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Simple Summary: Globally, soil salinity, which refers to salt-affected soils, is increasing due to
various environmental factors and human activities. Soil salinity poses one of the most serious
challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants,
both quantitatively and qualitatively. Over the last few decades, several studies have been carried
out to understand plant biology in response to soil salinity stress with a major emphasis on genetic
and other hereditary components. Based on the outcome of these studies, several approaches are
being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable
levels of crop yields. In this manuscript, we comprehensively list and discuss various biological
approaches being followed and, based on the recent advances in the field of molecular biology, we
propose some new approaches to improve salinity tolerance of crop plants. The global scientific
community can make use of this information for the betterment of crop plants. This review also
highlights the importance of maintaining global soil health to prevent several crop plant losses.

Abstract: Globally, soil salinity has been on the rise owing to various factors that are both human and
environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic
stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological
and morphological modifications in plants as a result of significant changes in gene expression
patterns and signal transduction cascades. In this comprehensive review, with a major focus on
recent advances in the field of plant molecular biology, we discuss several approaches to enhance
salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering
approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria
(PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we
propose novel approaches to create and exploit heritable genome-wide epigenetic variation in
crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying
principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods
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to generate them. The proposed epigenetic approaches also have the potential to create additional
genetic variation by modulating meiotic crossover frequency.

Keywords: salinity stress; genomics breeding; epiRIL; genome editing; plant growth-promoting
rhizobacteria; genetic engineering

1. Introduction

Across the world, soil salinization has been on the rise due to factors such as sea-
level rise owing to global warming, overexploitation of coastal groundwater aquifers
causing seawater intrusion, depletion of groundwater table, drought, usage of poor-quality
groundwater for irrigation, inappropriate irrigation practices, poor drainage, improper
usage of fertilizers and pesticides, and various other human activities. Globally, soil salinity
is one of the most destructive abiotic stresses faced by crop plants resulting in significant
yield losses to a magnitude of ~10% of global output. Soil salinity can also degrade arable
soils, which are heavily irrigated [1]. Salt-affected soils are relatively widespread in arid
and semi-arid climates compared to humid regions. Worldwide, soil salinity affects about
20% of arable land and 50% of irrigated land [2]. Salt stress drastically reduces agricultural
productivity owing to its adverse impacts on all aspects of plant development, including
seed germination, vegetative growth, flowering, and seed set. [3–6]. It also affects plants’
ability to fix biological nitrogen [7]. Reduced crop growth and yield are typically caused by
salinity-induced water stress, oxidative stress, ion toxicity, ionic and nutritional imbalances,
membrane disorganization, reduced cell division and expansion, and disruption of key
metabolic processes. Several past studies at large had focused on understanding the
damages caused by salinity stress on the crop plants and attempts have been made to breed
or engineer plants to counter salt stress effectively [8].

Conventional plant breeding methods have proven to be one of the best strategies
to improve salinity tolerance of crop plants, but such methods are more laborious, time-
consuming, and depend on access to germplasm containing sufficient genetic variability [9].
In recent years, genomics-assisted breeding approaches, including marker-assisted breed-
ing, have been employed to make the breeding process less time-consuming [10,11]. In
parallel, genetic engineering involving selective modulation of expression of one or few
transgenes has been frequently used to understand the mechanisms underlying various
stress responses. Recent advances in DNA/RNA sequencing and bioinformatics have
made whole-genome sequencing a regular feature of current molecular breeding modules.
Genomics can complement marker-assisted breeding and genetic engineering in rapidly
identifying genes/QTL associated with desirable traits and their introduction into favor-
able genotypes [11]. The invention of genome editing technology has added one more
dimension to genetic engineering, and since its introduction, it has become a valuable tool
to knock-down/knock-out/knock-in genes of interest [12].

Soil health, a measure of soil fertility and soil quality, also refers to the prolonged ability
of soil to function as a vital living ecosystem that sustains plants, animals, and humans [13].
Increased salinity negatively impacts soil health and is a serious environmental issue [14].
Beneficial soil microbes that are part of the soil microbiome are known to colonize the
rhizosphere of plants and aid in the maintenance of soil health [15]. Several studies have
been carried out to understand the role of plant growth-promoting rhizobacteria (PGPR) in
alleviating abiotic stress, including salt stress. In this comprehensive review, we summarize
the latest findings from several studies which employed genetic, genomic, molecular, and
PGPR-based approaches to enhance salt tolerance of crop plants. Lastly, we elaborate
on the concept and methods to generate epigenetic recombinant inbred lines (epiRILs)
and other novel epigenetic variants, which can be screened to identify novel epialleles or
epiQTLs that can impart enhanced salt stress tolerance to plants.
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2. Physiological and Biochemical Basis of Salt Tolerance

Several mechanisms underlying the physiological and biochemical basis of salt toler-
ance have been elucidated. Under soil salinity conditions, plants experience hyperosmotic
stress first and then hyper-ionic stress [16,17], including ionic and oxidative stress. Hyperos-
motic stress occurs due to a decrease in the water absorption capacity of plant roots caused
by a decrease in the water potential in the soil [18]. Subsequently, water loss from leaves
accelerated by osmotic stress leads to the accumulation of ions, causing hyperionic stress
or ion toxicity [19]. Under high saline conditions, accumulated salts, mostly the excess
Na+ and Cl− in the cells, cause osmotic stress, and the resulting ion toxicity interferes with
several physiological and biochemical processes. Major physiological and biochemical
mechanisms for survival in high salt-affected soils include modulation of ion uptake and
transport, ion homeostasis and compartmentalization, synthesis of osmoprotectants and
antioxidant compounds, regulation of hormones during salt stress, and activation of stress
signaling pathways.

2.1. Modulation of Ion Uptake and Transport

Plants have developed effective sensory mechanisms to recognize stress conditions.
Soil-based salt stress is first sensed by roots that minimize the entry of salts into the
xylem, a phenomenon called ‘salt exclusion’ [20,21]. Most plants exclude about 98% of the
salt in the soil solution permitting only ~2% to be transported to the shoot through the
xylem, but this number is higher for salt-sensitive plant species (e.g., rice allows ~6% of
salts) [18,22]. Ion uptake and the transport of salts in plants occur through apoplastic and
symplastic transport pathways. Once the salt enters the plant, it accumulates at different
concentrations in different plant organs. Shoots are the major plant parts where salts are
accumulated. The older leaves accumulate higher concentrations of Na+ (and Cl−) within
shoots than younger leaves [23,24].

2.2. Ion Homeostasis and Compartmentalization

Ion homeostasis refers to the maintenance of ion concentrations across plant cells.
Plants maintain ion homeostasis in the cytosol by various mechanisms such as balancing
ion uptake through the efficient regulation of influx and efflux of salts, sequestration of
excess salts into the vacuole, and salt compartmentalization in older tissues to minimize salt
injury for younger tissues. Tissue tolerance is the ability of tissues to tolerate accumulated
salts (Na+ and Cl−), and, presumably, it reflects the ability of tissues to compartmentalize
toxic ions and maintain Na+ and Cl− concentrations as low as 10–30 mM within the
cytoplasm [25]. The highest tolerable concentration has been estimated to be 50 to 100 mM,
beyond which many enzymes lose their activities [19,26]. Estimating tissue tolerance is a
tedious process, and that the identification of a molecular marker associated with this trait
would significantly speed up the breeding efforts for salt tolerance.

How ion homeostasis contributes to salt tolerance through activation of stress sensing
and signaling pathways has been well-studied. Plant salt tolerance involves several endo-
somal transport proteins, regulation of organellar pH, and ion homeostasis [27–29]. The
major ions involved in the salt stress signaling include Na+, K+, H+, and Ca2+, and their
interplay brings homeostasis in the cell. Largely, ion homeostasis is governed by the proton
pumps and other ion transporters located on the plasma membrane and tonoplast (the
membrane surrounding the vacuoles) and their associated components such as ATPases
and pyrophosphatases. Plasma membrane-located transporters belonging to the histidine
kinase transporter (HKT) family play a vital role in salt tolerance by regulating levels of
Na+, K+, and root-to-shoot Na+ partitioning. Several HKT genes have been characterized
by different plant species [30], and are categorized into class I and II types. Class I HKT
transporters mediate selective Na+ transport [31,32], while Class II HKT transporters are
involved in Na+–K+ co-transport [33].

