools et al., 2002; Jentsch 
et al., 2002; Schoenbaum et al., 2004; Ersche et al., 2008, 2011a; 
Kanen et al., 2019). Nevertheless, we included parameters that 
model perseverative tendencies towards stimuli and locations 
(i.e., left or right) because accounting for relevant biases might 
improve model-fit (Wilson and Collins, 2019), as demonstrated in 
our previous work (Lim et al., 2019). Thus, there were 8 possible 
parameters in our models: learning rate from reward, non-
reward, punishment and non-punishment, general extinction 
rate, reinforcement sensitivity, as well as perseveration 
tendencies to stimulus and location, but not all parameters were 
used in any given model (full details reported in supplementary 
Table 2). We acknowledge that differences in task designs can 
change the best-fitting models (Wilson and Collins, 2019), so 
we fitted several model variants for each study and identified 
the best-fit model with bridge sampling (Gronau et  al., 2017) 
(supplementary Table 2). To validate the winning model, we 
simulated data from the winning model to ensure key findings 
from the actual data were reproduced (supplementary Material).

We estimated the posterior distribution of the best-fit model 
parameters within a hierarchical Bayesian framework in RStan 
(Carpenter et  al., 2017). In study 1, we modeled a group-level 

Figure 1. Schematics for the probabilistic reinforcement learning task of study 1 

and study 2. In each trial, participants were first presented with a pair of stimuli 

and required to select 1 stimulus. After selection, the computer presented an 

outcome phrased in terms of monetary gains (positive) or losses (negative); this 

allowed the separate assessment of learning from reward and punishment. In 

both studies, each condition was differentiated by unique stimulus pairs and 

feedback and interspersed across 120 trials and presented in a randomized 

order. Optimal choices are reinforced 70% of the time, so participants needed 

to accrue experience over time to determine the choices that would maximize 

their financial gains and minimize their losses.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
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posterior distribution at the top level of the hierarchy for each 
free parameter. With the inclusion of drug factors in study 2, we 
constructed group/drug posteriors to model the drug effects on 
free parameters separately for each group/drug combination. We 
also constructed a subject-level hierarchy for each parameter 
to account for any individual variations. Our primary outcome 
measure was the mean differences between the group/drug pos-
teriors, d, each with its associated 95% highest density intervals 
(HDI). An HDI interval that excludes zero provides strong evi-
dence for a group difference (non-zero difference, Pnz > .95).

Results

Sample characteristics are shown in Table 1. In both studies, the 
groups were well-matched with respect to age and gender. Verbal 
intelligence did not differ between the groups in study 2 (t34 = −.235, 
P = .816), but SUD patients in sample 1 had lower IQ scores than 
controls (t75 = 8.2, P < .001). However, IQ scores in SUD patients were 
not significantly correlated with learning performance (supple-
mentary Table 3). In both samples, the subjective value of £0.50 
did not differ between the groups (study 1: t83 = −1.2, P = .232; study 
2: t34 = −1.7, P = .098), suggesting that the reinforcement value of 
monetary rewards was similar in both groups. There were no re-
lationships between learning performance and stimulant-related 
measures, including the duration or patterns of stimulant use 
(supplementary Table 3). Consistent with impulsivity being a hall-
mark of addiction, both patient groups scored significantly higher 
on the Barratt Impulsiveness Scale-11 compared with controls 
(study 1: t83 = −11.4, P < .001; study 2: t34 = −7.1, P < .001).

Study 1

Conventional Analysis—Analyses of accuracy scores showed 
that there was a main effect of block (F4.1,341 = 14.5, P < .001) and 
a block-by-group interaction (F4.1,341 = 3.048, P = .016), suggesting 
that although performance improved over time, control 
participants improved faster than SUD patients. Participants 
learned faster from reward trials than punishment trials, 
reflected in a block-by-condition interaction (F5,415 = 4.123, 
P = .001) (Figure 2A), but there was no group-by-block-by-

condition interaction (F5,415 = 0.234, P = .948). SUD patients made 
more errors than controls (F1,83 = 18.1, P < .001), but no group-by-
condition interaction was observed (F1,83 = 1.33, P = .252).

