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T1 relaxation and water mobility generate eloquent MRI tissue contrasts with great

diagnostic value in many neuroradiological applications. However, conventional methods

do not adequately quantify the microscopic heterogeneity of these important biophysical

properties within a voxel, and therefore have limited biological specificity. We describe

a new correlation spectroscopic (CS) MRI method for measuring how T1 and mean

diffusivity (MD) co-vary in microscopic tissue environments. We develop a clinical pulse

sequence that combines inversion recovery (IR) with single-shot isotropic diffusion

encoding (IDE) to efficiently acquire whole-brain MRIs with a wide range of joint T1-MD

weightings. Unlike conventional diffusion encoding, the IDE preparation ensures that

all subvoxel water pools are weighted by their MDs regardless of the sizes, shapes,

and orientations of their corresponding microscopic diffusion tensors. Accordingly,

IR-IDE measurements are well-suited for model-free, quantitative spectroscopic analysis

of microscopic water pools. Using numerical simulations, phantom experiments, and

data from healthy volunteers we demonstrate how IR-IDE MRIs can be processed to

reconstruct maps of two-dimensional joint probability density functions, i.e., correlation

spectra, of subvoxel T1-MD values. In vivo T1-MD spectra show distinct cerebrospinal

fluid and parenchymal tissue components specific to white matter, cortical gray matter,

basal ganglia, and myelinated fiber pathways, suggesting the potential for improved

biological specificity. The one-dimensional marginal distributions derived from the T1-MD

correlation spectra agree well with results from other relaxation spectroscopic and

quantitative MRI studies, validating the T1-MD contrast encoding and the spectral

reconstruction. Mapping subvoxel T1-diffusion correlations in patient populations may

provide a more nuanced, comprehensive, sensitive, and specific neuroradiological

assessment of the non-specific changes seen on fluid-attenuated inversion recovery

(FLAIR) and diffusion-weighted MRIs (DWIs) in cancer, ischemic stroke, or brain injury.

Keywords: isotropic diffusion encoding, T1-diffusion weighting, correlation spectroscopic MRI, multidimensional

MRI, relaxation spectroscopy MRI, mean diffusivity distribution, relaxographic imaging, inversion recovery

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.671465
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.671465&domain=pdf&date_stamp=2021-06-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alexandru.avram@nih.gov
https://doi.org/10.3389/fnins.2021.671465
https://www.frontiersin.org/articles/10.3389/fnins.2021.671465/full


Avram et al. Clinical T1-MD Correlation Spectroscopic MRI

1. INTRODUCTION

T1-weighted (T1W) MRIs, such as fluid-attenuated inversion
recovery (FLAIR) (Bydder and Young, 1985; De Coene et al.,
1992; Hajnal et al., 1992) or MP-RAGE (Mugler and Brookeman,
1990) images reflect differences in average T1 relaxation times
of tissues. Meanwhile, diffusion-weighted MRIs (DWIs) reflect
differences in average tissue water diffusion properties (Bihan
et al., 1986; Moseley et al., 1990), such as the mean apparent
diffusion coefficients (mADCs), or the mean diffusivities (MDs)
(Basser et al., 1994). Both T1- and diffusion-weighted MRIs
provide excellent tissue contrasts and are indispensable in
many neurological and neuroradiological applications. These
two contrasts are almost always acquired in separate scans,
and often yield complementary radiological information crucial
to the study of neurodegenerative diseases (Werring et al.,
1999; Schmidt et al., 2012), cancer (Brunberg et al., 1995;
Essig et al., 1998), ischemic stroke (Lutsep et al., 1997;
Kamran et al., 2000), neuroinflammation (Ashikaga et al.,
1997; McKinstry et al., 2002), traumatic brain injury (TBI)
(Shenton et al., 2012), and brain development (Neil et al.,
1998; Ashikaga et al., 1999). The enduring utility of T1W
and DWIs in radiological sciences is strong evidence of the
high sensitivity of T1 and diffusion to a wide range of
pathophysiological processes and motivates efforts to advance
the quantitative mapping of these important biophysical
tissue properties.