Various carrier proteins, channel proteins, antiporters, symporters, and ion channels
play a critical role in maintaining ion gradients across the cell membrane, which are
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vital for regulating the activity of enzymes involved in various physiological and cellular
processes. Low Na+ in the cytoplasm is maintained majorly by the tonoplast-localized
Na+/H+ exchanger (NHX) and the plasma membrane-localized Na+/H+ antiporter SALT
OVERLY SENSITIVE 1 (SOS1, also known as NHX7). Mostly, NHXs are essential for Na+

detoxification via sequestration of Na+ within the vacuole, while the SOS signaling pathway
regulates the efflux of Na+ ions out of the cell. Tonoplast has two types of H+ pumps;
vacuolar type H+-ATPase (V-ATPase) and vacuolar pyrophosphatase (V-PPase) [34], of
which V-PPase is more prevalent. Maintenance of stable K+ acquisition and distribution
in plant cells is important in balancing the toxic effects of Na+ accumulation. Net K+

selective influx and K+ efflux are maintained by inward-rectifying and out-ward-rectifying
K+ channels, respectively [35]. NHX-type proteins play a key role in compartmentalizing
K+ into vacuoles and maintaining cellular pH homeostasis [36].

2.3. Synthesis of Osmoprotectants and Antioxidant Compounds

Plants adapt to osmotic stress by synthesizing compatible osmolytes, which lower
intracellular osmotic potential and thus facilitate water uptake and simultaneously prevent
water loss. They maintain cell integrity and protect the structure of cells. Osmoprotectants,
synthesized in the cytoplasm, are small organic molecules with a neutral charge and low
toxicity even at higher concentrations, and they protect cells from osmotic stress. Also
known as compatible solutes, they balance the osmotic difference between the cytosol and
vacuoles or between adjacent cells. Osmolytes constitute amino acids and their derivatives
(e.g., proline, glycine betaine), organic acids (e.g., salicylate, citrate, malate, malonate
γ-amino butyric acid), reducing and non-reducing sugars/carbohydrates (e.g., sucrose,
fructose, glucose, trehalose, raffinose, and fructans), sugar alcohols and polyols (e.g., pini-
tol, cyclitol, mannitol, sorbitol, myo-inositol), polyamines (e.g., putrescine, spermidine,
spermine), quaternary ammonium compounds (e.g., β-alanine-betaine, proline-betaine,
hydroxyprolinebetaine) and some proteins. The accumulation of osmolytes or compat-
ible solutes in higher concentrations in cytosol has been associated with counteracting
deleterious effects of salinity stress [19,37].

2.4. Regulation of Hormones during Salt Stress

Besides their vital role in plant growth and development, plant hormones also mediate
plant adaptation to several abiotic stresses. In response to salt stress, plants activate the
defense pathways through synthesis, signaling, and metabolism of stress response- and
plant growth-promoting hormones. The crosstalk among various hormones mediates stress
tolerance. Among the well-characterized hormones, abscisic acid (ABA), ethylene, salicylic
acid (SA), and jasmonic acid (JA) are regarded as stress response hormones, while auxin,
gibberellic acid (GA), cytokinins, brassinosteroids, and strigolactones are categorized as
growth-promoting hormones. ABA plays a vital role in response to salt stress response,
which activates the genes involved in ABA biosynthesis induced by calcium-dependent
phosphorylation cascade and their downstream signaling events. Indeed, high levels
of endogenous ABA were observed in rice, brassica, and maize when grown under salt
stress [38]. In response to salt-induced osmotic stress, ABA regulates the stomatal opening
and closing for osmotic adjustment. ABA integrates several complex developmental pro-
cesses and adaptive signaling pathways, including activation of sucrose non-fermenting
1-related protein kinases (SnRK2s), which further regulate osmotic homeostasis [39]. ABA-
mediated signaling also upregulates several genes belonging to the mitogen-activated
protein kinase (MAPKs) family, Ca2+-related kinases, and stress-responsive transcription
factors. Among other hormones, JA is involved in the salt-induced inhibition of primary
root growth, and auxin regulates plant growth adaptive mechanism through salt-inhibited
root growth plasticity via crosstalk with ABA [40]. High salt stress causes excessive accu-
mulation of ABA, disrupting the distribution of auxin and lateral root development [41].
On the other hand, cytokinins act as negative regulators of salinity tolerance, and accord-
ingly, salt stress results in decreased endogenous levels of cytokinins and increased levels
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of ABA [42,43]. Brassinosteroids regulate plant salt tolerance by interacting with other
plant hormones and by playing a key role in ROS scavenging [44]. Overall, different plant
hormones act differently under salinity stress and collectively control the balance between
growth and salt stress responses [41].

2.5. Activation of Stress-Signaling Pathways

To adapt to salt stress, plants activate ionic and osmotic signaling pathways among
which, the Salt Overly Sensitive (SOS) signaling pathway is of major importance [45]. The
SOS pathway consists of three key proteins named SOS1 (Na+ efflux-regulating plasma
membrane Na+/H+ antiporter), SOS2 (a serine/threonine kinase), and SOS3 (a myristoy-
lated calcium-binding protein), combinedly constituting a signaling system that maintains
ionic homeostasis [46–48]. SOS1 gene encodes a plasma membrane Na+/H+ antiporter that
regulates Na+ efflux at the cellular level and long-distance Na+ transport from shoot to the
root [48]. SOS2 encodes a serine/threonine kinase, which is activated by salt stress-induced
Ca+ signals [46]. SOS3 encodes a myristoylated calcium-binding protein that appears to
function as a primary calcium sensor to perceive enhanced cytosolic Ca2+ triggered by an
excess of cytoplasmic Na+ [47]. The interaction between SOS2 and SOS3 proteins activates
upstream kinases which then phosphorylate SOS1 protein [49,50]. The phosphorylated
SOS1 reduces Na+ toxicity by increasing Na+ efflux from the cytoplasm to the apoplast.
Likewise, the involvement of MAP kinase cascades and ABA-dependent SnRK2-mediated
signaling in response to salt stress has been demonstrated in Arabidopsis [51,52], alfalfa [53],
and rice [54].

3. The Genetic Basis of Tolerance to Salinity in Plants

The development of salt-tolerant varieties using conventional and/or modern breed-
ing approaches has been vital in effectively managing salt stress. Akin to improving other
traits, efforts to improve salt stress tolerance have largely utilized genetic variation avail-
able among the germplasm, including the landraces [55]. Typically, the genotypes that
offer a better response to salt stress also possess multiple undesirable traits, and therefore,
introgression of desirable genes from donors into otherwise high-yielding varieties has
been employed through classical breeding programs [56]. For example, traditional cultivars
and landraces, which are naturally tolerant to salt stress are available but possess undesir-
able traits such as photosensitivity, tall plant type prone to lodging, low yield, and poor
grain quality [57,58]. Breeding for salinity tolerance dates back to the 1970s, wherein at-
tempts were made to exploit genetic variation available in the traditional landraces [59,60].
However, progress has been slow due to the complex and polygenic nature of the trait
involving several physiological mechanisms [61]. It is a typical tradeoff between yield and
stress tolerance attributes of plants because some traits are mutually exclusive. Initially,
attempts were made to understand the genetic basis of salt tolerance in legume and cereal
crops [62–67]. Genetic and biostatistical studies on rice identified a few dominant genes
governing salt tolerance in rice, and subsequent studies revealed the polygenic nature of
the trait, involving both additive and non-additive gene actions [61,68–71]. Further studies
found out that crop plants respond differently to salt stress in a growth stage-specific
manner, making it more complex to understand the phenomenon. From such studies, it
became clear that salinity stress during seedling and reproductive stages are critical to
achieving better grain yield [72]. However, the salt tolerance mechanisms did not appear
to be common across the identified genetic donors [73]. Therefore, understanding the
mechanisms underlying the trait became a focal point of crop improvement schemes to
develop salt-responsive cultivars. Development of molecular/DNA markers and software-
enabled genome-wide mapping of markers combined with high throughput statistical tools
paved the way for the identification of quantitative trait loci (QTLs) governing quantitate
(polygenic) traits [61,74].
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Identification and Introgression of QTLs Controlling Salt Tolerance

