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A B S T R A C T

Monitoring patients through robotics telehealth systems is an interesting scenario where patients’ conditions,
and their environment, are dynamic and unknown variables. We propose to improve telehealth systems’ features
to include the ability to serve patients with their needs, operating as human caregivers. The objective is to
support the independent living of patients at home without losing the opportunity to monitor their health status.
Application scenarios are several, and they spread from simple clinical assisting scenarios to an emergency one.
For instance, in the case of a nursing home, the system would support in continuously monitoring the elderly
patients. In contrast, in the case of an epidemic diffusion, such as COVID-19 pandemic, the system may help in
all the early triage phases, significantly reducing the risk of contagion. However, the system has to let medical
assistants perform actions remotely such as changing therapies or interacting with patients that need support.
The paper proposes and describes a multi-agent architecture for intelligent medical care. We propose to use the
beliefs-desires-intentions agent architecture, part of it is devised to be deployed in a robot. The result is an in-
telligent system that may allow robots the ability to select the most useful plan for unhandled situations and to
communicate the choice to the physician for his validation and permission.

1. Introduction

Today there are many clinical scenarios in which a physician does
not rely solely on himself, his knowledge or experience or his presence,
to solve a patient’s problems.

Current scenarios are made more complicated by the increase in the
average life expectancy of citizens, especially in Western countries,
which leads to an ever-increasing demand for healthcare systems. It is
also remarkable today that societies are committed to ensuring access
to care and well-being to all citizens [1]. There are also cases in which
patients live in poor or not easily accessible places or in general cases in
which the physician must provide, or receive if he is not on-site, fast
and reliable diagnoses to be able to establish a therapy or otherwise
solve a problem. This last is the case of the emergency due to the
COVID-19 pandemic. The problem often faced by emergency room
physicians was not to have the means for early identification of infected
cases. This fact caused a lot of people infected and then dead also
among doctors and nurses. Another case is the lack of professionals or,
increasingly challenging, the presence of changing contexts. For in-
stance, cases in which patients with the same disease but placed in a
different family or social contexts have different characteristics and

needs. Probably in these cases, a unique protocol cannot be applied, but
doctors have to be able to decide on a case by case basis.

As evidenced by documents issued by the European Commission,
the urgent need for intelligent systems for healthcare has not to be
undervalued. Investigating the importance of AI & Robotics in health-
care is the current challenge for scientists and physicians, as illustrated
by the Policy Department for Economic, Scientific and Quality of Life
Policies in [2]. Here the main question is “Robots in Healthcare: a so-
lution or a problem?”. Following these research lines, we are in-
vestigating “how can an intelligent system help a physician in making de-
cisions, even in dynamic contexts?”

Supporting physicians and patients in “complex” clinical contexts
requires intelligent systems endowed with the ability to solve problems
during interactions. During the execution, the system interacts with
users and the environment that often change continuously as a result of
the interaction.

These challenges may be solved by multi-agent systems able to self-
adapt to changing situations and deliberate also in the total or partial
absence of input data from physicians or patients.

These aspects cannot be faced and solved at the design time.
Developers cannot identify and implement all the possible situations
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where a high level of autonomy is required. At best, they can identify
several conditional statements and allow for a set of possible alter-
natives in the system behavior.

The more dynamism or uncertainty in clinical contexts exist, the
more physicians may need to be supported by an intelligent system. In
this situation, developers have to implement mechanisms that let the
system autonomously monitor patients, retrieve important information,
reason and suggest actions to physicians if necessary. All this may be
done employing robots.

Thus, an efficient way to face the problem mentioned above is using
the agent-oriented paradigm [3] and robots. The use of agent-oriented
paradigm in complex systems, such as robotic platforms or internet of
things applications, was studied and treated by scientific community
[4–6] during these years. For instance, the application of the agent-
oriented computing, for the IoT domain and the cyber-physical systems,
is increasing day-by-day. Weaknesses and issues in these domains can
be solved exploiting agent-oriented architectures and relative com-
puting techniques as well discussed and highlighted in [7]. Another
way to employ multi-agent systems for developing monitoring systems
in the healthcare scenario may be seen in [8]. However, multi-agency
has not been used for providing support in dynamic environments for
healthcare domain. The contribution and the novelty of this paper lay
in the creation of an agent-based architecture for healthcare systems.
The architecture handles monitoring, knowledge management and de-
liberation module. The main novel idea we present is to employ the
Belief-Desires-Intentions (BDI) paradigm and its reasoning cycle for im-
plementing a multi-agent system able to deliberate and plan tele-
operation activities to help physicians in making decisions. Even when
information about plans to execute and goals to pursue are lacking or
incomplete. The multi-agent system resulting from the proposed ar-
chitecture has been conceived for being deployed in a robot to support
physicians or patients in their activities.

The rest of the paper is structured as follows: in Section 2 some
related work are explored; Section 3 briefly shows multi-agent systems
topics, their features and how they handle the selection of plans during
the execution phase; in Section 4 we discuss the architecture we pro-
pose for assisting physicians and how plans are created is illustrated
with an example; in Section 5 we validate the proposed architecture
and finally in Section 6 some discussions and conclusions are drawn.

2. Related work

The need to build a robotic system able to satisfy patients brought
scientists to design robotic platforms to face this problem, as in the case
of Koceska et al. [9]. Koceska et al. studied available platforms in the
market of assistive robot systems. They designed and developed a low-
cost assistive telepresence robot system for facilitating and improving
the quality of life of elderly and people with disabilities. To improve the
quality of life the robot system is able to interact with the environment
(such as, moving small objects and measuring vital parameters) and can
be controlled by a remote assistant. The robot merely executes the
commands of the remote assistant. An advantage is that this is a low-
cost robot that can be easily used in everyday life by patients and
professionals.

The need for a telepresence robotic assistant has driven the interest
of the EU itself, which has financed FP7 and H2020 European Projects
for this purpose.