Despite their widespread use, however, conventional weighted
MRIs do not directly quantify the underlying T1 and diffusion
tissue properties. Therefore, signal changes seen during disease
cannot be traced back to alterations in specific tissue components.
Quantitative MRI (qMRI) explicitly accounts for the most
important experimental factors (Helms et al., 2011; Weiskopf
et al., 2013), e.g., pulse sequence, TE, TR, b-value, to measure
voxel-averaged values of tissue T1 and MD. Nonetheless, these
voxel-averaged estimates produce a mere phenomenological
description of the tissue composition, assuming homogeneity
within the imaging voxel. Clearly, there is a critical need to
quantify the microscopic heterogeneity of these parameters in
healthy and diseased brain tissues using a model-free, non-
parametric approach (Avram et al., 2019).

Relaxation-spectroscopy (RS) MRI, or relaxographic imaging
(Labadie et al., 1994), combines NMR relaxometry (Kroeker and
Mark Henkelman, 1986; English et al., 1991; Does and Snyder,
1995; Does et al., 1998; Ronen et al., 2006) with MR imaging
to quantify the subvoxel (i.e., microscopic) heterogeneity of
parameters such as T1, T2, or diffusivity from multiple images
acquired with different contrast weightings. For example, from
MRIsmeasured withmultiple TEs one can derive the distribution
(or spectrum) of subvoxel T2 values and compute maps of myelin
water fraction, defined as the short-T2 signal component in
white matter (WM) (Mackay et al., 1994; Whittall et al., 1997).
Despite the early success of imaging T2 spectra in the human
brain, the mapping of T1 spectra (Labadie et al., 2014) in vivo
proved technically challenging due to factors such as long scan
durations or imperfect adiabatic inversion. Nevertheless, a few
clever techniques were developed to directly image short-T1

components in WM, believed to be associated with myelin water
(Deoni et al., 2008; Oh et al., 2013).

Meanwhile, the clinical mapping of diffusivity spectra
in tissues poses a unique challenge due to the need to
account for diffusion anisotropy. Using conventional, single
diffusion encoding (Stejskal and Tanner, 1965) it is possible to
measure spectra of diffusivities along a given orientation. The
mADC-weighted signal obtained by averaging DWIs acquired
with diffusion gradients applied along uniformly distributed
orientations (Jones et al., 1999) at a fixed b-value removes
signal variations due to diffusion anisotropy that manifest at the
macroscopic (voxel) scale. These signal variations (Avram et al.,
2018) can be described phenomenologically using methods such
as diffusion tensor imaging (DTI) (Basser et al., 1994), which view
tissues as isotropic or anisotropic media that are homogeneous
at the microscopic scale. In homogeneous media, the voxel-
averaged (macroscopic) diffusion tensor measured with DTI also
describes diffusion at the microscopic scale. Hence, the MD
measured as one-third of the Trace of the diffusion tensor reflects
an intrinsic property of the medium, and is equal to the mADC.
In neural tissues, however, the heterogeneous microstructure
gives rise to diverse diffusion processes in subvoxel water pools.
These processes can be described with distinct diffusion tensors
of various sizes (mean diffusivities), shapes (anisotropies),
and orientations (principal diffusion directions). Measurements
acquired with single diffusion encoding used to derive mADC-
weighted signals are not sensitive to the correlations between
the properties of these tensors (sizes, shapes, and orientations).
Therefore, the mADC-weighted signals do not properly remove
specific effects from only the orientation dispersion or diffusion
anisotropies at the microscopic scale.