QTL refers to any genomic region containing one or more genes that contribute to
the phenotypic variation of a trait. Several molecular markers in the form of isozymes
and DNA markers such as RFLP, RAPD, SSR, AFLP, VNTRs, CAPS, and RAD-Seq, have
been employed in QTL mapping studies [75]. Using phenotypic parameters and marker
genotyping data obtained from a suitable mapping population, genetic linkage studies are
carried out to identify markers that are tightly linked to the trait under study. Different
segregating mapping populations have been used for QTL mapping, including Recom-
binant Inbred Lines (RILs), Doubled Haploids (DH), F2 progeny, F3 progeny, back and
cross-derived lines. Molecular markers have been used to generate marker linkage maps
depicting the presence of each marker on the respective chromosome (also called a linkage
group), and this information has been used to identify marker-trait linkages. One major
advantage of QTL mapping is that marker genotypic data for mapping populations like
RILs or DH need to be generated only once. The same data can be used to map QTLs for
multiple traits as long as the parents used to generate the mapping population differ for
those traits.

Salinity tolerance is a polygenic trait and is also significantly influenced by the environ-
ment. QTLs for salinity have been mapped in different crop species like rice [76], wheat [77],
barley [78], tomato [79], chickpea [80], and soybean [81]. Through QTL mapping, multiple
genes/loci associated with salinity tolerance in rice and their chromosomal locations have
been identified, and these findings helped in the improvement of the trait [76]. These stud-
ies used several landraces that are tolerant to salt stress, including Pokkali, a well-studied
salt-tolerant donor. Some studies identified QTLs (e.g., Saltol QTL) associated with seedling
stage salinity tolerance [57], while others identified QTLs associated with reproductive
stage salinity tolerance; for example, Hossain et al. [82] identified 16 QTLs associated with
salinity tolerance during the reproductive stage using mapping population derived from
cultivars Cheriviruppu and Pusa Basmati 1. The identified loci are distributed among
chromosomes 1, 7, 8, and 10, and they contributed to salinity tolerance through alterations
in Na+ uptake, pollen fertility, and Na+/K+ ratio. Similarly, more QTLs were identified
that are associated with tolerance to salt stress during reproductive stages [83–85].

In wheat, Diaz De Leon et al. [86] identified 36 QTLs associated with salinity stress,
with 13 of them being major QTLs. Of these, eight major QTLs were reproducible across two
seasons under salinity stress. Likewise, several other groups have identified various QTLs
in wheat governing shoot and root traits, leaf Na+ exclusion, K+ accumulation, K+/Na+

ratio, and related traits under salinity stress using DH population or RILs [77,87,88].
Barley is one of the most tolerant crops for salt stress and is an ideal model crop plant

for studies on physiological and molecular mechanisms of salt tolerance. Several QTLs for
various agronomic and physiological traits were detected in Barley for salinity tolerance. A
significant QTL QSl.TxNn.2H associated with salt tolerance was detected on chromosome
2H [89], and about 14 more QTLs were detected on six different chromosomes [90,91]. In
these studies, salinity tolerance was found to be significantly influenced by waterlogging
stress, daylight length, and temperature. Furthermore, genes regulating flowering time
were found to be significantly associated with QTLs governing salinity tolerance. Simi-
larly, several dozens of QTLs associated with salinity tolerance have been identified in
chickpea, soybean, and other crop plants using intra- and interspecific mapping popula-
tions (Table S1). It will be interesting to know how the genes/loci associated with salinity
tolerance are conserved across related and diverse plant species.

A major purpose of identifying QTLs is to employ marker-assisted introgression
of desirable QTLs from donor parents into promising genotypes. For a successful trait
enhancement, QTLs showing major and reproducible effects should be selected for intro-
gression. Several promising QTLs have been introgressed in multiple plant species for
augmenting salinity tolerance. For example, Saltol QTL was successfully introgressed into
several elite rice varieties of different countries including India, [92,93], Vietnam [94–97],
Bangladesh [98], Russia [99]. Saltol QTL enhanced salinity tolerance of the recipient genotypes.
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Salt tolerance in wheat is governed by the key gene Kna1 from the “D” genome
associated with low shoot Na+ transport and high affinity of K+ over Na+ [100,101]. The
Nax1 gene on chromosome 2A [102,103] and the Nax2 gene on chromosome 5A [104] that
play a role in limiting Na+ concentrations in the shoot, were introgressed from Triticum
monococcum into durum wheat; Triticum turgidum ssp. durum [105], which were further
introgressed into hexaploid bread wheat (Triticum aestivum) via interspecific hybridization
and marker-assisted selection [16].

4. Genomic Approaches for Enhancing Salinity Tolerance

Narrow genetic diversity among cultivated gene pools in most crops is one of the
major and most evident constraints on improving crop productivity. Preferential selection
for some of the selected traits has created breeding bottlenecks, which, coupled with do-
mestication, has become a major cause for the ever-dwindling genetic diversity among
several crop plant species [11,106]. This major constraint restricts breeding programs’ suc-
cess, resulting in a lower genetic gain rate. Global gene banks that hold huge germplasm
wealth for all the crops provide a solution to counter the issue of narrow genetic diver-
sity [107]. Germplasm stored in gene banks serves as a source of allelic variations and
superior haplotypes for key traits based on the overall genetic variation for a particular
species. Cataloguing genomic variation present in an entire species will help understand
the genome evolution and the genetic basis for different traits of interest. It will also aid in
identifying/developing markers associated with various traits to be used in the marker-
assisted selection of desirable traits. Recent advances in DNA sequencing technologies such
as next-generation sequencing (NGS) [108], Nanopore sequencing [109], Single-Molecule
and Real-Time (SMRT) sequencing [110] have made genome sequencing feasible for all
species. The new technologies have increased the pace and length of individual sequencing
reads beyond the current limit of Sanger sequencing technology. They also can accelerate
genome sequence assembly, reduce sequencing cost, enable accurate sequencing analysis
of repeat-rich areas of the genome, and reveal large-scale genomic complexity [110]. Using
these sequencing technologies, gene banks can be exploited to bring genetic diversity into
the cultivated gene pool for increasing crop productivity by harnessing genetic variation
latent in the large pool of diverse landraces and wild relatives [107,111].

NGS-based genome sequencing efforts have led to the decoding of genome archi-
tecture resulting in the development of a larger set of genomic resources, which enabled
dissection of the underlying mechanisms or genetic basis for functional characterization of
several genes in diverse plant species [112]. NGS technologies have been deployed to gen-
erate genomic information on germplasm stored in genebanks for rice [113], barley [114],
pigeonpea [115], and chickpea [111]. With the availability of sequencing-based trait map-
ping using a biparental population or germplasm, candidate genes for salt stress response
are identified [66]. Whole-genome sequencing (WGS)-based identification of genetic vari-
ation coupled with precise phenotypic data have been used to perform genome-wide
association studies (GWAS). Collectively, such analyses have played a pivotal role in estab-
lishing marker-trait associations, identification of superior alleles and haplotypes for sev-
eral key traits in major crop plants, including rice [116,117], wheat [118], maize [119–121],
chickpea [111], pigeonpea [115] and common bean [122]. It is now possible to develop
improved high-yielding varieties using haplotype-based breeding [11,123]. Moreover,
genetic/genomic information about superior haplotypes will help select parental lines
with preferred alleles at each locus, which can then be integrated into breeding programs
to custom-design crops with desired allelic combinations to develop superior purelines or
hybrids [10].