MARIO project1 faces an important challenge into the field of tele-
presence robotic assistant. It aims to challenge loneliness, isolation and
dementia in elderly people [10–13]. The project connects elderly
people with their needs. It aims to be independent of robotic platforms.
Moreover, it supports remote application installation and deployments
onto the robotic platforms. The project uses data exchanged during

personal or social interaction. Even if the project faced these challenges,
no dynamic supports to patients or physicians were considered. It does
not facilitate the interaction including new activities at runtime without
the contribution of developers.

ENRICHME project2 is another EU project financed through the
H2020 Framework Program [14,15]. The project aims to face the
cognitive decline of cognitive capacities in elderly people. The solution
consists of an integrated platform for ambient assisted living, integrated
with a mobile service robot. The project aims to realize long-term
human monitoring and interaction system for letting elderly people stay
independent in their home way. The strength of the project is to enable
physicians and caregiver to analyze data for identifying changing in
cognitive impairments and so early acting on them. This system does
not take in consideration robots as a human supporter.

MOVECARE project3 aims to realize “an innovative multi-actor plat-
form that supports the independent living of the elder at home by monitoring,
assisting and promoting activities to counteract physical and cognitive de-
cline and social exclusion” [16–18]. The MOVECARE architecture
monitors the frailty of the elderly specifically based on criteria identi-
fied and discussed by Fried et al. [19]. Like the previous approach, this
framework provides a good means for monitoring; it adds some kind of
intelligence during the reasoning process. The reasoning system can
alert caregivers about the status of the patients and possible motiva-
tions exploiting the Fried frailty criteria. Nonetheless, the robotic
platform is not designed for acting as a true caregiver.

Caresses project,4 that stands for “Culture Aware Robots and En-
vironmental Sensor Systems for Elderly Support”, is an H2020 Project
financed by EU for building culturally competent care robots [20–23].
The project aims to build the first robot that assists the elderly, adapting
itself with the culture of the user. At the best of our knowledge, the
platform is not able to handle runtime planning for executing therapies.

All previous projects consider several important aspects of tele-
medicine, assistive robotics and human-robot interaction for health-
care, but activities are not thought to support physicians by remote in a
proactive manner.

Another approach in the literature, to perform robotic teleopera-
tions for ultrasonic medical imaging, is the OTELO System. OTELO
performs tele-echography [24] remotely. It supports the clinicians in
making a diagnosis. This system even treats patients in their home, does
not operate proactively and it needs for physicians to be used.

Progress in networking lets computer scientists build applications
using a network to exchange data and information. Systems can ex-
change information using the network and the spread of wireless. In
[25] authors propose a mobile-care system integrated with a variety of
vital-signs monitoring, where all involved devices are endowed with a
wireless communication module for data exchanging. The mobile-care
system uploads data into a care server via the internet. Data stored into
the remote server are available for physicians that need to check the
health status of patients. The system serves as an alert system where
interaction with patients is implemented.

Evolution of telemedicine systems brought at the definition of novel
systems able to handle more complex scenarios. Recent works introduce
a new technological paradigm for elderly people that live alone. In [26]
authors consider IoT (Internet of Things) technology to connect devices
in patient’s home for data collecting and communication. Other studies
involve the usage of robots, or better social robots, as telepresence
systems [27]. In this work, the authors proposed a telepresence robot,
built for a human-robot interactive experiment.

Each of these works aims to realize complex systems with the ability
to supervise people at home letting them live without invasive instru-
ments through the usage of robotics or sensors scattered into their

1 https://cordis.europa.eu/project/id/643808.

2 https://cordis.europa.eu/project/id/643691.
3 https://cordis.europa.eu/project/id/732158.
4 https://cordis.europa.eu/project/id/737858.
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homes. Other approaches are present in literature, most of them resolve
problems related to telepresence, monitoring and teleoperation.

We are now facing the following problem: each patient’s environ-
ment is not equal to another leading to difficulty in handling new oc-
curring situations by clinicians. Moreover, every patient answers
therapies in different ways and so, every care system has to be endowed
with the ability to adapt its behaviors taking into account this weak-
ness. For that, scientists and engineers need for methods to facilitate
reasoning operation at runtime.

Runtime reasoning methods arouse a strong interest in the robotics
community for modeling complex domains, such as the clinical one.
The state of the art of healthcare system presents solutions aimed at
assisting patients and physicians in performing monitoring and other
simple operations. Physician interacts with the system that interacts
with the patients and vice versa. All these approaches do not solve
problems related to changing clinical scenarios.

Additionally, our approach employs a multi-agent architecture that
gives intelligent support to the physician. The architecture, deployed in
a robot, monitor and assist the patient as a caregiver, also in coopera-
tion and collaboration with the doctor.

3. Multi-agent system

An agent is an autonomous entity able to act in response to stimuli
coming from the environment and proactively act towards a specific
goal [3,28,29]. The agent paradigm was born to better understand and
model complexity in software. Interaction among components is the
main characteristic of complex software. Correctly engineering and
implementing systems where complex components interact with each
other is harder than engineering systems requiring the computation of
single or simple functions. Agent theory is suitable for facing this kind
of situation.

An agent has the following important properties: autonomy, re-
activity, proactiveness and social ability. To understand what autonomy
means when talking about agents let us refer to a functional program, a
Java class, a compiler or something like that. All these kinds of software
may be modeled by a function, they receive input and produce an
output as the result of elaborating that input. Everything happens in
this application is because we (the programmers or the designers) want
it to happen and to happen exactly in that way. An autonomous agent is
conceived to be at the exact opposite of the applications above.
Research in the field of agents and multi-agent systems is going towards
means for building agents to which we can delegate tasks. It is up to the
agent to decide how to reach the objectives, they act on the base of
plans we give them. A plan defines the set of actions an agent may
perform to pursue an objective. An agent is reactive in the sense that it
is able to perceive the environment and act in response to changes
coming from it, actions are directed towards the agent’s objective. One
of the key points related to agent autonomy is that an agent may put
together plans to achieve our goals. So they are making able to operate
autonomously on the behalf of humans that delegate them their goals.
Proactiveness is the ability “to exhibit a goal-directed behavior by
taking the initiative”. Social ability is the ability of an agent to interact
with other agents and humans to purposefully reach its objective. This
latest ability involves an important skill belonging to humans, i.e.
communication abilities. To establish a society, the agent cooperates
and coordinates activities with other agents and therefore it is able to
communicate to the other (also humans) its beliefs, its goals and its
plans.