Computational Analysis—As shown in Figure 3A, the best-fit 
learning model contained the following parameters: learning 
rates from reward, non-reward, punishment and non-
punishment, reinforcement sensitivity, and perseveration 
tendencies toward location and stimulus. SUD patients showed a 
significantly reduced learning rate from punishment (d = −0.055, 
95% HDI = −0.103 to −0.004, Pnz = .973) and reinforcement 
sensitivity (d = −1.93, 95% HDI = −3.85 to −0.035, Pnz = .953). 
Although the reward learning rate was reduced in SUD patients, 
the difference was non-significant (d = −0.078, 95% HDI = −0.154 
to 0.007, Pnz = .944) did not differ between groups. The groups did 
not differ on any other parameters (0 ∈ 95% HDI).

Study 2

Conventional Analysis—On placebo, task performance 
improved in all participants over time (F3,102 = 6.66, P < .001), 
with a significant effect of condition (F1,34 = 9.83, P = .004) again 
suggesting that participants learned better from rewarding than 
punishing feedback (Figure 2B). Control participants learned 
faster than SUD patients in the first two blocks, as reflected 
by a significant group-by-block interaction (F3,102 = 3.63, P = .016). 
There was neither a group effect (F1,34 = 2.52, P = .122) nor a group-
by-condition interaction  (F1,34 = 0.610, P = .440). No other effects 
reached statistical significance (P  > .4).

Amisulpride had no significant effect on accuracy (F1,34 = .43, 
P = .517), nor were there any group-by-drug interaction effects 
(F1,34 = 0.619, P = .437). There was a significant effect of block 
(F3,102 = 18.5, P < .001) and condition (F1,34 = 15.9, P < .001) on ac-
curacy scores, such that all participants showed improved task 
performance over time and better learning from reward than 
from punishment. Control participants showed improved ac-
curacy compared with SUD patients (F1,34 = 5.41, P = .026), but no 
other effects were significant (all P > .1).

Although pramipexole also had a significant effect on accuracy 
(F1,31 = 4.31, P = .046), there was a significant drug-by-condition 

Figure 2. Accuracy scores, defined as the proportion of optimal choices made in 10-trial blocks, for the behavioral task. These scores are plotted separately based on 

condition (reward and punishment) and group (controls and stimulant use disorder [SUD]). (A) Reinforcement learning  performance accuracy in study 1. (B) Reinforce-

ment learning performance accuracy for the placebo condition in study 2. Error bars denote SEM, and the horizontal dotted line indicates accuracy at chance level 

(50%).

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab041#supplementary-data
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interaction (F1,31 = 4.41, P = .044). Post-hoc pairwise comparisons 
revealed a significant reduction of reward relative to punish-
ment trial performance on pramipexole (P = .022) but not placebo 
(P = .627). Again, all participants improved performance over 
time (F3,93 = 11.1, P < .001), but the effects of condition (F1,31 = 2.1, 
P = .157), group (F1,31 = 3.41, P = .074), and group-by-drug inter-
actions (F1,34 = 0.526, P = .474) were non-significant. Other effects 
were also not significant (all P > .1).

Computational Analysis—The best-fit computational model for 
study 2 included the following parameters: learning rates from 
reward and punishment, extinction rate, and reinforcement 
sensitivity (Figure 3B). On placebo, SUD patients showed 
markedly reduced rates of learning from punishment (d = −0.452, 
95% HDI = −0.695 to −0.199, Pnz > .999) and marginally reduced 
learning rate from reward (d = −0.159, 95% HDI = −0.336 to 0.016, 
Pnz =929). The groups did not differ in terms of reinforcement 
sensitivity (d = −1.11, 95% HDI = −2.95 to 0.940, Pnz  = 0.797) or 
extinction rate (d = −0.039, 95% HDI = −0.142 to 0.070, Pnz  = 0.533).

Learning parameters were differentially affected by 
the dopaminergic drugs in both groups. In healthy con-
trols, amisulpride reduced the rates of learning from reward 
(d = −0.142, 95% HDI = −0.263 to −0.039, Pnz  = 992) and punish-
ment (d = −0.387, 95% HDI = −0.537 to −0.236, Pnz > .999), and in-
creased reinforcement sensitivity (d = 1.87, 95% HDI = 0.676 to 
3.19, Pnz = .995) (Figure 4A). However, amisulpride improved the 
rate of learning from punishment in SUD patients (d = 0.186, 
95% HDI = 0.020 to 0.373, Pnz = .975); no other parameters were 
affected (0 ∈ 95% HDI) (Figure 4C). Similarly, pramipexole re-
duced punishment learning rates in controls (d = −0.270, 95% 
HDI = −0.440 to −0.109, Pnz = .999) (Figure 4B) but improved the 
punishment learning rate (d = 0.463, 95% HDI = 0.199 to 0.729, 
Pnz = .995) in SUD patients. Pramipexole also reduced the re-
inforcement sensitivity parameter in SUD patients (d = −1.92, 
95% HDI = −3.53 to −0.360, Pnz = .972); other parameters were 
not affected (0 ∈ 95% HDI) (Figure 4D).