On the other hand, measurements acquired with multiple
diffusion encoding (Mitra, 1995; Callaghan and Komlosh,
2002; Westin et al., 2016; Topgaard, 2017) are sensitive to
diffusion-diffusion correlations, allowing us to probe the tensor
characteristics (size, shape, orientation) of diffusion processes
in microscopic water pools and to measure microscopic
diffusion anisotropy (Avram et al., 2013) in healthy subjects and
patients (Szczepankiewicz et al., 2015, 2016). Moreover, isotropic
diffusion encoding (IDE) (Avram et al., 2019), or spherical tensor
encoding (Eriksson et al., 2013; Westin et al., 2016; Topgaard,
2017), directly sensitizes the signals from all subvoxel water
pools to their intrinsic MDs, regardless of their microscopic
anisotropies and preferred diffusion orientations (Avram et al.,
2019). Since IDE-prepared measurements are superpositions of
signals from all subvoxel water pools, each weighted by its
correspondingMD, they can be analyzed with RS-MRI to retrieve
the subvoxel distribution of intrinsic MD values. This very
efficient, practical, and clinically feasible method provides whole-
brain maps of subvoxel MD spectra in only 6 min (Avram et al.,
2019).

Quantifying correlations between multiple relaxation
mechanisms, e.g., T1, T2, diffusion, may further improve
biological specificity. From relaxation correlation spectroscopy
NMR measurements acquired by varying the joint weighting
(e.g., TE and b-value) of multiple contrasts (e.g., T2 and
diffusivity, respectively) one can derive a multidimensional
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spectrum of the corresponding biophysical parameters. Such
experiments have been conducted in porous media (Hürlimann
et al., 2002, 2003; de Almeida Martins and Topgaard, 2018),
biological samples (English et al., 1991; Does and Gore, 2002;
Travis and Does, 2005), and human volunteers (Saab et al.,
2001). The imaging extension of this spectroscopic NMR
method, multidimensional correlation spectroscopic (CS) MRI
provides a correlation spectrum in each voxel. Microimaging
(Benjamini and Basser, 2017; Kim et al., 2017; Yon et al., 2020)
and preliminary in vivo CS-MRI studies (Tax et al., 2017; Hutter
et al., 2018; Kim et al., 2018, 2020; Slator et al., 2019) have
focused on combining T2 (or T2∗) with T1 (Kim et al., 2018) or
conventional diffusion encoding (primarily in excised samples
with well-oriented microstructure, such as the spinal cord) and
have shown improvements in specificity (Benjamini and Basser,
2017; Kim et al., 2017).

In this study, we develop a new method for mapping
two-dimensional probability density functions (or spectra) of
subvoxel T1-MD values in human subjects, thereby addressing
a critical step in the clinical translation of multidimensional CS-
MRI. Specifically, we design and evaluate a pulse sequence that
integrates inversion recovery (IR) and IDE (Avram et al., 2019)
preparations to measure for the first time whole-brain MRIs with
a wide range of joint T1-MD contrasts using a conventional
clinical scanner. We describe how IR-IDE MRIs with multiple
weightings can be processed to derive T1-MD correlation spectra
in brain tissues. The non-invasive, model-free, and whole-brain
assessment of T1-MD correlations revealing distinct microscopic
water pools could provide a more nuanced, quantitative, and
specific diagnosis of many pathophysiological processes.

2. METHODS

2.1. IR-Prepared IDE MRI Pulse Sequence
We implemented a repeated IR spin-echo EPI pulse sequence
with IDE preparation that allows independent control of T1
and MD weightings (Figure 1). The sequence is used to acquire
whole-brain DWIs with a conventional single-shot EPI readout
trajectory to prevent potential imaging artifacts arising from
motion-induced phase inconsistencies in multi-shot in vivo
acquisitions of diffusion-prepared signals.