Healthcare systems or other kinds of systems supporting physicians
in the scenarios identified in the introduction are perfectly manageable
with agents. An agent with the property above may be delegated to
solve problems on behalf of the physician. It may be planned for
monitoring patients and inform of all possible situations deviating from
a specific protocol. The agent may autonomously establish an alter-
native plan or action to perform to pursue a specific goal and may

communicate to the doctor to support him in the decision. Note that it is
not a simple teleoperation ability but a real intelligent aid.

A widely recognized agency model in literature is the Beliefs-Desires-
Intentions (BDI) model. This AI-based agent paradigm [30] involves a
deliberation ability of the agent, based on a continuous sense-action
loop and the evaluation of existing beliefs. It allows the agent to realize
a desire with a plan available in its library. This model originates from
the theory of practical reasoning by the philosopher M. Bratman [31].
Practical reasoning is a human ability, the reasoning is directed towards
actions. “Practical reasoning is a matter of weighing conflicting considera-
tions for and against competing options, where the relevant considerations
are provided by what the agent desires/values/cares about and what the
agent believes.” ([32], p.17).

In this section, we briefly outline the basic concept regarding the
BDI agent paradigm and some ideas on how it might be useful in the
clinical domain.

The definition of practical reasoningleads to taking into considera-
tion two factors, the belief and the desire. Beliefs are all facts or in-
formation about the environment the agent considers valid. Beliefs
constitute the actual knowledge of the agent. Desires are all the state of
affairs the agent wants, or better would like, to reach. Desires relate to
the goal the agent has been delegated to. Commonly, an agent has
conflicting desires. Not all the desires it owns are devoted to be com-
mitted. Only intentions are pursued. The intention is the state of affairs,
an objective also related to the state of the world, that the agent decides
to reach, on which it commits to work on. We can imagine an agent
having the goal of monitoring a patient for sending information to the
physician, remembering or administering the patient some therapy he
has to do, updating medical records, ensuring that the primary needs of
patients are met. The agent is delegated to reach all those objective but
it is up to it to decide which one to pursue in a specific moment and on
the base on the information (all the beliefs) it has on the environment.
When it chooses a desire, it commits to an intention and decides the
course of action to pursue that intention. The course of action is called
plan.

Moreover, humans actuating practical reasoning performs two im-
portant activities: deliberation and means-ends reasoning. The former is
the action of deciding which intention to commit and the latter is about
deciding how to act. BDI agents are developed to be deliberative and
means-end reasoner. In a clinical scenario, having agents behaving in a
human-like fashion, on the behalf of the physician, may be a great
support. A software system, also deployed in a robot, that merely exe-
cutes orders by physicians may be helpful. What if the software system
is able to deliberate how to act when the situation is not the one en-
visioned by the physician? For instance, let us suppose that while the
agent is administering a therapy, the patient’s conditions can change.
The changing produces a revision of the agent’s beliefs, triggering other
options, such as advise the physician and wait for his instructions.

This kind of support cannot be reached by using a simple reactive
system. In the following section, we explain the agent architecture,
involving BDI agents, we propose for physicians support in a clinical
scenario.

The computational model implementing deliberation and means-
ends reasoning contains four elements: B (beliefs), I (intentions), D
(desire) and (plan). At the beginning agent is endowed with a belief
base, hence its knowledge about the environment, and a plan library, a
set of possible plans for reaching objectives. A plan is selected and then
activated only if some preconditions are true. The model develops on a
loop for which an agent starts by updating the belief base, is something
like getting aware of the world around, and choosing an intention.
During the loop, the agent continuously perceives from the environ-
ment, if necessary it updates the belief base, determines desires and
intentions by computing current beliefs and then generates a plan to
reach the intention. Generating a plan means to select the best plan
from the plan library, the one that fits with all the intention’s pre-
condition and executing all the actions it contains. After the execution

F. Lanza, et al. Journal of Biomedical Informatics 108 (2020) 103483

3



of each action, the agent pauses and observes the environment. The
agent might need to update the belief base and reconsider the intention.
In the worst case, if no plans or no actions exist in the plan library for
reaching an intention the agent should be provided with other plans,
hence its plan library has to be enriched. For instance, in the clinical
scenario, if the robot does not know how to reach an intention, the
robot could interact with the physician for a new plan to be added into
the plan library, remotely.

Moreover, letting the agents reasoning on the belief base and on the
current environment allows us to develop a robot able to explain the
reason for failure. In so doing the interaction with the physician may
reach a high degree of intelligent support.

Several technological approaches in the literature describe possible
implementations of BDI agents. One of the most known and efficient
ones is the Jason framework and its reasoning cycle [28,33]. Jason is a
powerful instrument for realizing planning in uncertain environments.

In the next section, we detail the proposed agent architecture ex-
ploiting the said BDI features and we explain how we implement the
architecture in a robot supporting and cooperating the physician for
reaching a common goal.

4. A multi-agent system for healthcare

This section starts with the description of a pilot scenario, useful for
deeply understanding the domain context.

4.1. Pilot scenario

Involved actors are listed in the following table (Table 1).
Alice is a nice elder woman with chronic bronchitis and she has to

stay at home. She is assisted by MyRob robot. MyRob is in charge of
monitoring Alice and her environment to collect her health-data.

Dr. Haus prescribes some medicines. MyRob daily collects and sends
data to let Dr. Haus check Alice’s health status or revise prescribed
therapies.

The data is stored into a data repository where Dr. Haus, through an
application, analyzes them and decides new therapies or confirms the
previous one. If Dr. Haus, on the base of the analyzed data, finds the
therapy good nothing changes and MyRob continues its tasks without
interruptions otherwise MyRob may send feedback or recommenda-
tions to Dr. Haus.

So far, social robots used as a companion or virtual caregiver
[34,35] satisfactorily face these kinds of duties.