Discussion

Behavior in SUD patients is thought to be driven by immediate 
positive outcomes but at the expense of long-term negative con-
sequences (Bechara et al., 2002; Verdejo-Garcia et al., 2018). We 

investigated RL performance in SUD patients with a task that 
separately assessed learning from immediate monetary reward 
and punishment. As hypothesized, computational analyses re-
vealed significant RL impairments in SUD patients, which were 
driven primarily by a reduced learning rate from punishment. 
We also found that dopaminergic drugs differentially affected 
RL parameters in SUD patients and matched controls. While 
both dopaminergic drugs impaired the learning rates in con-
trols, SUD patients benefitted from them, as both drugs im-
proved their ability to learn from punishment. Here, we provide 
converging computational and pharmacological evidence of 
significant learning impairments in SUD patients, which are, at 
least in part, related to dopamine dysfunction.

RL Profile in SUD

RL in SUD is characterized by significant impairments in 
learning from immediate punishment, which may suggest 
that negative outcomes have little impact on subsequent be-
havior. This proposal concurs with prior research in animals, 
demonstrating that psychostimulant self-administration im-
pairs the update of learned values from negative outcomes 
(Groman et al., 2018, 2020). Moreover, some studies in SUD pa-
tients also reported aberrant responses towards immediate 
negative outcomes, whether those outcomes are electric shocks 
or symbolic error feedback (Thompson et al., 2012; Hester et al., 
2013; Parvaz et al., 2015; Ersche et al., 2016). Negative outcomes 
such as monetary losses have been suggested to be important 
in aversive instrumental learning (Jean-Richard-Dit-Bressel 
et al., 2018). Consequently, the reduced impact of negative feed-
back during learning may hamper SUD patients’ ability to avoid 
negative outcomes. From a theoretical perspective, reduced 
learning from negative consequences may also point towards a 
weakness in the goal-directed system, which is sensitive to the 
consequences of one’s actions (Balleine and Dickinson, 1998). 
In other words, blunted sensitivity towards negative outcomes 
may weaken the ability to adjust ongoing behavior according to 
the situational demands and contribute to the development of 
compulsive behaviors in SUD patients (Smith and Laiks, 2018). 
The hypothesis of a weakened goal-directed system in SUD is 
supported by converging lines of evidence in both humans (Lim 
et al., 2019; Ersche et al., 2020) and animals (Zapata et al., 2010; 
Corbit et al., 2014).

Figure 3. Group mean differences for the reinforcement learning parameters. (A) In study 1, the learning rate from punishment and reinforcement sensitivity were sig-

nificantly reduced in the stimulant use disorder (SUD) participants, while the other parameters were no different across groups. (B) In the placebo condition of study 2, 

we found a markedly reduced learning rate from punishment in SUD patients. Error bars denote 95% highest density intervals (HDI); parameters colored in red signify 

a credible group difference (95% HDI excludes zero).
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Although several studies report reduced responses to pun-
ishment in SUD patients (Thompson et al., 2012; Hester et al., 
2013; Ersche et al., 2016), inconsistent findings have also been 
observed. For example, a computational analysis by Kanen and 
colleagues reported increased learning rate for punishment 
in SUD patients in a serial probabilistic reversal learning task 
(Kanen et al., 2019). While this task also involves RL, it is im-
portant to consider the task context when interpreting these 
findings. In a probabilistic serial reversal learning task, par-
ticipants are instructed to expect learned contingencies to 
change from time to time and thus need to balance between 
ignoring and responding to punishment, that is, staying with 
or switching their choices, respectively. An increased learning 
rate from punishment in this context could thus also reflect 
an impaired ability to use negative feedback to guide behavior 
amidst a volatile environment, leading to more errors in SUD 
patients. Since there were no contingency reversals in our 
tasks, such divergence in the behavioral profile could be due 
to intrinsic differences in task design. Indeed, when we fitted 
the winning model from Kanen et al to the present data, we 
obtained results consistent with our model—SUD patients still 
show a reduced learning rate from punishment (supplemen-
tary Material).

