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Overview

Homo sapiens harbor a complex and dynamic community of microorganisms, collectively 

known as ‘the microbiome’, that together constitute the largest ‘dispersed organ system’ 

on and within the body, cumulatively more massive, more metabolically active, and much 

more genetically complex than all of the multiple cell types of the human liver. Together 

with host cells and their genes, the microbiome constitutes the ‘metaorganism’, defined as 

an assemblage of interacting biological entities with significant commensal or symbiotic 

benefit to the entire lifeform. The human GI-tract microbiome’s dynamic complexity of 

different microbial species is largely dependent on diet, dietary fiber, environmental and 

lifestyle-factors, and the most recent evidence suggests that this in turn contributes to human 

behavior and immunological and neurological health and disease. This communication-

perspectives article will briefly discuss the relatively recent research advances at the 

intersection of human GI-tract microbiome-derived pro-inflammatory neurotoxins and the 

effects of low-fiber diets, and environmental and lifestyle factors on microbial abundance 

and speciation. In addition to the nutrients obtained from our diet it is becoming 

increasingly clear that beneficial dietary effects on the maintenance of a healthy GI-tract 

microbiome may also reduce the abundance of pro-inflammatory neurotoxins with gastric, 

immunological and neurological implications. This paper will further focus on current 

research developments: (i) of one of the human GI-tract’s most abundant Gram-negative 

bacterial species Bacteroides fragilis (of the phylum Bacteriodetes); (ii) discuss recent 

advances in our understanding of the contribution of B. fragilis-derived pro-inflammatory 

neurotoxins and their noteworthy contribution to biophysical barrier disruption and systemic 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Correspondence to: Walter J Lukiw, Bollinger Professor of Alzheimer’s Disease, Departments of Neurology, Neuroscience and 
Ophthalmology, Neuroscience Center and Department of Ophthalmology, Louisiana State University Health Sciences Center, New 
Orleans, LA 70112 USA, Tel: +1-504-599-0842; wlukiw@lsuhsc.edu. 

HHS Public Access
Author manuscript
Integr Food Nutr Metab. Author manuscript; available in PMC 2020 December 29.

Published in final edited form as:
Integr Food Nutr Metab. 2020 March ; 7(1): .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects; and (iii) evaluate their potential influences on progressive, age-related inflammatory 

neurodegenerative disease such as those associated with the Alzheimer’s disease (AD) 

process.

The human GI-tract microbiome

The microbiome of the human gastrointestinal (GI) tract contains by far the largest reservoir 

of microbes in the body, and is composed of about ~1015 microorganisms from many 

thousands of different microbial species; the latest estimate is that the number of microbial 

genes in the human GI-tract microbiome outnumber ‘human ‘host’ genes by about ~837 to 

1 [1–9]. This tremendous genetic abundance and diversity of the cumulative microbiome 

genome and the transcription and translation of components needed for highly integrated 

biochemical signaling pathways forms the basis for GI-tract microbial influence on health 

and disease [9–15]. Especially over the last decade have we just begun to appreciate 

that the human GI-tract is a very bioactive and dynamic source of microorganisms that 

possess a staggering complexity and diversity [7–11]. The vast majority of the human 

GI-tract microbiota is composed of anaerobic or facultative anaerobic bacteria, with fungi, 

protozoa, Archaebacteria (an ancient intermediate microbial group between the prokaryotes 

and eukaryotes), viruses and other microorganisms making up the remainder. Interestingly, 

of all mammals so far characterized, human GI-tract microbial densities of up to 1012 per 

cm3 represent the highest recorded packing density of any known microbial ecosystem, 

and only 2 of the 52 known major bacterial divisions, currently identified by 16S rRNA 

sequencing and metagenomics analysis, are abundant in the average, healthy human GI-tract 

microbiome. These 2 major bacterial divisions include the Gram-positive Firmicutes (~51% 

of the total) and the anaerobic Gram-negative Bacteroidetes (~48%). The remaining 1% of 

microbiome-resident phylotypes are distributed amongst the Cyanobacteria, Fusobacteria, 