What about if prescribed therapies are not adequate, because something
unforeseen occurred in Alice’s status, and Dr. Haus needs to revise them
collaborating remotely with MyRob?

MyRob checks for alternative actions to apply to the context and
asks Dr. Haus’s authorization for proceeding, otherwise it contacts him
to inform about the situation. In the latter case, Dr. Haus decides to
change the therapy and through his terminal, he proceeds to send the
new therapy to MyRob. So that, MyRob is allowed to change dynami-
cally the therapies.

For instance, let us suppose that MyRob has been charged to open
the window each time the quality of air lowers below a threshold and to
administer timely previous medicines to Alice. MyRob is going to open
the window but perceives an increase in Alice’s body temperature.
MyRob recognizes the right conditions for opening the window now
lack. MyRob contacts Dr. Haus, informs him about the new Alice status
and requires his consent for not opening the windows and

administering paracetamol. If MyRob does not know this alternative
action, it alerts Dr. Haus for receiving commands. Dr. Haus may suggest
administering paracetamol.

4.2. The system overview: architectural aspects

To accomplish the previous scenario we need to develop a robot that
might serve as an intelligent object for monitoring and checking pa-
tients in their environment and also as a collector of data for enhancing
diagnosis. The robot has also to be able to change its behaviors at
runtime according to the physician’s prescriptions.

The idea is to develop such a kind of robot as a part of a cognitive
system realized employing BDI agents and on the base of the following
architecture (Fig. 1).

The architecture is composed of four modules:

• Environment Management –it contains all useful elements for in-
terfacing physicians, for monitoring the environment in which pa-
tients live and for acquiring data;
• Knowledge Management –it is the module for storing and mana-
ging data from the environment and patient;
• Reasoning –this is the module devoted to compute data stored into
the knowledge module and to produce a series of actions to ac-
complish a task;
• Acting –given a set of actions, it extracts the proper action for a
specific situation.

The Knowledge Management module depends on the Environment
Management module, indeed only data resulting from monitoring form
the knowledge of the system.

Data stored in the Knowledge Management module are used by the
system for the reasoning process and, at the same time, all the results of
the reasoning process update knowledge.

The Reasoning module produces a set of actions, useful to reach one
or more system goals.

This set is the input for the Acting module where, it extracts the
proper action sent to the system. The result of an action normally
produces a change in the state of the environment. So, this module
affects the monitoring one.

The architecture in Fig. 1 is implemented employing a BDI multi-
agent system where a set of agents works to reach the system’s goal.

4.3. A multi-agent approach for healthcare systems

The efficiency of the multi-agent paradigm in modeling and

Table 1
Actors involved in the pilot scenario.

Patient: Alice
Robot Caregiver: MyRob
Physician: Dr. Haus

Fig. 1. The architecture for implementing the Boyd cycle to let agent observing,
orienting, deciding and acting.
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handling complex systems has been widely discussed in the literature
[3,36]. Handling robots via a multi-agent system means creating a
multi-agent architecture able to handle components and planning
abilities.

As said, our idea is to use the BDI agents paradigm for providing a
intelligent support to the physician work, also allowing him to manage
robot remotely. Beliefs, rules, desires and intentions for each agent are
defined at design time by developers and users (physicians and patients
in the clinical domain).

Beliefs are generally of two types: (i) perceptions acquired through
sensors from the surrounding environment; (ii) information acquired
through messages exchanged with the other agents into the platform.

Beliefs are critical for the agent’s planner. Beliefs and rules push a
plan to be selected as the best set of activities to do. Selecting one plan,
compared to another, means changing the behavior of the agent during
its operating cycle.

The agent’s intelligence is defined with a descriptive file written in
AgentSpeak(L) [30,37]. AgentSpeak(L) is a language that uses logical
formalism to define a set of plans for handling situations to reach the
agent’s goal. The agent programmer writes initial beliefs, rules, goals and
plans.

Each plan is composed of a head and a tail. The head is composed of
a event trigger and a circumstance. The former is the trigger condition
that launches actions defined into the plan and the latter is a set of
parameters used for validating the context in which some actions are
allowed. More in detail, a plan is launched when the event trigger is
scheduled and the set of beliefs contained in the circumstance are
solved by a unification process where a literal is unified with the data
contained into the namesake belief and verified by a first-order logic
process.

The tail of a plan is composed of sub-plans or actions that can be
internal actions or external actions.

In the next paragraph, we show the architecture detailing how
agents work, communicate and cooperate to support physicians.

4.4. Agents working in the healthcare architecture

Fig. 2 represents the multi-agent system that works in a typical
healthcare scenario. In this scenario, two environments are involved,
the patient’s residence and the physician’s office.

The two environments are connected through a multi-agent plat-
form, each environment owns one or more agents, or better one or more

agents are deployed in each environment. The multi-agent platform
serves as a bridge among the patient and the physician. It is worth to
note that the middle layer of this representation constitutes the in-
telligent part to be added to a simple teleoperated system (i.e. the two
environments and the software interfacing robot and the physician).
The contribution of this paper lays in how we conceive the intelligent
bridge.

The physician (Fig. 2) uses his terminal to access the patient’s en-
vironment and retrieves data about the patient’s status and the sur-
rounding context. The patient communicates directly with the robot
and vice versa.

The cognitive model, followed by agents in the architecture figured
out in Fig. 1, starts its reasoning cycle from the environment managing
module. It (see Section 4.2) is responsible for acquiring information
from the environments. Collected data are organized and stored to be
saved in the remote server. The Knowledge Management module or-
ganizes data to be synced with the system and updates them with the
last perceived one for the diagnostic purpose by physicians. The same
data are handled from the agents into the deliberation process module.
This module is composed of two sub-systems, the first for reasoning and
the second for acting.

Multi-agent systems are distributed systems over the network. Each
agent could be relocated to other computers that host a node or a set of
nodes of the system infrastructure.

The multi-agent system can be distributed over remote sites con-
nected via the internet. The system we propose uses the internet to
share information, data and alerts between the physician’s office and
the patient’s environment.

The physician’s terminal is connected to the multi-agent system
through the Virtual Assistant agent. It implements all necessary func-
tionalities to be into agents’ network and it receives data from the pa-
tient’s environment via the internet.