Compared with learning from punishment, learning from re-
ward was less impaired in SUD patients, indicating that mon-
etary reward remains a salient reinforcer among stimulant drug 
users. This may suggest that behavior in SUD patients is more 
amenable to positive than to negative feedback and could ex-
plain why treatments based on positive reinforcement such 
as contingency management (Petry, 2000; Petry et al., 2017) are 
effective in SUD. Accumulating evidence further suggests that 
contingency management with monetary incentives is as ef-
fective (Festinger et al., 2014), or even more effective (Vandrey 
et al., 2007; Stoops et al., 2010), in promoting cocaine abstinence 
and treatment retention than non-monetary incentives (Stitzer 
et  al., 2010). These studies jointly imply that the prospective 

knowledge of more salient rewards, such as monetary gains, 
improves contingency learning. Indeed, studies that adopted 
non-salient feedback (e.g., points or artificial stimuli) in RL tasks 
reported impairments in learning from reward in SUD patients 
(Strickland et al., 2016; Lim et al., 2019), possibly reflecting the 
lack of a motivating reinforcer. This stands in stark contrast 
to learning from negative consequences, which is significantly 
impaired regardless of its magnitude (Thompson et  al., 2012). 
However, whether different modes of punishment differentially 
affect behavior in SUD patients remains an open question.

Dopaminergic Modulation of RL in Healthy 
Participants

Although the involvement of dopamine in RL is undisputed, 
the exact mechanistic role of D2 receptors in learning remains 
controversial, as reflected in the conflicting findings reported in 
the literature. For example, some studies showed that pharma-
cological modulation of D2 receptors affects only reward but 
not punishment (Pessiglione et al., 2006; Pizzagalli et al., 2008; 
Eisenegger et  al., 2014), suggesting that D2 receptor signaling 
selectively affects reward learning. However, other evidence 
from humans (Frank and Hutchison, 2009; Cox et  al., 2015) 
and preclinical studies (Hikida et al., 2010; Kravitz et al., 2012; 
Alsiö et al., 2019; Verharen et al., 2019) suggests that D2 receptor 
signaling plays a specific role in avoiding negative outcomes 
(Frank, 2005; Frank and O’Reilly, 2006). While the selective im-
pairment of punishment learning in healthy participants fol-
lowing the D2/3 receptor agonist is consistent with the latter 
view, the observation that the D2/3 receptor antagonist affected 
both reward and punishment does not support the hypothesis 
that the D2 receptor has a valence- specific role in learning. Such 
non-selective effects of D2/3 receptor antagonism have previ-
ously been reported (McCabe et  al., 2011; Jocham et  al., 2014), 
suggesting that these receptors are generally involved in normal 
feedback-based learning.

Figure 4. Mean differences of the reinforcement learning parameters for each drug condition. The dopaminergic agents are directly compared with placebo. (A) 

Amisulpride reduced the learning rates in healthy controls but increased the reinforcement sensitivity parameter. (B) Pramipexole selectively reduced the reward 

learning rate parameter in control participants, but had no effect on the other parameters. (C) Amisulpride improved the punishment learning rate in stimulant use 

disorder (SUD) participants. (D) Pramipexole significantly increased punishment learning rate and reduced reinforcement sensitivity parameters in SUD patients. Error 

bars denote 95% highest density intervals (HDI); parameters colored in red indicate a credible drug effect, as their 95% HDI excludes zero.
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The D2/3 receptor antagonist also increased the reinforce-
ment sensitivity parameter in healthy participants, sug-
gesting that amisulpride increased their motivation for higher 
valued choices. This proposal concurs with other pharmaco-
logical studies administering amisulpride, which found that 
the drug enhanced sensitivity to expected values (Burke et al., 
2018) and increased activation during choice selection in the 
medial-orbitofrontal-cortex (Jocham et  al., 2011; Kahnt et  al., 
2015), a region commonly associated with value representation 
(O’Doherty, 2004).