Proteobacteria, Spirochetes and Verrucomicrobia. In addition to various different species 

of Archaebacteria, fungi, protozoa, viruses and other commensal microorganisms these 

microorganisms make up the essential ‘core’ of the human GI-tract microbiome [4–9,16–

22]. That the Firmicutes and Bacteroidetes were preferentially selected from the ~52 

bacterial phyla available in the earth’s biosphere is of considerable evolutionary interest 

with implications for the ‘hologenome’ theory. This theory postulates that it is not the 

individual organism, but rather the host organism together with its associated symbiotic 

microbial communities, or complete ‘metaorganism’ with the repertoire of all genes that 

form the ‘metagenome’ that should be considered as the basic unit of evolution, natural 

selection, genetic composition and potential for that individual organism [23–26]. Indeed 

the ‘hologenome’ theory incorporates the idea that the host along with its intracellular and 

extracellular microbiome functions as a unique and distinctive biological entity. Currently 

one of the most thoroughly studied and anatomically, developmentally, evolutionarily, 

immunologically and metabolically characterized phylum in the entire human GI-tract 

microbiome consist of the Gram-negative anaerobic bacillus of the genus Bacteriodetes and 

the abundant species Bacteroides fragilis [26–35].
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Bacteriodetes and Bacteroides fragilis

About ~99.5% of all of the microbes in the human GI-tract microbiome consist of facultative 

and/or obligate anaerobic bacteria depending mostly on their position along the human 

digestive/intestinal systems that measures about ~3.5 cm in diameter and approximately ~7 

m in length [1–6,21,36–39]. Perhaps not too surprisingly the microbes in the deeper, more 

anaerobic parts of the small intestine are the most enriched in anaerobic microbial subtypes 

suggesting a robust adaptation to the pH and the biophysical and microbial composition 

of that segment of the GI-tract environment [14,15,21–31]. Within these specific GI-tract 

regions the most abundant Gram-negative bacteria of the human GI-tract microbiome consist 

mostly of the phylum Bacteriodetes, with a major genus-species being represented by the 

obligate Gram-negative anaerobe non-spore forming bacillus Bacteroides fragilis. The genus 

Bacteroidetes and the species Bacteroides fragilis: (i) are amongst the most studied and 

genetically understood human GI-tract resident microorganism [3,27–29,32–35]; (ii) lie at 

the core of the human GI-tract microbiome in both American and European populations 

[3,16,17]; (iii) exhibit a surprising amount of intra-species genomic diversity and associated 

range and variety of potential biochemical functions [3,5,34,35]; and (iv) can generate some 

of the most potent pro-inflammatory and pathogenic neurotoxins of all lifeforms yet studied 

[10–13,21,27–29]. Further, in these deep GI-tract regions B. fragilis: (i) are present at about 

one-hundred times the abundance of Gram negative bacilli of the phylum Proteobacteria and 

the genus-species Escherichia coli [28,29]; (ii) colonize this section of the human GI-tract 

at densities of up to 8 × 1010 CFU/cm3; this being the highest density of any microbial 

colonization known in nature [21–31]; (iii) reside and proliferate exclusively in the GI-tract 

of mammals [27–35]; and (iv) normally constitute an abundant repository of commensal, 

symbiotic bacteria generally highly beneficial to human immune-, digestive-, nutritive- and 

neurological health[31,32].

The significant health benefits of Bacteriodetes and Bacteroides fragilis in particular to 

human health is due in part to the remarkable ability of Bacteroides species to metabolize 

dietary fiber into volatile short chain fatty acids (SCFAs; including acetate, butyrate, lactate, 

propionate, valerate and other lipid nutrients) and/or to biosynthesize complex sugars 

and polysaccharides to maintain overall glucose homeostasis in multiple biophysiological 

compartments of the host, such as the systemic circulation, intracellular compartments and 

cerebrospinal fluid (CSF) [20,35,40]. SCFAs: (i) ordinarily function in the development, 

homeostasis, and maintenance of the host immune, neuro-endrocrine and digestive systems; 

and (ii) play an important regulatory role in glucose homeostasis, lipid metabolism and anti-

inflammatory signaling in endothelial cells of the lining of the GI-tract, sometimes known 

as the intestinal endothelium [27–29]. Besides being of immense benefit to human general 

health in the extraction of energy from the diet, absorption of nutrients and generation of 

vitamins (such as vitamin B12 and K), amino acids (such as lysine) and peptide sugars 