NGS technologies have already been proven useful for dissecting several important
traits, including salinity. Due to the complex nature of stress response, it is critical to
understand the complex genetic architecture of plant response’s mechanism when exposed
to salinity stress. NGS technologies-based genome-wide association (GWAS) mapping
has been successfully used to identify the marker(s)/gene(s) associated with salt stress
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responses in rice [124,125], cotton [126], barley [127], and rapeseed [128]. In addition, SNP
marker-based QTL mapping studies have also identified marker(s) associated with salt
tolerance in wheat [129], maize [130], chickpea [66,131], and brassica [132]. These trait
mapping studies using linkage mapping and GWAS have identified and characterized
several salt-responsive potential candidate genes that can be utilized to develop improved
salt-tolerant varieties. More comprehensive GWAS studies involving a larger population
of plant genotypes derived from crossing multiple parents called Multi-parent Advanced
Generation Inter Crosses (MAGIC) lines are proposed for in-depth identification of marker-
trait associations [133,134]. In addition to conventional trait mapping, NGS technologies
have also been used for transcriptomics [135–138], proteomics [139], and pre-mRNA splic-
ing [140] analysis for the identification of genes associated with salt stress responses.

For many crop plant species, it is cheaper now to genotype a breeding line at high
density than to phenotypically evaluate its performance in the field. Access to improved
sequencing and low-cost genotyping technologies have lent new avenues to leverage
genotypic information in breeding [11]. Genome-wide sequencing combined with precise
phenotypic data has been further exploited to estimate what is called ‘genomic estimated
breeding values’ (GEBVs), with the help of which plant breeders can identify superior
offspring for generation advancement and potential use as donors in breeding programs.
In the context of genome-wide prediction, the use of GEBVs promises to help acceler-
ate the rate of genetic gain in breeding. Genomic selection (GS) calculates the GEBV of
lines using genome-wide marker profiling and allows the selection of lines before field-
phenotyping, thereby shortening the breeding cycle [141,142]. GS has been successfully
deployed to develop superior varieties in a cost- and time-effective manner in major crops
like maize [121,143], wheat [144,145], rice [146,147], barley [148–150], chickpea [151–153]
and groundnut [154]. Furthermore, the recently-popularized speed breeding technique,
which hastens plant growth and development, could be applied to reducing breeding cycle
time and accelerate crop research [155,156]. Speed breeding involves rapid generation ad-
vances, which can be achieved through maintaining the specific temperature, photoperiod,
humidity, and harvesting and germination of immature seeds [155,157].

5. Genetic Engineering for Salinity Tolerance in Plants

When plants encounter salt stress conditions, several genes with different functions
are upregulated or downregulated, resulting in various developmental and physiological
processes that regulate stress-associated growth and metabolic changes. The proteins
encoded by some of the up- or downregulated genes play an important role in the manifes-
tation of salt-stress sensing and signal transduction pathways followed by the expression of
a wide range of downstream salt stress-responsive genes, which include those that encode
ion transporters and channels, enzymes involved in osmolyte biosynthesis, antioxidant
systems, protective proteins such as late embryogenesis abundant (LEA) proteins [158].
Multiple studies have highlighted the importance of transcription factors (TF’s) belonging
to TF families of ERF/AP2, bZIP, MYB, MYC, NAC, WRKY, and zinc-finger proteins as
regulatory elements in modulating salt stress responses [159,160].

Recent genetic engineering approaches being deployed to understand salinity tol-
erance include transcriptome analysis under salt stress, modification of signaling and
regulatory elements, evaluation of potential genes from different metabolic pathways con-
ferring salt tolerance, analysis of post-transcriptional modifications, studies on epigenetic
regulation, and genome editing for precise and targeted genetic engineering. Overex-
pression of the positive regulators and downregulation/disruption of negative regulators
of salt tolerance are commonly used genetic engineering approaches adopted to study
and to improve the trait. However, such genetic engineering approaches entail prior
identification and understanding of the gene(s) involved in controlling the trait of inter-
est. Manipulation of several genes associated with ion homeostasis, compatible-solute
biosynthesis, and antioxidant metabolism for improving salt stress have been attempted
extensively [161–164].
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Genetic Manipulation of Ion Transporters and Other Genes Associated with Salinity Tolerance

Ion transporters play an important role in salt tolerance through the regulation of
transport and ion homeostasis. They deter ion toxicity by restricting the uptake and
transport of harmful Na+ and Cl− by efflux or by compartmentalizing these toxic ions into
vacuoles by ion transporters, including Na+ antiporters (NHXs). They also help maintain
beneficial K+ ion homeostasis in the cytoplasm through plasma membrane-bound high-
affinity potassium (K+) transporter (HKT). However, most of the transporters have tissue-
and organ-specific expression patterns in many species and depend on the developmental
stage and stress levels [165].

Single and multiple ion-transporter genes obtained from various sources have been
engineered to improve salt tolerance in different plant species, including Arabidopsis, rice,
tobacco, cotton, and soybean, among other crops [166–171]. In A. thaliana, overexpression
of vacuolar Na+/H+ antiporter (AtNHX1) resulted in increased salinity tolerance via
enhanced vacuolar sequestration of Na+ into the cytoplasm avoiding the toxic accumulation
of Na+. Similarly, overexpression of AtNHX1 and related NHX proteins imparted enhanced
salt tolerance in brassica, wheat, cotton, tobacco, tomato, and soybean [167,172].

In addition to Na+ and K+ transporters, proton pumps constituting plasma membrane
proton (H+)-ATPases, vacuolar membrane H+-ATPases, plasma membrane, and vacuolar
membrane H+- pyrophosphatases (H+-PPases) also play an important role during salt
stress tolerance. Understandably, halophytes have been exploited as a major source of
genes to impart salt tolerance in several plant species. For example, expression of a vacuolar
H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora led to
increased salt stress tolerance in rice [173]. The observed salinity tolerance was due to the
sequestration of Na+ ions at the tonoplast by Na+–H+-antiporter that was energized by a
proton motive force, aided by the overexpression of SaVHAc1 gene. The tolerance was also
accompanied by the maintenance of net photosynthesis with higher growth rates and grain
yield under salt stress. These proton pumps produce electrochemical potential gradients
essential for root nutrient uptake and cell growth [174]. In another study, lower oxidative
stress due to improved ion homeostasis in Arabidopsis overexpressing PM H+-ATPase
(SpAHA1) of the halophyte Sesuvium portulacastrum conferred salt tolerance as measured
by enhanced seed germination ratio, root growth, and biomass [175]. The levels of salt
tolerance were even higher when SpAHA1 was co-expressed with SOS1 [176]. In the
cyanide-resistant respiration pathway in plant mitochondria, Alternative oxidases (AOXs)
are the terminal oxidases that play a vital role in abiotic stress and are proposed as a
functional marker for high stress-tolerant breeding. Overexpression of AOX in rapeseed
(BnaAOX1b) enhanced tolerance to osmotic and salt stress [177].

Other than the metabolic genes, researchers have also attempted to exploit mas-
ter switches such as regulatory elements and signaling molecules to enhance salt stress
tolerance. However, the engineering of these molecules often results in pleiotropic ef-
fects because of their involvement in multiple pathways governing plants’ growth and
metabolism. On another front, the expression of various transcription factors (TFs) has been
modulated to impart salt stress tolerance in plants [159,178]. For example, constitutive ex-
pression of the transcription factor SALT-RESPONSIVE ERF1 (SERF1) improved salt stress
tolerance in rice by regulating the expression of other regulatory genes such as MAP3K6,
MAPK5, DREB2A, and ZFP179 [179]. By and large, these genes are involved in various
stress responses, and their underlying mechanisms are fairly well understood. Several
overexpression studies in multiple plants species such as Arabidopsis, rice, and soybean
demonstrated the involvement of other TFs such as OsAP21, SbAP37, GmDREB6, and
OsMYB6 in salt stress tolerance, and in some cases, it was accompanied by accumulation of
proline [180–183].

Several genes used for genetic engineering of salt tolerance across different plant
species are listed in Table S2. However, notwithstanding various efforts, the desirable
success obtained under controlled conditions could not be replicated in field experiments
to a similar degree because of the multigenic nature of the trait and the complexity of stress.
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Unlike other abiotic stressors, salt stress is persistently present entailing plants to modulate
a different set of metabolic pathways and the underlying genetic machinery in a tissue-
specific and growth stage-specific manner. The scenarios could become more complex
if plants undergo other abiotic/biotic stresses simultaneously. Therefore, understanding
gene regulatory networks and epigenetic regulatory mechanisms underlying salt stress can
pave the way for improving the trait across plant species.