When interpreting the drug effects, it is important to con-
sider that dopaminergic D2/3 drugs may exert presynaptic 
actions. At low doses, D2/3 agents preferentially bind to pre-
synaptic autoreceptors (Schoemaker et al., 1997), which inhibit 
dopamine transmission (Ford, 2014). Thus, the D2 presynaptic 
autoreceptor blockade by a dopamine antagonist may actually 
enhance dopamine transmission, whereas stimulation of D2 
autoreceptors by a dopamine agonist may result in a net reduc-
tion of dopaminergic transmission. It is therefore tempting to 
speculate whether the pramipexole-induced impairments in 
the learning rate and the amisulpride-induced enhancements 
in reinforcement sensitivity, as seen in our healthy participants, 
reflect such pre-synaptic actions.

Impaired RL Associated With Altered Dopamine 
System in SUD

The dopaminergic agents had the opposite effect in SUD patients 
compared with healthy controls, which suggests an altered 
dopaminergic system in SUD. There is considerable evidence 
from positron-emission-tomography studies that points to-
ward downregulation of striatal D2 receptors and dopaminergic 
neurotransmission in SUD patients (Volkow et  al., 1993, 1997; 
Martinez et al., 2004, 2007). Repeated stimulant drug exposure 
has also been proposed to upregulate the inhibitory activity of 
D2 presynaptic autoreceptors, which in turn may suppress dopa-
mine signaling below normal levels (Grace, 1995). However, it is 
not possible to determine precisely the nature of the dopamine 
system and the mode of action of the dopamine agents in SUD 
patients, which depends on dopamine levels at baseline (Cools 
et al., 2001, 2009). We thus interpreted the effects of dopamin-
ergic agents in light of SUD patients’ possibly reduced dopamine 
activity and potential pre-synaptic effects of these agents.

If D2 receptors are assumed to be important in learning from 
negative feedback (Frank and O’Reilly, 2006; Nakanishi et  al., 
2014), the downregulation of D2 receptors in SUD would explain 
their reduced learning from negative outcomes, which is mir-
rored in healthy individuals with low D2 receptor levels (Klein 
et al., 2007; Jocham et al., 2009). It is therefore conceivable that 
amisulpride improved punishment learning in SUD by blocking 
presynaptic D2 autoreceptors and thus increasing dopamine 
signaling. Pramipexole also improved punishment learning in 
SUD, possibly by enhancing dopamine signaling through post-
synaptic mechanisms. It remains, however, unclear why two 
opposing drugs work in the same direction. It is noteworthy that 
the reinforcement sensitivity parameter, which measures how 
much choices are motivated by learned values, was reduced 
on pramipexole. This may suggest that altering the dopamine 
balance reduced SUD patients’ tendency to engage in the RL task 
as the choice values became less motivating. This concurrent 
reduction in motivation might also explain why SUD patients 
did not show improvements in overall performance despite an 
improved punishment learning. The effects of dopaminergic 
agents seem to confirm altered dopaminergic activity in SUD 

patients, which have been associated with learning difficulties, 
but the precise pharmacological actions are likely to depend on 
task context, drug dosage, and baseline dopamine transmission.

Strengths, Weaknesses, and Outlook

Our data provide compelling evidence for impaired learning 
from punishment in two independent samples of SUD pa-
tients, one of which had comorbid dependencies while the 
other had none. Concurrent use of other drugs such as opiate, 
alcohol, or cannabis is therefore unlikely to have affected the 
observed performance profiles. Limitations include the uncer-
tainty of the nature of the drug effects, that is, whether they 
reflect pre-synaptic or post-synaptic effects, which is difficult 
to determine in human research. Therefore, any inferences 
on the drug effects should be cautiously interpreted. Further 
neuroimaging evidence (e.g., positron emission tomography) 
is warranted to clarify the action of the dopaminergic drugs, 
as responses to dopaminergic drugs may vary according to 
baseline dopamine synthesis capacity (Cools et al., 2009) and 
dopamine receptor density (Cohen et  al., 2007; Eisenegger 
et al., 2014). Although we focused exclusively on dopamine, it 
is important to acknowledge that other neurotransmitter sys-
tems such as serotonin (Seymour et al., 2012) and glutamate 
(Groman et al., 2020) are also implicated in RL. There is also 
evidence that amisulpride has an affinity for serotonin recep-
tors (Abbas et al., 2009), which may also modulate sensitivity 
to aversive events (Daw et al., 2002; Cools et al., 2011). Future 
studies using a longitudinal design are needed to investigate 
these factors. Nonetheless, our findings present novel evi-
dence for selective learning impairments in SUD and high-
light the utility of computational modeling in deconstructing 
complex cognitive processes, with promising prospects for 
psychiatry and psychopharmacology research (Huys et  al., 
2021).

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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