(such as peptidoglycans), the microbiome anchors a robust systemic immune-defense system 

against infective pathogens [10–12,15–17]. Interestingly bacteria and microorganisms that 

make up the smallest 1% of the human GI-tract microbiome have a disproportionately large 

impact on, and relevance to, human disease, and a major function of abundant species 
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normally residing in the healthy GI-tract microbiome is to regulate the proliferation of any 

potentially pathogenic microbes and keep them under homeostatic control [40–42].

On the other hand some of the most potent pathogenic and pro-inflammatory neurotoxins 

known originate from enterotoxigenic strains of the GI-tract microbiome-abundant anaerobic 

bacillus Bacteroides fragilis [27–35]. These include a group of extremely pro-inflammatory 

glycolipids known as lipopolysaccharide (LPS), lipooligosaccharide (LOS; truncated 

versions of ‘regular-sized’ LPS molecules), barrier-disrupting, cell-cell adhesion proteins, 

including E-cadherin cleaving-and-destroying enterotoxins such as Bacteroides fragilis 
toxin (BFT) or fragilysin, a large family of species-specific bacterial amyloids and 

information-carrying small non-coding RNAs (sncRNAs) similar in size and ribonucleic 

acid structure and composition to microRNAs (miRNAs) of the human host [43,44]. 

Together these B. fragilis exudates are known to negatively affect the structure and function 

of biophysiological barriers, such as the gastrointestinal (GI) mucosa that forms the basis 

for the GI-tract barrier, and the blood-brain barrier (BBB), to disrupt normal barrier-based 

selection and exclusion properties, enabling these toxic exudates to enter the systemic 

circulation and pass through the BBB to elicit inflammatory neurodegeneration and induce 

neuronal dysfunction, atrophy and loss in the CNS [13–18]. Very recently it has been shown 

that BF-LPS is abundant in AD brain neocortex, and in later stages of the disease can 

encapsulate neuronal nuclei of the neocortical hexalayer into ‘LPS cage’ structures and in 

doing so impair the exit of neuron-specific messenger RNA (mRNA) transcripts such as 

synapsin (SYN) and the neurofilament light (NF-L) chain protein [44–46]. Down-regulation 

of SYN and NF-L gene expression is an important characteristic of AD neuropathology and 

AD amyloids (such as Aβ42 peptide) appear to facilitate LPS entry into human neurons [45–

47]. Another very recent finding is that the environmentally abundant neurotoxin aluminum 

sulfate significantly induces the generation of LPS from certain species of the human 

GI-tract microbiome-resident genus Bacteriodetes [48,49].

Neurotoxins derived from the human GI-tract microbiome - GI-tract 

exudates – BF-LPS and fragilysin

The multiple strains of Bacteroides fragilis (B. fragilis) in the human GI-tract consist of two 

predominant subspecies - distinguished in part by their gene makeup, their genetic encoding 

capabilities and potential to biosynthesize and secrete: (i) extremely pro-inflammatory 

lipopolysaccharides such as BF-LPS; and (ii) to produce a zinc-dependent metalloprotease 

enterotoxin (sometimes recognized as a metalloproteotoxin or metalloprotease), also known 

as B. fragilis toxin (BFT) or fragilysin (EC 3.4.24.74) [33]. Species of Bacteroides that do 

not secrete BF-LPS or BFT (fragilysin) are termed ‘nontoxigenic B. fragilis’ while those 

that do secrete BF-LPS or BFT are called ‘enterotoxigenic’ strains of B. fragilis [32,33]. 