Data are stored using an OWL ontology, they are accessible from the
physician by a terminal for diagnostic purpose. Data are also stored in
remote servers for safety reasons. A memory manager holder organizes
acquired perceptions and collected information by the system in an
OWL ontology [38]. The knowledge is split into a long-term and
working memory; in this way, we avoid problems such as memory leak
or memory explosion from agents when they have to use it. So the
memory is handled as described in [39] and the agent which was de-
legated to manage knowledge is deployed into the system with the goal
to keep all data synced and updated. The knowledge of the system is

Fig. 2. The multi-agent system for a robot in a
healthcare scenario. The system shows circles for
software modules such as agents and other used
frameworks and three kinds of relations (ar-
rows). The continuous arrow indicates commu-
nication between modules, dashed arrows are
activities that identify on which nodes agents
and robots work. The relation: (i) < is de-
ployed > is used for software parts; (ii)
< is situated > for cyber-physical system.
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organized to be always synced, updated and shared on the entire system
and to avoid possible conflicts given the nature of beliefs. Indeed, be-
liefs may change during the interaction with the environment or with
the patient so it is necessary to guarantee the right knowledge syn-
chronization among all the modules.

The Virtual Assistant agent is deployed into the physician’s personal
computer as a computer application. It works as a remote controller
application and it endows the physician for accessing the patient’s en-
vironment.

The Virtual Assistant agent assists physicians in remotely collabor-
ating with the robot located in the patient’s environment. Admitted
operations let physicians manage the robot, such as supervising the
robot’s behaviors, stopping or restarting it if necessary.

As said in Section 2, nowadays, there exist several teleoperated
robots that let the physician operate into the patient’s environment, no
one of them works in autonomy during the interaction with the patient.
Autonomy, in this case, means to be able to recognize or retrieve the
best action to perform in a particular situation, propose the action to
the physician and wait for his command. In this sense, the robot is
autonomous and it can suggest some actions to the physician. Indeed, in
our system physicians can teleoperate in the sense of changing previous
therapies or adding new ones to enhance the quality of life of the pa-
tient. The robotic caregiver should not be seen as a professional robotic
avatar but as a valid instrument useful for monitoring and assisting
patients in the place of clinicians.

Virtual Assistant agent endows physician for checking, revising,
updating a therapy or a set of therapies initially prescribed and pro-
vided to the robot for taking care of the health status of the patient.
Therapies are plans in the sense of the agent’s plan that the Planner
agent selects when the context is verified.

The Planner agent is responsible to realize the intelligence of the
system. It communicates with the Knowledge Manager agent to obtain
data synced, updated and stored into the ontology for selecting the best
plan that fits the current situation. To satisfy the system goal, the
Planner agent tries to find the right solution using the context of a lo-
gical formula; once the context is verified a combination of actions and
other plans let the system move toward the goal.

Logical formulas, in multi-agent systems, are also called plans and
each plan is generally pushed into a repository of plans called Plan
Library. Plans use perceptions and information acquired through the
Vision and Sensor agents and are put in action through theMotion agent.

Some instances of Vision and Sensor agents are deployed into the
robot, other instances that perform heavy computational processes are
distributed on the same node of the Knowledge Manager agent or in
other nodes if necessary, thus giving a high level of scalability to our
system.

In Table 2 is summarized the description of the role of the agents
that are into the system.

4.5. How the robot is employed in the clinical scenario

The robot situated in the patient’s environment works as a robotic
caregiver.

The multi-agent architecture contains modules for handling
knowledge, planning, motion, vision and sense for robots. Each agent
implements its logical model to accomplish established goals that re-
present the desires of the agent.

The robot uses algorithms for implementing obstacle avoidance and
motion. The agent may navigate in unknown indoor places using an
adapted version of a state-of-the-art algorithm for robot SLAM
(Simultaneous Localization And Mapping) [40].

The Motion agent is strictly connected with the Vision agent. While
the former deals with the motion of the robot, the latter deals with
computer vision tasks. The Vision agent, continually, senses the en-
vironment using RGB camera to discover and to recognize objects lo-
cated into the environment.

The object recognition module works using the YOLO deep neural
network5 [41]. YOLO is a state-of-the-art system for implementing real-
time object detection and recognition. Recognizing objects is useful for
motion’s tasks, such as obstacle avoiding or to enhance the localization
algorithm using some objects as landmarks or fixed-points.

The Vision agent is also able to detect the status of the patient, such
as understanding when the patient is sitting or lying down or the pa-
tient is standing. Vision agent takes also care of other tasks; a deep
description of this module is out of the scope of the paper.

Other agents are deployed into the multi-agent platform to sense the
environment and to enhance the quality of perceptions. An agent, de-
legated for handling information acquired by sensors, continually
senses the environment with the aim to keep updated telemetries about
the surrounding context. Data acquired are stored and shared between
all agents.

Moreover, several vision tasks and heavy computational processes
used by the robot are distributed over other nodes in the architecture
for balancing the robot’s workload.

Beliefs shared into the platform by agents are used to select the best
plan that fits with the goal of the system. Methods are implemented as
internal actions or operations for the agent. Perceptions are acquired
through sensors and cameras. Sensors acquire information from the
surrounding environment and each perception is translated into the

Table 2
The table summarizes the role of the agents into the proposed multi-agent system, figured out in Fig. 2.

Agent Role

Knowledge Manager It is a part of the multi-agent system used for managing the system’s knowledge. It uses a double kind of knowledge model, an ontology for storing
information and gathering them as concepts and relations and a knowledge base where beliefs are stored for acting in the working domain.

Planner It is a part of the multi-agent system used for planning operations. This agent is delegated for selecting which plan is more adapt to pursuing the goal.
Generally, the system goal is defined at design time but it can be handled at runtime. This agent listens for information gathered and it deliberates the set
of actions and plans that each agent has to execute using the agent’s communication module. This agent communicates directly with the virtual assistant
agent. This last is responsible for upgrading the planner’s plan library to add plans and enabling it for revising plan at runtime; this means that the multi-
agent systems can act dynamically.