The IR-preparation consists of a slice-selective adiabatic
radio-frequency (RF) inversion pulse with a hyperbolic secant
amplitude envelope and a 10.2 ms duration, followed by a
gradient crusher. The IR-preparation and corresponding slice
acquisition modules are interleaved to maintain the same TI and
TR values for all slices (Park et al., 1985; Oh et al., 1991; Listerud
et al., 1996). For any given slice, the slice-selective IR RF pulse
excites the same location as the corresponding excitation and
refocusing RF pulses but uses a 1.25 larger slice thickness to
mitigate the loss of inversion efficiency due to mismatch of slice
profiles. Moreover, to prevent cross-talk between IR pulses in
adjacent slices, even and odd slices can be acquired in separate
packets, with interleaved slice acquisition orders within each
packet. The duration between two consecutive IR modules (and
slice acquisitions) is determined by the TR and the number of
slices per packet. In each scan, the T1-weighting is determined by

fixing both TI and TR, while in consecutive TRs the diffusion-
weighting is adjusted to acquire IR-DWIs with different b-
values. The complete experiment consists of several repeated IR-
prepared EPI scans, each with a different set of fixed (TI, TR)
parameters determining different T1-weightings. To account for
T1-encoding, both TI and TR are explicitly incorporated into the
signal equation, as described in the following section.

The IDE-preparation module consists of a numerically
optimized diffusion-weighting gradient waveform (Sjölund et al.,
2015; Avram et al., 2019) that provides isotropic diffusion
encoding in a single excitation (Mori and Van Zijl, 1995; Wong
et al., 1995), but with a more efficient allocation of clinical
diffusion gradient pulses before and after the 180◦ RF pulse
(Avram et al., 2019). The desired maximum b-value determines
the timings of the diffusion gradient pulses, and consequently the
minimum TE. Rotation-invariant measurements with different
b-values are acquired by simply scaling down the diffusion
gradient pulse amplitudes. If we assume that the voxel is
composed of multiple water pools, each with its ownmicroscopic
diffusion tensor whose corresponding diffusion ellipsoid has an
arbitrary size, shape, and orientation, then the IDE preparation
provides isotropic weighting by the Trace, or MD, for each
of these microscopic tensors (Avram et al., 2019), allowing a
spectroscopic quantitation of subvoxel MDs. Images with a fixed
T1-weighting (TI and TR) but different b-values can be acquired
efficiently in consecutive TRs of the same repeated IR scan.
Because the T1 and diffusion weightings are encoded in the
longitudinal and transverse magnetizations respectively, we can
acquire signals with an arbitrary range of joint TI-b parameters.
This contrasts with T2-diffusion CS-MRI measurements, where
the practical range of joint TE-b parameters is limited by the
minimum achievable TE as a function of b-value.

For a repeated IR spin-echo experiment (Figure 1) with
perfect adiabatic inversion, the signal attenuation due to
T1 and diffusion weightings in a homogeneous spin system
with longitudinal relaxation time constant T1 and mean
diffusivity D̄ is:

S
(

b,TI,TR
)

=

(

1− 2e
− TI

T1 + e
− TR

T1

)

e−b·D̄ (1)

By systematically varying the weighting parameters we can
efficiently acquire multiple magnitude IR-IDE DWIs with a wide
range of combined T1-MD weightings.

2.2. Polarity Estimation of IR-IDE MRIs
Subject and physiological motions can produce undesired phase
contributions in DWIs acquired in vivo. Therefore, we can
only reliably measure magnitude IR-IDE DWIs. However, in
order to discriminate a superposition of longitudinal inversion
recovery processes from subvoxel water pools with distinct T1s
it is necessary to use phase-sensitive IR data that can capture
both positive and negative values of longitudinal magnetization
within a voxel. We adapted a simple method (Bakker et al.,
1984) for estimating the polarity of IR measurements from
multiple measurements with different TIs. Specifically, for a
series of magnitude measurements |M (TIk)|, associated with the
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FIGURE 1 | Pulse sequence diagram for the multislice EPI acquisition of MRIs with integrated inversion recovery (IR) and isotropic diffusion encoding (IDE)

preparations. The slice-selective IR preparations and EPI acquisitions are interleaved so as to maintain the same inversion time (TI) and repetition time (TR) for each

slice. The TR can be adjusted to minimize the total scan time. The experiment consists of separate repeated IR-IDE scans with different T1-weightings determined by

fixing TI and TR. For each scan, IDE-DWIs with different b-values are acquired in consecutive TRs. The TE is fixed for all measurements.

increasing sequence of inversion times, TIk, we first identify
the minimum magnitude signal |Mm| = min

∣

∣M(TIk)
∣

∣ and its
corresponding TIm. Next, we invert the polarity of all magnitude
measurements |Mk| with TIk < TIm and remove the minimum
point at TIm, to create a set of phase-sensitive IR data points.
Finally, we interpolate the value at TIm, compare it to both |Mm|

and− |Mm| and select the polarity ofMm as the closest of the two
points to the interpolated value at TIm.