The GI-tract microbiome in addition secretes copious quantities of bacterial amyloids 

and small non-coding RNAs (sncRNAs) of which virtually nothing is known, or if they 

act independently or together to induce neuro-inflammation and neuropathology [43–49]. 

Within the last several years it has been demonstrated that enterotoxigenic strains of 

B. fragilis (ETBF) proliferate rapidly in the mammalian GI-tract both in the absence of 

adequate dietary fiber and in the presence of high-fat cholesterol (HF-C) diets [35,50–52]. 
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This remarkable species propagation of a GI-tract resident microbe based on dietary fiber 

intake appears to enhance the intestinal abundance of B. fragilis and hence the potential of 

this Gram-negative obligate anaerobe to secrete its formidable array neurotoxic exudates. As 

mentioned previously these primarily include (i) the lipoglycan lipopolysaccharide (LPS), a 

particularly potent, pro-inflammatory LPS glycolipid subtype (BF-LPS) [10–12]; and (ii) the 

hydrolytic, extracellular zinc metalloproteinase known as Bacteroides fragilis toxin (BFT; 

also known as fragilysin); either alone or together these are respectively amongst the most 

pro-inflammatory lipoglycans and enterotoxins known [53–55]. For example, as quantified 

by the ability to generate the pro-inflammatory transcription factor NF-kB (p50/p65) in 

human neuronal-glial (HNG) cells in primary co-culture, BF-LPS was found to be the most 

inflammation-supporting factor in a large analytical panel of cytokines and amyloids, either 

alone or in combination [43,44]. The other major B. fragilis-derived, secreted enterotoxin 

BFT (fragilysin) has long been known to hydrolyze extracellular matrix proteins, and disrupt 

tight junctions of intestinal cells while also degrading intracellular and cytoskeletal proteins 

such as actin, myosin and other filamentous proteins [55,56]. BFT also causes significant 

oxidative DNA damage, epithelial membrane barrier damage and activation of pathogenic 

STAT3/Th17 immune responses [34,57]. Importantly, both BF-LPS and BFT (fragilysin) can 

leak through the normally protective mucosal barriers of the GI-tract intestinal endothelium 

to bring about substantial inflammatory pathology in both the systemic circulation and 

after BBB transit into vulnerable CNS compartments, including the highly vascularized 

neocortical parenchyma of the brain [29,53,55,58,59]. Indeed, while Bacteroides fragilis 
is an anaerobic bacillus and part of the normal microbiota of the human colon and is 

generally commensal, this microbe can cause a ‘smoldering’ systemic infection if displaced 

into the bloodstream or surrounding tissue following disease, trauma or surgery [58,60–66]. 

It is important to note that BF-LPS and BFT together have been detected both in the 

general circulation in patients exhibiting systemic inflammation, in the brains of amyloid 

over-expressing transgenic Alzheimer’s disease (AD) murine models and in the blood serum 

and parenchyma of advanced AD patients [66–69].

When the highly toxic exudates of enterotoxigenic strains of B. fragilis escape the 

microbial-dense environment of the human GI-tract they can produce substantial systemic 

inflammatory pathology with significant mortality and morbidity. B. fragilis proliferation 

and excess is associated with the development of multiple pro-inflammatory bowel 

cancers, bacteremia, brain and intra-abdominal abscess, cellulitis, colitis, diabetic ulcer, 

diarrhea, necrotizing fasciitis, peritonitis, sepsis, septicemia, systemic infection and systemic 

inflammation, the development of neurological diseases involving progressive, age-related 

inflammatory neurodegeneration (such as AD), and those neurological disorders that 

display a significantly elevated incidence of atypical developmental programming against 

a background of aging (such as schizophrenia) [37,70–76]. Very recently LPS-induced 

systemic inflammation has been associated with synaptic loss and cognitive decline in 

multiple human neurological disorders and in transgenic murine models for AD, and a 

role for LPS-mediated microglial release of pro-inflammatory cytokines, such as interleukin 

IL-1β, is currently based on both in vivo and primary culture studies in vitro [53,73].
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Diet and dietary fiber

While it is generally appreciated that healthy diets are replete with vitamins, essential 

trace metals, amino acids, fatty acids, lipids and nutrients for human health benefit it is 

not as well acknowledged that these same wholesome diets are also packed with both 

soluble and insoluble forms of dietary fiber. Generally, the term fiber refers to all the 

parts of plant-derived foods that cannot be easily digested or absorbed by the body. 