6. Genome Editing to Enhance Salt Tolerance in Plants

Genome editing (GE) approaches are among the recently-developed genetic engineer-
ing tools that allow us to modify one to few base pairs of a specific gene/locus (to create
knockout or knockdown mutants), substitute an antecedent allele with another orthologous
allele originating from a related species (for allele correction), and facilitate the introduc-
tion of foreign genes into pre-defined genomic regions (to create knock-in mutants) [184].
However, prior identification of potential positive and negative regulators of the trait of
interest is essential for the specific targeting of genes by GE tools [12]. Typically, findings
from transcriptome analyses (e.g., RNA seq) of plants subjected to specific conditions and
genome sequence analysis are being used to identify potential regulators of a given trait as
targets for genome editing.

Site-specific endonuclease-based mechanisms, such as transcription activator-like
effector nucleases (TALENs), zinc finger nucleases (ZFNs), and clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), are the
most widely used GE approaches [185]. Evidently, CRISPR/Cas method has become the
most preferred GE tool because it is relatively inexpensive, quicker, precise, and enables
several locations across the genome to be edited concurrently [186]. Since the CRISPR-Cas9
has been established for use in model and crop plant species, consistent paradigm shifts
have permitted the generation of transgene-free edited plants [187]. The CRISPR/Cas
in plant genome editing has been mainly used to generate indel mutations via error-
prone nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs)
to create loss-of-function (knockout) or reduced-function (knockdown) mutants. The mu-
tants developed through GE can be construed as transgene-free since the genome-edited
lines are expected to be devoid of CRISPR-Cas-associated transgenes. Therefore, genome-
edited plants may suffer less from regulatory concerns compared to transgenic plants.
CRISPR/Cas method has been widely employed to understand genetic and molecular
mechanisms of abiotic stress tolerance in plants and, in some cases, to improve the trait. A
diagrammatic representation of various steps of CRISPR/Cas9-mediated genome editing
for developing salt tolerance in plants is shown in Figure 1.

Several putative negative regulators of the salt stress response, previously identified
from other studies, have been targeted by the CRISPR system to increase the salt stress toler-
ance of plants. Some recent examples include the targeting of OsRR22 and the SQUAMOSA
promoter-binding like protein 10 (OsSPL10) in rice [188,189]. OsRR22 encodes the type B
response regulator transcription factor, which participates in cytokinin-mediated signal
transduction and metabolism. A previous study had also reported a significant enhance-
ment of salt stress tolerance in Osrr22 loss-of-function mutants of rice [190]. For similar
purposes, auxin response factor 4 (SlARF4) and Hybrid proline protein (SlHyPRP1) were
targeted in tomato [191–193]. Knockout of auxin response factor 4 (SlARF4) in tomato
enhanced osmotic and salinity stress tolerance through reduced stomatal conductance
increased leaf water content, and ABA production [191]. Notably, Tran et al. [193] em-
ployed a multiplexed CRISPR-Cas9 system with multiple guide RNAs (gRNAs) to precisely
eliminate functional domains of SlHy-PRP1 to enhance salt stress tolerance. SlHyPRP1
expresses differentially in response to various stress signaling molecules such as H2O2,
NO, and phytohormones, suggesting their involvement directly or indirectly in different
defense-responsive signaling pathways in tomato. A list of genes targeted by CRISPR/Cas9
system resulting in enhanced salinity stress tolerance in major crop plants is presented
in Table 1.



Biology 2021, 10, 1255 11 of 31Biology 2021, 10, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 1. A scheme of CRISPR/Cas mediated genome editing for salt tolerance in plants. CRELs: CRISPR Edited Lines. 
NLS: Nuclear Localization Signal (NLS can also be at the end of Cas9), OriC: Origin of Replication C, Ter: Terminator, Pol 
III P: Polymerase III promoter, GE0: Genome Edited Generation 0, GE1: Genome Edited Generation 1, GE2: Genome Edited 
Generation 2. 

Several putative negative regulators of the salt stress response, previously identified 
from other studies, have been targeted by the CRISPR system to increase the salt stress 
tolerance of plants. Some recent examples include the targeting of OsRR22 and the SQUA-
MOSA promoter-binding like protein 10 (OsSPL10) in rice [188,189]. OsRR22 encodes the 
type B response regulator transcription factor, which participates in cytokinin-mediated 
signal transduction and metabolism. A previous study had also reported a significant en-
hancement of salt stress tolerance in Osrr22 loss-of-function mutants of rice [190]. For sim-
ilar purposes, auxin response factor 4 (SlARF4) and Hybrid proline protein (SlHyPRP1) 
were targeted in tomato [191–193]. Knockout of auxin response factor 4 (SlARF4) in to-
mato enhanced osmotic and salinity stress tolerance through reduced stomatal conduct-
ance increased leaf water content, and ABA production [191]. Notably, Tran et al. [193] 
employed a multiplexed CRISPR-Cas9 system with multiple guide RNAs (gRNAs) to pre-
cisely eliminate functional domains of SlHy-PRP1 to enhance salt stress tolerance. 
SlHyPRP1 expresses differentially in response to various stress signaling molecules such 
as H2O2, NO, and phytohormones, suggesting their involvement directly or indirectly in 
different defense-responsive signaling pathways in tomato. A list of genes targeted by 
CRISPR/Cas9 system resulting in enhanced salinity stress tolerance in major crop plants 
is presented in Table 1. 

Table 1. List of some of the genes targeted by the CRISPR method of genome editing for the genetic enhancement of salt 
tolerance in major crop plants. 

Crop Plant Species Target Genes Gene Function References 

Arabidopsis (Arabidopsis 
thaliana) 

AITR ABA-induced transcriptional repressor [194] 
CBF C-repeat binding factor [195] 
SIZ1 C2H2 type zinc finger protein [196] 

Tomato (Solanum lycopersi-
cum) 

SP5G, SP Day length sensitivity regulators [197,198] 

WUS 
Act as both transcriptional activator and 

repressor of genes in the shoot apical meri-
stem 

[197] 

GGP1 Vitamin C synthesis [197] 
HKT1;2 High affinity potassium transporter [199–201] 
ARF4 Auxin signaling [191] 

HyPRP1 Multistress tolerance [192,193] 

Figure 1. A scheme of CRISPR/Cas mediated genome editing for salt tolerance in plants. CRELs: CRISPR Edited Lines.
NLS: Nuclear Localization Signal (NLS can also be at the end of Cas9), OriC: Origin of Replication C, Ter: Terminator, Pol III
P: Polymerase III promoter, GE0: Genome Edited Generation 0, GE1: Genome Edited Generation 1, GE2: Genome Edited
Generation 2.

Table 1. List of some of the genes targeted by the CRISPR method of genome editing for the genetic enhancement of salt
tolerance in major crop plants.

Crop Plant Species Target Genes Gene Function References

Arabidopsis (Arabidopsis
thaliana)

AITR ABA-induced transcriptional repressor [194]

CBF C-repeat binding factor [195]

SIZ1 C2H2 type zinc finger protein [196]

Tomato (Solanum lycopersicum)

SP5G, SP Day length sensitivity regulators [197,198]

WUS Act as both transcriptional activator and
repressor of genes in the shoot apical meristem [197]

GGP1 Vitamin C synthesis [197]

HKT1;2 High affinity potassium transporter [199–201]

ARF4 Auxin signaling [191]

HyPRP1 Multistress tolerance [192,193]

CLV3 Regulates shoot and floral meristem
development [197,202]

Maize (Zea mays) HKT1 High affinity potassium transporter [203]

Rice (Oryza sativa)

DOF15 Transcription factor [204]

NCA1a, NCA1b Catalase activity-regulating chaperone [205]

PQT3 Ubiquitin ligase [206]

FLN2 Involved in sucrose metabolism [207]

BBS1 Chaperone-mediated signaling [208]

NAC041 Transcription factor [209]

BG3 Cytokinin transporter [210]

MIR528 Salt stress response regulator [211]

DST Zinc finger transcription factor [212]

SPL10 Transcription factor [188]

RR9, RR10 Cytokinin signaling [213]
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Table 1. Cont.