2.3. Estimating T1-MD Relaxation
Correlation Spectra
In a voxel containing tissue with heterogeneous T1-MD
properties, the net signal can be described as a superposition
of contributions from microscopic water pools with arbitrary
T1 and MD properties. Assuming slow exchange between these
subvoxel components, we can write the net signal attenuation as
a function of the contrast weighting parameters b, TI, and TR:

S
(

b,TI,TR
)

=

∫ ∞

0

∫ ∞

0

(

1− 2e−TI·R1

+ e−TR·R1
)

e−b·D̄p(R1, D̄)dR1dD̄ (2)

where, R1 = 1/T1 and D̄ are the longitudinal magnetic relaxation
rate and mean diffusivity, respectively, and p(R1, D̄) is the two-
dimensional joint probability density function of R1 and D̄
values within the voxel. A piecewise continuous approximation

of p(R1, D̄) can be estimated numerically by solving the linear
system M · p = y, with y and p representing column vectors
containing the measured IR-IDE signal attenuations and the
unknown signal fractions of T1-MD spectral components,
respectively. The elements of the encoding matrix M, Mij, are
computed as the mean signal attenuations in the i-th experiment,
S
(

bi,TIi,TRi
)

, evaluated over the 2D box function determined
by the intervals

[

R1,j,R1,j+1
]

and
[

D̄j, D̄j+1
]

corresponding to the
j-th spectral bin in the piecewise continuous approximation of
p(R1, D̄).

Because this problem is poorly conditioned, additional
regularization is required to obtain a stable solution. A
straightforward approach is to solve the problem by least-
squares minimization using L2-norm regularization and
positivity constraints:

p̂ = argmin
p>0

∣

∣

∣

∣

∣

∣

∣

∣

[

M

λI

]

p−

[

y

0

]∣

∣

∣

∣

∣

∣

∣

∣

2

2
(3)

where, I is the identity matrix and λ is the L2-norm regularization
parameter (Hansen, 1992).

2.4. Apparent Inversion Efficiency
RF field inhomogeneities can affect the efficiency of the adiabatic
inversion yielding an inversion angle θinv 6= 180◦ and reducing
the factor 2 in Equation (1) to (1 − cos θinv). In addition,
dynamic processes such as magnetization transfer (MT) and
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cross-relaxation between immobile (bound) water associated
with macromolecules and mobile (free) tissue water can produce
a similar effect, further reducing the factor 2 in Equation (1)
(Roscher et al., 1996; Gochberg et al., 1997; Does et al., 1998).
Following the convention from Labadie et al. (2014), we can
combine these processes together using the apparent inversion
efficiency η defined as a percentage:

Sη

(

b,TI,TR
)

=

∫ ∞

0

∫ ∞

0

(

1− 2
η

100
e−TI·R1

+ e−TR·R1
)

e−b·D̄p(R1, D̄)dR1dD̄ (4)

We propose a two-step process to fitting the IR-IDE data
using Equation (4). First, we solve the constrained linear
problem assuming perfect inversion (Equation 3) to derive
an approximate solution. This step can be implemented using
non-negative least-squares optimization, and the regularization
parameter can be optimized with various methods (Canales-
Rodríguez et al., 2021). However, since in this step we seekmerely
an approximate solution, it is not necessary to optimize the value
of λ for each voxel. The approximate solution is then used as a
starting point in solving the nonlinear optimization problem:

[

p̂; η̂
]