Vision It is a part of the multi-agent system used for vision task operations.
Sensor It is a part of the multi-agent system used for collecting data from sensors. These data contribute in decision-making phase, to select the plan that best fit

with the current situation.
Motion It is a part of the multi-agent system used for handling robot motion. This agent implements modules for letting robot move and executing into the

environment.
Virtual Assistant It is a part of the multi-agent system used for letting physician be part of the system. This agent operates as a dashboard console on which the physicians

retrieves data monitored by the robot and collected from the system. The agent lets physicians communicate new therapies to the robot that they will be
translated into plans and added into the plan library of the planner agent. Therapy will be executed during the next agent’s reasoning cycle if pre-
conditions signed by the physicians will happen. If this does not happen, an alert will be sent to the dashboard console.

5 YOLO v3 website: https://pjreddie.com/darknet/yolo.
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corresponding belief and added to a set of beliefs handled by the
knowledge manager as described.

4.6. Details towards the implementation

Our multi-agent system is implemented using the Jason framework
[33,29] and the agent’s reasoning cycle is well described in [29,42,43].

Briefly, each Jason agent reasoning cycle (Fig. 3) involves four
phases: (i) sensing phase (in yellow); (ii) beliefs revision and updating
phase (in pink); (iii) deliberative phase (in blue); (iv) acting phase (in
green). Each cycle starts perceiving the environment and ends with
acting operations in the surrounding context.

Once the agent has perceived something from the environment,
internal knowledge handling is executed. The core of the reasoning
cycle is on how the agent selects the plan that best fits with the context.
The reasoning cycle is responsible for the rational process for robot
acting.

As said before, plan is composed of three parts:

triggering event context sub plans actions messages :  ; ; .

and a unification process over beliefs and a first-order logic is applied
from the reasoner.

The first-order logic evaluates logical conditions over boolean ex-
pressions. The formalism used in Jason is inherited from the reasoning
system developed using AgentSpeak(L) [37]. A list of plans is written at
design-time by agent programmer according to the goal that the agent
has to pursue. Each plan is evaluated in the order in which it is written
into the agent description file, written in AgentSpeak(L) language.

The order in which plans figure into the Plan Library is fundamental
for the decision-making process. In fact, the Plan Library is handled as a
queue, where the first plan deployed into the Plan Library is the first
that is select to be checked and executed if it is valid.

The Plan Library contains all plans written at design-time and can
be handled during agent life-cycle adding, revising or removing pre-
defined plans. In this sense, the first plan in the queue that best fit with
the condition is executed.

Executing plans results in actions over the environment or ex-
changing information with other agents in the system.

The Planner agent communicates with the Knowledge Manager and
Virtual Assistant agents for teleoperating activities and with the Motion
agent to move into the environment for performing operations. The
Planner agent’s plan library can be manipulated and it is partially revised
for changing behaviors at runtime. Ideally, this agent is divided into
two parts: (i) plans for robot acting, (ii) plans for administering

therapies. The former is configured for permitting to operate and this
section of plans are written at design time by agent programmer, the
latter is the section of plans that the system activates to administer
therapies to the patient to serve the physician and taking care of the
patient.

In the next section, we describe how to revise therapies remotely
starting from diagnosis and we introduce the mapping process between
therapies and agents’ plans.

4.7. Handling diagnosis and therapy by means of plans

Diagnosis represents the status of the patient in a particular moment
of his life and the triggering condition for administering a therapy.

Therapies or medical treatments are prescriptions aiming to heal a
person with health problems. Each therapy contains a list of indications
and contraindications for the patient and it can be effective or not.
There are several types of therapies, in our approach, we take into
consideration only the following type: Procedure and Human Interaction
– They consist of procedures and practices administered by humans. In this
type falls therapies for counselling, family, education but also psy-
chotherapy, cognitive behavioral therapy, rehabilitation, physical therapy
such as vision therapy, massage therapy. Lifestyle modification and life-
coaching fall also in this category.

Each therapy is supported by a set of conditions to apply it.
Conditions are made by individuating data acquired from the physician,
observing patient’s behaviors and activities.

Let us consider the Pilot Scenario. Alice is affected by bronchitis, so
Dr. Haus inserts his diagnosis and the related therapy by using his re-
mote controller application. The mock-up in Fig. 4 represents the in-
terface of the remote controller application. Handling this interface is
part of the work of the Virtual Assistant agent. From the point of view of
the agent, the diagnosis is translated into a belief or a set of beliefs
useful for selecting a plan. Instead, therapy is translated into one plan.
The system is programmed in a way that lets MyRob to constantly
monitor Alice, administer therapy and update the physician through the
Knowledge Manager agent.

Suppose that something new happens, Alice worsens and a sudden
fever appears. MyRob detects the fever interacting with her and it
signals the Virtual Assistant agent notices the event and an alert is shown
into the Dr. Haus terminal.

Even if Dr. Haus has just deployed some plans for handling fever
and MyRob could select the best plan to face this new situation, it alerts
him and waits for a consent for administering the alternative therapy.
Dr. Haus can confirm previous therapy and lets MyRob administer the

Fig. 3. The Jason reasoning cycle represents the
reasoning process behind mechanisms that
move the intelligence of the agent platform. This
picture figures out the modules composing the
Agent class in Jason framework. In yellow
are marked modules for perception phase, in
pink are highlighted beliefs revision modules,
in blue are emphasized modules for decision-
making phase and in green the acting mod-
ules. The reasoning cycle is redrawn from [29].
(For interpretation of the references to colour in
this figure legend, the reader is referred to the
web version of this article.)
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recovery plan or inspect data for changing therapies. If Dr. Haus decides
to consent previous therapy, the Virtual Assistant agent sends an ack to
the Planner agent and MyRob continues working applying it, otherwise,
Dr. Haus has to produce a new therapy. The multi-agent system allows
Dr. Haus to insert all the needed therapies for facing the disease. He
does this by evaluating information acquired by MyRob through its
components.