Crop Plant Species Target Genes Gene Function References

RR22 Transcription factor [189,190]

OTS1 Salt stress response regulator [189,214]

SAPK1, SAPK2 ABA signaling regulator [215]

PIL14 Transcription factor [216]

Soybean (Glycine max) MYB118 Transcription factor [217]

NAC06 Transcription factor [218]

Additionally, CRISPR-based technology can be deployed to generate elite allelic
variants for the genes that play a key role in salt stress tolerance.

Although homology-directed repair (HDR)-mediated knockin or allele replacement
of positive regulators of salt stress response to enhance tolerance towards salt stress is a
viable option, very few examples of such studies are available. This is probably because
CRISPR-mediated knockin experiments are more challenging than the simple binary vector-
mediated introduction of genes into plant genomes. Recently, Vu et al. [199] demonstrated
successful execution of the HDR strategy for allele replacement of high-affinity K+ trans-
porter 1;2 (HKT1;2) in tomato using the CRIPSR/Cpf1 system. HKT1;2 plays a key role in
maintaining K+ uptake under salt stress [200]. According to a previous study in tomato,
N/D variant (N217D) in the pore region of HKT1;2 determines salinity tolerance [201].
This pore region of HKT1;2 determines selectivity for Na+ and K+. Vu et al. [199] generated
tomato line that carried the salt-tolerant allele (N217D) of HKT1;2 using CRIPSR/Cpf1-
mediated HDR strategy involving geminivirus-based replicons as carriers of the donor
allele. These plants showed improved tolerance when exposed to salt stress (up to 100 mM
NaCl) [199]. Although this study involved the generation of plants that are transgenic
for CRISPR-Cas constructs, allele replacement (knock-in) can also be accomplished using
transgene-free editing, as discussed below in Section 6.1.

CRISPR-based approaches can also be employed to create knockout mutations for
functional characterization of genes that play an important role in salt stress tolerance. The
genes which are putative negative regulators of the salt stress response are either down-
regulated or knocked out using the CRISPR-Cas approach to investigate their mechanistic
role in responses to salt stress. RNAi approaches have also been used to downregulate
putative negative regulators of response to salinity stress. For example, RNAi knockdown
of transcription factor SlMBP8 significantly improved salinity and drought stress tolerance
in tomato [219]. Promising candidate genes from RNAi knockdown studies can serve as
excellent targets for future CRISPR-Cas-based editing.

6.1. Current Challenges and Opportunities with CRISPR-Based Approaches

While designing gRNA sequences, care should be taken to avoid off-target or uninten-
tional mutations. However, off-target mutations that occurred during genome editing can
be detected by targeted deep sequencing [220]. Moreover, the off-target sites can also be
predicted based on similarity to the gRNA using bioinformatics software such as CRISPR-P,
Cas-OFFinder, Benchling, CGAT, and CRISPR-P 2.0 [221,222]. Modified Cas proteins such
as Dead cas9 (dcas9) [223], SpCas9n (Cas9n) [224], and FokI Cas9 (fCas9) [225] have also
been used to reduce the off-target mutations. Also, Cas9 proteins with enhanced non-target
cleavage capability are being isolated from various bacterial strains of novel- and stretched-
PAM sequences. Inadequate optimization of Cas9 codons may also generate off-target
mutations, but this can be minimized by using a codon-optimization based on codon usage
in plants [226,227].

Lately, the CRISPR/Cpf1 system from Francisella novicida has drawn traction as a
preferable alternative GE tool to CRISPR/Cas9 [228]. Cpf1 (also known as Cas12a) is a
smaller endonuclease than Cas9, and it takes shorter CRISPR RNA (crRNA) to function
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effectively [229]. Cpf1 is a single-stranded RNA-guided effector nuclease protein that binds
upstream of the protospacer adjacent motif (PAM) and introduces 5 base pair (bp) staggered
cuts into the DNA at the proximal end of the PAM, far away from the seed region. During
the conversion of Cpf1-associated CRISPR repeats to mature crRNAs, the CRISPR/Cpf1
model does not require trans-activating crRNA (tracrRNA) [230]. This system successfully
cleaves target DNA conveniently close to a short T-rich PAM, whereas Cas9 only works
with a G-rich PAM.

Very recently, a hyper-compact genome editor called CRISPR/CasΦ has been discov-
ered that uses a single active site for both crRNA processing and crRNA-guided DNA
cleavage for targeting foreign nucleic acids. This strategy is effective in in vitro, animal, and
plant systems with greater target recognition potential than other CRISPR/Cas proteins.
Furthermore, the molecular weight of CasΦ protein is approximately half of the Cas9 and
Cas12a, which makes it convenient for delivery into the host organism [231]. Therefore,
CRISPR/CasΦ system can serve as an effective alternative to CRISPR/Cas system for
future GE requirements.

The majority of plant traits are governed by multiple interacting genes, and several
genes exist as gene families with their members possessing overlapping functions. There-
fore, modification of a single gene belonging to a gene family does not necessarily result
in a desirable phenotype. As a solution to this problem, multiplexed GE orchestrated by
CRISPR/Cas9 [232] was designed that allows multiple sgRNA cassettes to be designed
into a common vector framework driven by single or multiple promoters. This approach
enables the editing of multigenic agronomic traits as well as simultaneous editing of a gene
family in plants.

CRISPR-based HDR strategy is more challenging compared to the one that involves
NHEJ-based genome editing because the success of HDR not only depends on the precise
cleavage of the target sites but also on the precise homologous recombination between
the target site and the donor DNA. Moreover, most of the reported cases of geminivirus
replicon-based HDR strategy have entailed selection markers associated with the edited
alleles, which is still challenging [233–235]. Further, the effective application of replicon
cargos in editing plant genomes has been demonstrated to be limited by their size [236,237].
Recent advances in CRISPR technology are aimed at addressing some of these challenges.

Several methodologies have been developed to easily isolate transgene-free edited
plants. He et al. [238] employed an interesting strategy in which BARNASE and CMS2
genes were used as suicidal genes to eliminate embryos and pollens containing the trans-
gene in T0 plants. BARNASE encodes a toxic protein with a nuclease activity while CMS2
(also called ORFH79) disrupts mitochondrial functions during male gametophyte devel-
opment resulting in male sterility [238]. One more method used to obtain transgene-free
edited plants makes use of a transient expression of CRISPR/Cas9 DNA or RNA, as demon-
strated by Zhang et al. [239] in wheat. In this method, identification of gene-edited mutants
does not require selectable markers, and homozygous edited mutants can be obtained in T0
generation without the incorporation of exogenous DNA into the plant genome. Currently,
more approaches are available to generate transgene-free genome-edited plants [240–242].

A Tobacco Mosaic Virus RNA (TRBO) has recently been used to transiently overexpress
guide RNA in Nicotiana benthamiana to enhance the genome editing efficiency of the CRISPR-
Cas system [243,244]. This vector can be employed in all of the above-discussed genome
editing strategies to improve efficiency. We are currently testing this strategy to increase
genome editing efficiency in rice and tomato.

7. Epigenetic/Epigenomic Approaches to Enhance Salinity Tolerance

Improvement of various agronomic traits, including salt tolerance of crop plants,
had over the decades been accomplished mainly by utilizing genetic variation that existed
among crop plants, often tapping into genetic variation latent among wild varieties/species
of crop plants. However, the loss of several natural habitats of crop plants combined with
consistent usage of natural genetic resources has persistently dwindled the sources of
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genetic variation [245,246]. Lack of genetic variation for various crop plants has currently
become a major limiting factor in plant breeding endeavors. To address this problem, a
battery of chemical mutagens and radiation treatments have been used to create genetic
variation. The mutations induced through such approaches ranged from point mutations
to large-scale chromosomal aberrations. Notwithstanding efforts to create genetic variation,
the creation of desirable alleles has not been possible for several traits at the desired pace.
Rapid generation of genetic variation appears to be a significant requirement to tackle the
fast-changing climatic and soil conditions. Traditional methods of crop improvement are
not only time-consuming but also suffer from additional bottlenecks. First, it is extremely
challenging to separate desirable alleles from undesirable alleles, which are tightly ge-
netically linked. Second, some chromosomal regions act as suppressors of crossing over,
further strengthening the linkage among multiple alleles/loci. Current strategies include
screening a large number of individuals to identify desirable segregants, but this approach
is not feasible in many cases due to its time- and labor-intensive nature. To address these
challenges, we propose and discuss novel strategies based on recent advances in the field of
epigenetics/epigenomics to create heritable epigenetic variation in crop plants for the im-
provement of traits of significance, including salt tolerance [247]. Note that several studies
have reported the involvement of modulated DNA methylation and histone modifications
in salt stress tolerance [248], reviewed in [249], and therefore, the epigenetic variants we
describe below are expected to serve as valuable tools in improving tolerance to salt stress.