Soluble fiber is hydrophilic, water-soluble and turns into a gel-like constituency during 

digestion; examples are cereals, legumes of the family Fabaceae (or Leguminosae), fruits 

and vegetables of the families Solanacea (tomatoe), Brassicas (cruciferous vegetables) 
and others such as seaweeds from the Plantae kingdoms of chlorophytes, rhodophytes, 
phaeophytes and cyanophtyes. On the other hand insoluble fiber does not dissolve in water 

and is left relatively intact as food moves through the GI-tract; important examples of 

insoluble fiber includes ‘hard’ grains such as barley (Hordeum vulgare) and whole grain rice 

(Oryza sativa), cruciferous vegetables of the family Brassicaceae and dark leafy vegetables. 

Perhaps as interesting as the contribution of Firmicutes and Baceriodetes to a healthy 

human microbiome is the contribution of Fabaceae or Leguminosae or Brassicas or other 

fiber-laden dietary nutrition to microbiome health, and serves as another interesting example 

of ‘interkingdom communication’, ‘beneficial plant-microbe interactions’ and dynamic 

signaling amongst selective species which inhabit our biosphere [73,75,77].

The average American diet is woefully inadequate in both soluble and insoluble forms 

of dietary fiber. For example for optimum health both the United States Food and Drug 

Administration (FDA) and the American Heart Association (AHA) suggest that the total 

daily fiber intake should range between 21–25 gm per day (for women under 50) and 

between 30–38 gm per day (for men under 50); while the average American diet contains 

only a fraction of this, averaging only 12–15 grams of total fiber per day or only 35–65% 

of what is termed as an ‘ideal fiber intake’ [74–78]. For one of the few thorough studies 

conducted in mammals (Sus scrofa domesticus) by Heinritz et al. reported that low-fat/high-

fiber (LF/HF) diets stimulated beneficial bacteria and SCFA production while a high fat/low 

fiber (HF/LF) diet fostered the proliferation of those bacterial groups, including B. fragilis, 

associated with a negative impact on health conditions - concluding that there are important 

relationships amongst dietary fiber and fat intake, nutrition, gut microbial composition and 

host health [5,51]. In a more recent study in Homo sapiens the consumption of almonds, 

a rich source of both soluble and insoluble fiber, unsaturated fats, and polyphenols, all 

nutrients that can favorably alter the composition of the gut microbiome, were found to 

decrease the abundance of the pathogenic bacterium Bacteroides fragilis by 48% (overall 

relative abundance, p<0.05) [50]. It appears from multiple studies and from the evidence 

available that an adequate intake of dietary fiber is associated with digestive health and 

reduced risk for heart disease, stroke, hypertension, certain gastrointestinal disorders, 

obesity, type 2 diabetes, certain cancers such as colorectal cancer as well as neurological 

diseases ranging from schizophrenia to AD [13,34,37,42,43,50,57,74].

Several excellent and extensive recent reviews on the ability of fiber-rich foods to suppress 

the incidence and mortality from ‘Western’ diseases, notably cancers of the colon, breast, 

liver, cardiovascular, infectious, and respiratory diseases, diabetes, obesity and neurological 
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disease have recently appeared and will not be dealt with further here. Most of these reviews 

are based on the original ideas of the British surgeon Denis Burkitt (1911–1993) and others 

on the ‘dietary fiber hypothesis’ and its important role in the maintenance of human health 

[75–79].

Environment and lifestyle

Environment and lifestyle are two highly integrated elements that help define the biological, 

biochemical, biophysiological and microbial niche in which each organism occupies. 