Dr. Haus compiles the new therapy following some basic rules in
order to be compliant with the system. Rules are necessary for trans-
lating therapies in the “AgentSpeak Language”. This task is also in
charge of theVirtual Assistant agent.

The translation process follows some basic rules, resumed in
Table 3:

• a therapy owns a triggering event, conditions for detecting it and a
list of procedures to act when conditions appear and they are ver-
ified;
• the triggering event has to catch the status that the system has to
attention for handling the situation. It is defined with a label that
represents the triggering event name;
• conditions have to be identified with in mind a list of symptoms or
observations that the architecture can retrieve from the environ-
ment. Symptoms are perceptions or beliefs and they are used in the
unification process and logical inference for validating a context;
• the procedures list has to contain actions, behaviors or other

therapies (plans) that try to resolve the issue acting or interacting
with the agent;
• a procedure can be a simple action or a more complex structure that
involve the usage of other therapies;
• an alternative therapy can be added into the plan library keeping the
same triggering event name and changing conditions for validating it.
If conditions of the default therapy fail, an alternative therapy can
be executed.

For adding therapies, Dr. Haus has to choose a triggering event
name used to add the therapy into the cognitive system. To do this, Dr.
Haus uses the interface (Fig. 4) shown by the Virtual Assistant agent.
Before, he has to add information useful for applying the therapy that
works as conditions for administering the therapy.

In this case, Dr. Haus evaluates that one pill of paracetamol is a
good therapy to cure Alice of the fever. Dr. Haus clicks on Add
Information button and he writes:

alice; current_diagnosis; fever;
fever; paracetamol; 1;

Once aforementioned information has been added to the knowledge
base, new beliefs are registered. The new beliefs are necessary for the
new treatment. Now a new therapy can be added clicking to the
namesake button in the interface. Dr. Haus choices a triggering event
name that represent the health problem. Dr. Haus clicks on the Add
Therapy button and assigns the name for this therapy through a
textbox. He decides to call it to_handle_fever. A new screen is
launched and Dr. Haus has to select which conditions (beliefs) must be
satisfied to perform the therapy, next to Dr. Haus has to compose the
list of indications to specify which behavior MyRob has to show to
perform the therapy. The list of behaviors is shown and Dr. Haus in-
dicates the order of action execution. The list of indications for the new
therapy is translated in plan and the ordered list is made by Dr. Haus. It
looks like:

Fig. 4. A mock-up of the Virtual Assistant agent deployed into the physician’s terminal. The tab contains details about the patient. Alerts, warnings and info are
shown into the namesake pills, the data-logger contains exchanged messages.

Table 3
Mapping table between therapy and plan. The table contains the one-to-one
correspondence that we identified for letting remote deployment of therapies in
robotic caregivers that use the proposed architecture.

Therapy Plan

Diagnosis Identifier Triggering Event
Condition to administer therapy Context Pre-Conditions
Indications and Treatments Actions, Sub-plans, Messages
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to_handle_fever: doctor(D) & D==‘Dr. Haus’ &
patient(A) & A==‘Alice’ & current_diagnosis(F) & F==‘fever’ &
fever(P,Q)
< -.check_bodytemperature(A);
.search_medicine(P);.prepare_medicine(P,Q);
.take_drug_to(A);.check_therapy_taken_by(A);
.signal_to_physician(D).

The physician can select actions that have been previously pro-
grammed for a specific robot.

Summarizing, Dr. Haus interacts with Virtual Assistant agent for
inserting new therapies for Alice (Fig. 4), this agent translates therapies
in plans and sends plans to the Planner agent. The Planner agent pushes
new plans into its own Plan Library. The Motion agent makes sure
MyRob can operate for administering the therapies.

5. Discussing the architecture quality and validation

The contribution of this paper lies in the multi-agent architecture
defined for solving problems related to healthcare. In this section, we
validate the architecture employing one of the mainly assessed methods
for analyzing and validating software architectures: the SAAM,
Software Architecture Analysis Method [44].

Validating complex systems, in terms of the related software ar-
chitectures, has boosted the interest of scientists and engineers. The
main goal of the evaluation process depends on how much software
systems are capable of fulfilling its quality requirements and identifying
risks [45–47]. So, what makes an architecture good is in how much it
fits the goals and needs of the organization that is going to use it.

A recent survey [48] presents a comparative analysis of software
architectures evaluation methods, their result is a taxonomy of eva-
luation methods. From this taxonomy, it arises that comparing and
validating software architectures is a hard task due to the different
languages and notation used for defining architectures. The method we
choose provides a notation for describing the architecture, mainly
highlighting its structural perspective. Also, this method starts from
considering the goals underpinning the creation of the software systems
and allows them to link them to some quality attributes. In so doing, we
can focus on the quality concerns satisfying some software quality
factors: maintainability, portability, modularity, reusability and ro-
bustness.

The activities reported in SAAM [44] for evaluating an architecture
are:

1. Characterize a canonical functional partitioning for the domain.
2. Map the functional partitioning onto the architecture’s structural de-
composition.

3. Choose a set of quality attributes with which to assess the architecture.
4. Choose a set of concrete tasks which test the desired quality attributes.
5. Evaluate the degree to which each architecture provides support for each
task.

The first activity implicitly led us to identify roles and responsi-
bilities to assign to agents in the architecture in Fig. 1. Functional
partitioning consists of the separation of concerns between managing
the environment and managing knowledge for the decision process. In
Fig. 5, we represent the result of converting our architecture using
SAAM notation. In so doing, we highlight the computational entities
and, data and control connections among them. SAAM then prescribes
to choose some quality attributes. In our case, maintainability, port-
ability, modularity and reusability are intrinsic in the nature of an agent
architecture. The agent paradigm allows designing a software system
with a high degree of modularity and a low level of coupling among
components that guarantee these quality factors. Going into details of
this topic is out of the scope of this paper. We selected robustness for
validating the architecture and we also based on FURPS [49,50] re-
quirements category. Robustness [51] refers to the degree to which a

system or component can function correctly in the presence of invalid inputs
or stressful environment conditions.