7.1. Development of Epigenetic Recombinant Inbred Lines (EpiRILs)

Epigenetic Recombinant Inbred Lines (epiRILs) are similar to traditional recombinant
inbred lines (RILs), but epiRILs vary for differentially methylated regions (DMRs) while
RILs carry allelic variations. For other differences between epiRILs and RILs, see Table 2.
EpiRILs were first created in the model plant Arabidopsis thaliana, and these epiRILs showed
heritable epigenetic variation for several traits of agronomic importance [250]. A diagram
depicting the scheme for the generation of epiRILs and the principle underlying the creation
of epigenetic variation in epiRILs is given in Figure 2.

Table 2. Comparison between Recombinant Inbred Lines (RILs) and Epigenetic Recombinant Inbred Lines (epiRILs).

Recombinant Inbred Lines (RILs) Epigenetic Recombinant Inbred Lines
(epiRILs)

Related References
Pertaining to epiRILs

1. Mainly vary genetically; each RIL has a
different combination of alleles.

1. Mainly vary for epialleles (variation with
respect to epigenetic marks like methylation,

acetylation, and others. Each epiRIL has a
different combination of epialleles

[250]

2. QTLs governing a trait can be identified and
introgressed into a genotype of choice

2. epiQTLs governing a trait can be identified
and introgressed into a genotype of choice [251]

3. Typically, the parents involved in the
generation of RILs are genetically diverse

3. The parents involved in the generation of
epiRILs can be isogenic or near-isogenic, or

genetically diverse, but they differ significantly
for the epigenome

[250]

4. No need to create/induce specific mutations
in parents to create RILs

4. To create epiRILs, one of the parents should
be an epigenetic mutant [250]

5. In RILs, genetic variation can also bring in
some epigenetic variation, particularly when

the variation is related to an epigenetic
modifier. However, such a variation has not

been systematically documented in RILs.

5. In epiRILs, epigenetic variation can also
cause genetic variation by enhancing meiotic
crossing over and activation of transposons

[250,252]

6. Most of the genetic variation of RILs is
heritable

6. In epiRILs, some epigenetic variation is
heritable (not all) [250,253–256]
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For creating epiRILs, wild-type (WT) A. thaliana (ecotype; Columbia-0, also called
Col-0) plants were crossed with mutant arabidopsis plants, which carried knock-out muta-
tion for DDM1 (Decrease in DNA Methylation 1) gene, which is a chromatin remodeler
known to affect DNA methylation in all the three cytosine contexts (CG, CHG, CHH).
DDM1 is mainly involved in the maintenance of DNA methylation and the silencing of
repeat elements, including transposons [257–260]. A single F1 plant obtained from Col-0
WT (DDM1/DDM1) x ddm1 mutant (ddm1/ddm1) cross was backcrossed as a female parent
to the Col-0 WT line. From the resulting progeny, 500 individual plants with DDM1/DDM1
genotype were chosen to generate about 500 epiRILs through six rounds of propagation
through the single seed descent method with no selection bias.

It is important to note here that when the WT DDM1 gene was introduced into
ddm1/ddm1 plants, DNA methylation was not restored at all the loci where methylation
was lost due to loss of DDM1 function. This lack of restoration of DNA methylation at
some genomic loci formed the basis for the generation of epialleles across the genome. In
these epiRILs, numerous parental DNA methylation variants, also called Differentially
Methylated Regions (DMRs), are inherited for 16 generations, and the heritability studies
are still ongoing [250,256]. Most importantly, these epiRILs displayed heritable phenotypic
diversity for various traits, including flowering time, plant height, plant responses to
defense hormones, plants’ plasticities to drought, and nutrients [250,253–255]. In these
epiRILs, epigenetic quantitative trait loci (epiQTLs) imparting enhanced defense responses
have recently been identified [251], creating a scope for introgression of such epiQTLs
into other genotypes/plant lines for trait improvement. Moreover, the epigenetic diver-
sity of these epiRILs had been attributed to increased productivity and stability of plant
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populations in studies where growth and productivity were compared between epige-
netically uniform and epigenetically diverse populations upon challenging them with
weeds and pathogens [256]. Furthermore, when used as parents for crossing, some of the
epiRILs triggered heterosis in the resulting novel epigenetic hybrids (epihybrids), indepen-
dent of genetic changes between the parents [261]. A recent large-scale study comprising
high-quality single-base resolution methylomes and transcriptomes from 1001 Genomes
collection of A. thaliana revealed that geographic origin is a major predictor of genome-
wide DNA methylation and gene expression patterns caused by epialleles [262]. Given
the largely conserved epigenetic mechanisms across plant species, similar geographical
origin-derived epigenetic diversity is likely to occur in crop plant species as well, a factor
that needs to be considered while generating epiRILs. For similar reasons, MAGIC lines
(described above) can also be explored as potential parents for the development of epiRILs
to generate additional epigenetic variation via the creation of epialleles from genotypes
containing “mosaic genomes” of geographically diverse accessions/ecotypes [134].

Furthermore, the epiRILs showed enhanced genetic variation due to increased meiotic
recombination (crossovers) [252]. Others have also observed altered crossover frequency
due to loss of DNA methylation or histone 2 A.Z (H2A.Z) deposition [252,263–266]. The
outcomes from these studies highlight the importance of epigenetic mutations in enhancing
genetic variation by altering meiotic recombination rates, prompting approaches to use
controlled recombination for plant breeding [267]. Collectively, these findings indicate sig-
nificantly that every plant genotype has the potential to be improved by just manipulating
its epigenomic landscape. The scope for such a plant improvement tends to be even higher
for several crop plants given their larger genome sizes and larger gene families compared
to the model plant Arabidopsis.

There are several DNA methyltransferases, histone modifiers, and chromatin remod-
elers in plants that have some overlapping functions. Some epigenetic modifications are
linked; for example, histone deacetylation and histone 3 lysine 9 (H3K9) methylation are
linked to DNA methylation and collectively play a major role in gene silencing [268,269].
Because most of the epigenetic modifications regulate only a subset of loci/genomic re-
gions, the creation of epiRILs using mutations of other epigenetic modifiers will potentially
generate more epialleles across the genome. Likewise, the additional epigenetic mutations
will likely provide more options to modulate crossovers across the genomic regions. Cur-
rently, our research group has collaboratively embarked on generating epiRILs in rice and
tomato to be utilized for the improvement of various traits, including salt stress tolerance.

7.2. Generation of Epigenetic Variants Using Inhibitors of Epigenetic Modifiers

Generation of epiRILs is a tedious and time-consuming endeavor but once generated,
they have numerous benefits, as discussed above. We propose other non-transgenic ap-
proaches to create epigenetic variants which relatively require a shorter time. Transient
inhibition of epigenetic modifiers through the application of chemical inhibitors is expected
to have a similar effect compared to that of genetic mutations. Brief exposure of plant
seedlings to chemical inhibitors of epigenetic modifiers will result in loss of epigenetic
marks in the newly-divided cells. However, upon removing the chemical inhibitors, the
lost epigenetic marks will not be likely re-established at all the genomic loci, resulting in the
formation of epialleles. These epialleles can be exploited by crossing the inhibitor-treated
plants showing considerable phenotypic variation with the untreated plants enabling iden-
tification of promising segregants (variants). Growing evidence suggests that phenotypes
caused by epigenetic mutations are stochastic in nature [270,271], which has the potential to
further enhance epigenetic variation. Different classes of inhibitors are available for various
enzymes involved in epigenetic modifications, such as DNA methyltransferases, histone
deacetylases, and histone methyltransferases. For example, in eukaryotes, histone acetyla-
tion and deacetylation play a vital role in gene regulation. Levels of histone acetylation are
modulated by histone acetyl transferases and histone deacetylases (HDACs) [272]. HDACs
have been shown to play a role in plants’ response to various abiotic stresses [272–274].
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Several known inhibitors of histone deacetylases are commercially available, which func-
tion both in plants and animals, although each compound appears to effectively target
only a subset of HDACs [275,276]. Our group has again taken a collaborative initiative to
establish this non-transgenic approach for generating heritable epigenetic variation.