Our environment for example directly impacts human lifestyle choices which can have 

a critical, vital and determining influence on the health, complexity and dynamics of 

the GI-tract microbiome, and the microbial-derived supply of elements ranging from 

beneficial to detrimental and associated with homeostatic dysfunction and disease (Figure 

1). These elements broadly impact glucose and energy metabolism, cellular, nuclear and 

metabolic function and homeostasis, the health of the GI-tract and BBB membranes and 

other biophysiological barriers, immunological, neuroendocrine and digestive activities 

and neurobehavioral development, maintenance and neurological function [80–82]. One 

continuing paradox of Westernized societies is that as the leading historical causes, 

constraints and limitations to human life expectancy are diminished or eradicated by 

progressive and significant advances in medicine, diseases related to poor dietary choices 

(including low fiber and high fat diets), sedentary life-styles, excessive and prolonged 

exposure to environmental toxins from toxic contaminants in our diet to antibiotics, food 

additives and food processing, health economics and age-related disease have now become 

major contributors to human mortality. The dynamics of the human GI-tract microbiome 

is becoming increasingly recognized as perhaps the most important contributor to many 

of these diseases especially through the provision of nutrients, the modulation of both 

active- and innate-immunity and the myriad of signaling intermediates that regulate diverse 

biological systems driven by the transcription, translation and the massive interaction and 

integration of both the human host and the microbial ‘hologenome’ acting together.

Very recently, in studies involving the functional and phylogenetic diversity associated with 

global populations, an extensive biostatistical- and bioinformatics-based analyses of the GI-

tract ‘metagenomes’ of ~2100 human donors detected about ~22.3 million non-redundant 

prokaryotic genes, and at least half of all of the genes identified were unique to the 
individual from which that GI-tract microbiome was derived [9]. When compared to the 

established human genome content of 26.6 thousand protein-encoding transcripts of the 

human genome sequencing project obtained about ~18 years ago, the number of microbial 

genes in the human GI-tract microbiome alone was found to outnumber human genes 

by about 837 to 1 [9,83–85]. In a related study from a total of 9,428 global, body-wide 

human metagenomes, 154,723 microbial genomes and 2.85 million genes were annotated, 

and thousands of microbial genomes were identified from yet-to-be-named species [3,83]. 

Perhaps the most fascinating and novel findings were: (i) that ~50% of all of an individual’s 

microbial genetic make-up was found to be unique to that individual; and (ii) the huge 

genetic variation in many intestinal bacteria, including the human GI-tract abundant microbe 

B. fragilis. Overall this suggests that even for common, well-studied microorganisms a 

surprising amount of intra-species genomic diversity and associated biochemical functions 
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still remains to be categorized. These findings continue to support the GI-tract microbiome 

as being an extremely active, dynamic and changing ecosystem dependent on the host’s 

age, diet, habits, environment, ethnicity, and health and/or disease status [86–89], and that 

lifestyle choices and environmental variables including for example, the host’s choice of 

geographical and environmental location has a significant bearing on both the dynamic 

composition of their microbiome and through this their overall health status [90–100].

Use of probiotic and/or prebiotic to approaches to optimize human health

As our characterization and understanding of the human microbiome advances, there is 

emerging the intriguing possibility that the constitution of the GI-tract microbiome could 

be transiently or permanently altered through diet, dietary fiber intake, probiotics and/or 

prebiotics to optimize human health and both lower the incidence or even treat disease. 

This approach might be especially useful in those disorders resistant to pharmacological- or 

immunological-based therapies. For example, experiments in transgenic murine models as 

well as emerging human clinical studies have revealed that therapeutic manipulation of the 

microbiota, using fecal microbial transplantation, natural or engineered probiotics, or pre-

biotics represent effective nontoxic and non-invasive approaches for the treatment, clinical 

management and/or prevention of for example, allergies, autoimmune diseases, Clostridium 
difficile infection and enhance the efficacy of certain cancer immune-therapeutics, especially 

in the elderly [21,30,89,95–100]. Preliminary results from our own laboratory using 

the 5xFAD amyloid-overexpressing murine mouse model of AD (containing 5 familial 

Alzheimer’s disease genes and based on a C57BL6 murine background) shows that animals 

fed high-fiber (both soluble and insoluble) diets have a lower abundance of B. fragilis in 

their GI-tract microbiome compared to age-matched control mice receiving standard diets, 

and show significant improvement in cognition and memory tasks as they age (manuscript in 

preparation).