We validated our architecture in the spirit of understanding how
much it can cope with errors and unknown situations during execution.
Indeed, our need is having software able to adapt to changes and de-
veloping an architecture supporting such a kind of software. To validate
this aspect, we identified some tasks with which evaluating the level of
support provided by the architecture, as prescribed in SAAM. Among
the tasks we used for the analysis, we report the following: (i) re-
cognizing new patient’s state, (ii) adding new suitable plans and (iii)
reusing previous successful plans.

For validating the architecture in supporting these tasks, we have to
refer to its representation in the SAAM notation (Fig. 5). The SAAM
notation has been created for separating the control flow from the data
flow. As can be seen, we identified three basic processes whose thread
of control is assured by the control flow and the data flow among the
computational components, the active and passive data.

Recognizing new patient’s state is a scenario in which guarantying the
quality of robustness is fundamental. This scenario involves only two
processes and one thread involving at the same time one control flow
and one data flow. Inside the Deliberation Controller process, the re-
sponsibilities of computation are divided among four computational
components. Each component is in charge of one specific monitoring
function that is directly transferred to the System Controller process.
Computational components may communicate with each other; com-
munications are direct and not mediated by other components and
processes. This point assures that a change in the environment is im-
mediately caught and transferred to the related computational entity
and then directly communicated to the knowledge controller. Each
computational entity is atomic and quite reactive, so robustness and
ability to intercept changes is comparable to a portion of object-or-
iented code devoted to catching an event.

Adding new suitable plans, this task is supported by a single compu-
tational component inside the Virtual Assistant Controller computa-
tional component. Only one control flow and one data flow are neces-
sary. The communication with the Planner computational component,
devoted to managing the new plan, is direct. In this case, since the
Virtual Assistant provides the right interface for inserting a new plan,
an error is highlighted during the insertion process and immediately
communicated, avoiding the risk of failure or unexpected input pro-
pagation.

Reusing previous successful plans is ensured by the system. These
plans are stored in the Working Memory and are available to be selected
when the patient’s conditions fit with the plan’s preconditions. Each
time that the patient’s state changes, the Multi Agent System Controller
computational module takes control for actuating a plan, interacting
with the user if needed through the Virtual Assistant Controller. Later
on, it sends data and control to the Deliberation Controller process. In
this task, all computational components are involved, but mainly only
two are relevant, the Multi Agent System and the Deliberation
Controllers. Supporting this task is more demanding since there are two
data and one control flow exchange. The process involved in the thread
of control is of two different levels where one comprises the second.
Dependencies between processes could create an architectural coupling
that may slow the thread of control for supporting that task. For in-
stance, the scheduled plan might depend on other processes’ results and
the overall outcome is afflicted by the computational time needed. In so
doing the reaction to the change may not be responsive and other
sudden events may invalidate the chosen plan, affecting the system’s
robustness. Hence, this situation may make all the system asynchronous
towards changes. We are investigating an intelligent support system
based on scene understanding for forecasting events to face the pro-
blem. However, the task is supported, and adaptation to changes is
guaranteed.

We evaluated some other tasks that we do not report here because
they are minor tasks, and the conclusion we drew was in the same line
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as the previous ones.
From the validation process, we realized that the proposed agent

architecture fits all the needs related to the functional requirements in
Section 3. As said, architecture is not good or bad in general but in
concerning some specific goals. In this case, SAAM revealed that the
architecture is modular and decoupled enough for supporting in re-
acting to changing at runtime.

In the future, we will complement this validation with metrics and
analysis results. We will inspect the flow of events and how they will be
supported by the robotic platform. Now, this cannot be evaluated, be-
cause we tested modules independently from the operational scenario.
Modules were tested onto the robot Pepper6, simulating hypothetical
input perceived from the environment.

6. Discussion and conclusion

From a state-of-the-art review, robots used in healthcare act mainly
as teleoperators. We propose the use of robots and agent technology to
provide the doctor with slightly more intelligent support than a simple
teleoperator system. The robot does not make decisions but, pro-
grammed based on the agent architecture we propose, can interact with
patients and doctors in a changing environment and alert the doctor or
suggest strategies when necessary. The robot is endowed with the
ability to handle unforeseen situations and to communicate and colla-
borate with the physician, thus providing him with intelligent support.

Using a robot produces several advantages, mainly having an avatar
of the physician that acts on his behalf. Employing robots increases
healthcare facilities’ efficiency when the number of physicians is low,
reduces the risk of infections due to pandemic such COVID-19 [52],
because a robot is immune, speeds up the detection of new occurring
situations.

The architecture we propose (shown in Fig. 1) resembles a cognitive
model and it is implemented using the multi-agent approach. It has
been inspired by our previous works in the Human-Robot Interaction
(HRI) area [53,54].

The main contribution of this work is the creation of an intelligent
bridge between the physician and the patient. It has been realized by
fully exploiting the strength of BDI multi-agent systems.

The proposed architecture offers the advantage to split in the space
all the system’s functionalities. In this way, the overall system may be
easily scalable and adaptable to any context. The agents, to be im-
plemented based on the architecture, have been conceived at a higher
level than the implementation one. Hence, thinking to their macro-level

functionalities. It is for this reason that the combination of architecture
plus agent system can be adapted and extended to other and more
complicated clinical scenarios. For instance, specialized agents could
support specialized physicians through intelligent software that uses a
data-driven approach for building interfaces as in [55] or including
techniques for data manipulation as in [56,57]. Moreover, everything
related to monitoring can be deployed in various sensors to adopt IoT
techniques for patient monitoring. In the next future, we are planning
to realize a physical deployment on nursing homes to validate our
system. We will evaluate trials using the experience of domain experts
and metrics for software analysis on collected system results. Given our
experience in the development and use of robotic systems, we claim
that some disadvantages and limitations we might found so far are that
the potential efficiency of the whole system clashes with technological
problems related for example to the robot’s abilities or the interaction
of the robot with the human. In the future, we will fine-tune these last
two aspects, especially the one related to interaction, including in this
context elements of Human-Robot Teaming Interaction and the results
that the Robotics Lab of Palermo has achieved so far in this field, such
as the integration of the method proposed for learning plans [58] au-
tonomously.
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