8. Role of Plant Growth-Promoting Rhizobacteria in Enhancing Salt Tolerance
of Plants

The soil is a complex, heterogeneous mixture of minerals, organic matter, air, wa-
ter, and live organisms, including a rich and diverse microbiome. The soil microbiota
associates closely with the plant roots either by endocolonizing them or existing in the rhi-
zosphere. These endospheric and rhizospheric microbiota, along with their phyllospheric
counterparts, are part of the plant holobiont [277]. The rhizospheric microbiome comprises
pathogenic as well as beneficial microbes (bacteria and fungi). These microbes have evolved
to co-exist with planta by interacting with them through the exchange of chemical signals.
The beneficial soil microbes restrict the growth of pathogenic microbes in the vicinity of
plant roots, thus providing “bio-control” to the plants while also offering other benefits to
them. These beneficial microbes, collectively termed as plant growth-promoting microbes
(PGPM), include rhizobacteria (PGPR) and fungi (PGPF).

Examples of PGPR include several species of Bacillus, Pseudomonas, Rhizobium,
Azospirillum, and others. They help plants in myriad ways, including growth promotion
(as the name suggests) and stress alleviation (both biotic and abiotic). Research on the
beneficial effects of PGPR has gained substantial momentum over the last decade. Among
many abiotic stresses that PGPR are known to modulate in plants, salinity stress is one
among them [278–280]. Based on recent literature demonstrating the involvement of several
epigenetic regulatory mechanisms in plants’ responses to diverse abiotic stresses [249,281],
we speculate that PGPR possibly enhances salinity tolerance not only through genetic
but also by epigenetic mechanisms. We could not find any report in this regard but
anticipate that future studies are likely to discover PGPR-mediated epigenetic mechanisms
underlying salt stress responses in plants. Several strains of PGPR have been shown to
enhance salinity tolerance in several plant species, including crop plants. For example,
halotolerant PGPR strains AP6 (Bacillus licheniformis) and PB5 (Pseudomonas plecoglossicida)
improved salt tolerance in sunflower by stimulating antioxidant enzymes activity [282].
Few other examples include enhancement of salinity tolerance in okra, capsicum, oat, and
Arabidopsis by diverse species and strains of PGPR [282–286]. For a detailed review on
this topic, refer to Ha-tran et al. [287]. Much like other abiotic stresses, mechanisms of
salinity stress alleviation in plants by PGPR include (but are not limited to) the following
broad categories.

8.1. Expression of Key Stress-Inducible Genes

In the past decade, certain aspects of the molecular biology of PGPR-mediated salin-
ity tolerance in plants have been elucidated. A genome-wide expression profiling of A.
thaliana inoculated with Pseudomonas putida (MTCC5279) helped identify a wide variety
of A. thaliana genes regulated by PGPR, including auxin-responsive genes responsible
for increased auxin production and calcium-dependent protein kinase genes involved
in salt response signaling [288]. The upregulation of these genes by PGPR modulates
plant growth during high salt stress conditions. In another study, inoculation of the PGPR
Arthrobacter nitroguajacolicus in wheat has been shown to upregulate the expression of
P450 genes, ascorbate peroxidase genes, oligopeptide transporters, ATP binding cassette,
and ion transporters, collectively improving their ability to uptake nutrients and tolerate
salt stress [289]. In a similar study, Pseudomonas putida NBRIRA inoculation in chickpea
exhibited improved drought and salt stress tolerance by modulating the expression of
miRNAs and their target genes [290]. Their analysis revealed the altered expression of
nine conserved miRNAs in chickpea caused by PGPR inoculation under salt stress. While
some were downregulated (e.g., miR169 and miR396), others were induced (e.g., miR159)
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at various time points post treatments. They also found altered expression patterns of the
genes targeted by these miRNAs, such as MYB, TCP, and the ARF family of TFs.

8.2. Modulation of Stress-Induced Compatible Solutes, Phytohormone Homeostasis, and Redox
Status of Plants

As discussed above, it is well known that compatible osmolytes such as proline, sor-
bitol, and glycine betaine, positively modulate tolerance to dehydration stress in plants,
which can be induced by drought and salinity. The role of PGPR in enhancing the con-
centrations of such compatible solutes has been studied both under osmotic stress in
general [291,292] and salinity stress in particular [284,293]. These groups observed PGPR-
mediated accumulation of proline, an important compatible osmolyte, in A. thaliana and
transgenic Sorghum bicolor. Since phytohormones are key components of signal transduc-
tion processes involved in abiotic stress tolerance, their roles have been implicated in
PGPR-mediated salinity tolerance as well. For example, augmented growth of cucumber
plants accompanied by increased cellular levels of gibberellic acid was observed both
under salinity and drought conditions when inoculated with PGPR Burkholdera cepacia
SE4, Promicromonospora spp. SE188 and Acinetobacter calcoaceticus SE370 [294]. One of the
most important stress-modulating phytohormones is ethylene. Several PGPR strains are
known to secrete the enzyme ACC deaminase, which degrades ACC released by plants,
thus limiting its supply for ethylene biosynthesis. Jalili et al. [295] and Bal et al. [296]
have reported the isolation of ACC deaminase producing novel PGPR strains and their
ability to impart salinity tolerance in canola (Brassica napus L.) and rice, respectively. One
of the central mechanisms of manifestation of a variety of stresses in plants is oxidative
stress. It is well understood that oxidative stress due to the generation of copious amounts
of ROS is a common repercussion of both biotic and abiotic stresses in plants. PGPR
is able to modulate the ROS production and the scavenging pathways in plants under
abiotic stress [292]. Likewise, enhancement of salinity tolerance through modulation of
ROS-scavenging enzymes was observed in lettuce and oat when inoculated with PGPR
Pseudomonas mendocina and Klebsiella sp., respectively [284,297].

8.3. Release of Volatile Compounds

Certain PGPR strains are known to release volatile compounds that aid in plant stress
tolerance. For example, the PGPR strain Bacillus subtilis (recently renamed as Bacillus
amyloliquefaciens) GB03 produces an array of volatile compounds [298]. This bacterial strain
imparts salt tolerance to the medicinal plant Codonopsis pilosula by positively modulating
stomatal conductance and photosynthetic rate [299]. In a similar study, bacterial volatiles
have been shown to aid salt stress tolerance by modulating the function of AtHKT1 sodium
transporter and reducing the levels of sodium in the whole plant [300].

The literature summarized above underscores a key role for PGPR in enhancing
salinity stress tolerance in plants. However, more investigations need to be carried out to
understand molecular mechanisms of signaling underlying beneficial interactions between
plants and PGPR. Such mechanistic insights can potentially help in identifying additional
molecular, genetic, and epigenetic components involved in salinity stress tolerance of
plants which can be targeted during future genetic engineering and molecular breeding
programs for further enhancement of the trait. In addition, the application of appropriate
wild-type or recombinant PGPR containing ideal genomic composition to the soil can also
be developed as an effective strategy to combat salt stress.

9. Conclusions

Globally, soil salinity is one of the formidable challenges plants are facing, resulting in
significant plant yield losses and reduced soil health. More than 50 years of research on
salinity has resulted in a fair understanding of the multifarious aspects of the salt stress
biology of plants, including causes, consequences, and mechanisms of stress tolerance
at the molecular level. In this comprehensive review, we provided a panoramic view of
diverse approaches employed to bolster plants’ ability to tolerate salt stress, including
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some new approaches and futuristic perspectives (Figure 3). Moving forward, integrating
multiple approaches as discussed in this review could provide more effective and long-
lasting solutions in tackling the problem of soil salinity. Lastly, we think that it is equally
important for the international community to take measures to improve and maintain soil
health to minimize the detrimental effects engendered by soil salinity.
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