Summary

Over the last decade, our understanding of the immense contribution of GI-tract microbiome 

to human physiology and host metabolic functions has increased dramatically, yet progress 

is limited by the sheer complexity and dynamics of these microbial communities [3,81]. 

Microorganisms of the human GI-tract microbiome are now generally appreciated as playing 

some critical role in the maintenance of health and the development of disease, however the 

complexity and diversity of this ‘dispersed organ system’, and commensal and symbiotic 

relationships with human host cells, particularly with host cells of the central nervous system 

(CNS) remains incompletely understood. Neurotoxins detrimental to the normal structure, 

function and signaling properties of brain cells: (i) may be acquired directly via naturally-

occurring, plant growth- and plant yield-promoting factors or processed components of 

ingested foodstuffs; (ii) from the environment; (iii) from the individual lifestyles that 

we live; and also (iv) from the neurotoxic exudates derived from thousands of species 

of stressed GI-tract resident microbes. Diet, environment and lifestyle are inextricably 

linked when considering ‘hologenome’ aspects of a highly networked ‘metaorganism’ and 

metagenomics factors with the most recent findings that microbiome-derived neurotoxins 

can strongly contribute to human diseases from intestinal and systemic inflammation, to 
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obesity to schizophrenia and to Alzheimer’s disease (AD) [21,27–33,37–40]. For example, 

in fiber-deprived diets which can be strongly impacted by environmental and lifestyle 

choices certain GI-tract abundant Gram negative bacilli such as B. fragilis appear to strongly 

proliferate, increasing both their potential and abundance for the synthesis and release of 

neurotoxins by mass action alone. Importantly, especially against a background of unwise 

and unhealthy environmental and lifestyle choices, some of the most potent neurotoxins 

known can be a significant and a continuous ‘life-long’ source from the diet, in part through 

an insufficient supply of dietary fiber and the maintenance, support and proliferation of 

dysbiotic microbes that maintain their persistent and continual residence in the human 

GI-tract microbiome.
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Figure 1. 
Highly simplified schematic of an integrated signaling system consisting of dietary-, 

environmental- and lifestyle-derived elements which provide neurotoxins – both neuro-

inflammatory and neuro-pathogenic - to the brain and central nervous system (CNS). 

Dietary factors, such as both soluble and insoluble fiber from the diet are becoming 

increasingly appreciated as critical regulators of the abundance, speciation and health 

of microbial species in the microbiome [95–100]. In turn, abundant microbiome-resident 

Gram negative bacilli such as Bacteroides fragilis are known to secrete a formidable array 

of highly pro-inflammatory glycolipids, lipopolysaccharides (LPSs), lipooligosaccharides 

(LOS; smaller versions of LPS), barrier-disrupting enterotoxins such as BFT (fragilysin), 
bacterial amyloids and small non-coding RNAs (sncRNAs) that are known to affect the 

structure and function of biophysiological barriers such as the gastrointestinal (GI) tract 

barrier and blood-brain barrier (BBB) [16–21,43–49,94,100]. It is important to point 

out that B. fragilis (and its complex repertoire of neurotoxins) is just one of the many 

hundreds of thousands of bacterial subtypes resident in the GI-tract microbiome, and under 

normal physiological conditions there might be expected to be potentially generated an 

exceedingly variable and noxious mixture of multiple bacterial neurotoxins from many 

different microbial species. Dietary fiber intake, environment and lifestyle represent highly 

integrated components contributing to the maintenance of the microbiome and the potential 

for a life-long and continuous supply of neurotoxins (dashed black lines); the potential for 

contribution of neurotoxins via feedback mechanisms to microbiome abundance, complexity 

and speciation and lifestyle are currently suspected but are not well understood (dashed 

black lines with question marks)
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