= argmin
p>0,η

∣

∣

∣

∣Mηp− y
∣

∣

∣

∣

2
2 (5)

where, the elements of the encoding matrix Mη, are calculated
as the mean signal attenuations in the i-th experiment,
Sη

(

bi,TIi,TRi
)

, evaluated over the 2D box function determined
by the intervals

[

R1,j,R1,j+1
]

and
[

D̄j, D̄j+1
]

corresponding to
the j-th spectral bin in the piecewise continuous approximation
of p(R1, D̄). This second step of the spectral reconstruction is
implemented using constrained non-linear optimization. The
final solution,

[

p̂; η̂
]

yields estimates for both the T1-MD spectral
components and the parameter η.

From multiple measurements with different combinations of
joint IR and IDE weightings, y, we can reconstruct the T1-MD
spectrum, p̂, in each voxel. These piecewise continuous spectra
can approximate arbitrary probability density functions of T1-
MD values that may occur in healthy and pathological tissues.

2.5. Numerical Simulation and Phantom
Experiments
We performed Monte Carlo (MC) experiments to validate the
numerical stability of the T1-MD spectral reconstruction and
to empirically optimize an experimental protocol suitable to
run on a clinical scanner. Considering the range of T1- and
diffusion-encoding parameters achievable on a clinical scanner
and the time constraints for scanning human subjects, we
generated a protocol for acquiring 304 IR-IDE DWIs comprising
all combinations of 19 T1-weightings, i.e., (TI,TR) pairs, and
16 diffusion weightings, i.e., b-values. We conducted MC
experiments assuming η = 90% and using mixtures of normal
or lognormal T1-MD distributions (Remin et al., 1989) as our
ground-truth spectra. For each distribution, we computed the
304 IR-IDE ground-truth signal attenuations and we generated
multiple instances of noisy data with signal-to-noise ratio (SNR)

levels similar to those achievable in the human brain. From
500 independent instances of simulated noisy measurements, we
reconstructed the corresponding T1-MD spectra, quantified the
means and standard deviations in all spectral bins, and compared
the results to the original ground-truth distributions. We also
investigated the effect of the reconstruction grid size on the
numerical stability of the spectral estimation and its ability to
distinguish multiple peaks.

Next, we tested the imaging capabilities of our IR-IDE
pulse sequence and assessed the accuracy of our T1-MD
measurement (experimental design, contrast encoding, signal
representation, and numerical estimation) in quantifying the
physical properties of a well-calibrated homogeneous spherical
diffusion MRI phantom that mimics the average relaxation
properties of brain tissues. The phantom was constructed using
a 40% polyvinylpyrrolidone (PVP) polymer solution (Pierpaoli
et al., 2009; Wagner et al., 2017; Sarlls et al., 2018) with nominal
diffusivity and T1 of 0.53 µm2/ms and 0.71 s, respectively, at
room temperature. Diffusion within the phantom is expected
to be uniform, isotropic and homogeneous, with a single mean
diffusivity component and no signs of microscopic anisotropy or
orientation dispersion. The homogeneity of the phantom at the
macroscopic and microscopic scales allows us to concurrently
assess potential sources of imaging artifacts such as ghosting,
ringing, eddy current distortions, as well as potential errors
in T1 and diffusion encodings due to source such as B1
inhomogeneities, gradient nonlinearities, concomitant fields, or
eddy currents. We conducted an IR-IDE experiment in the
phantom with the same protocol and reconstruction pipeline
used for the in vivo exams. Finally, we compared the 2D T1-MD
correlation spectroscopy images in the phantom to the nominal
T1 and MD values.

2.6. Data Acquisition in Healthy Volunteers
We scanned three healthy volunteers using the IR-IDE protocol
developed empirically based on the numerical simulation
experiments. All subjects provided written and informed consent
to participate in the study in accordance with a clinical
protocol approved by the institutional review board (IRB) of
the Intramural Research Program of the National Institute of
Neurological Disorders and Stroke (NINDS). The MRIs were
acquired on a conventional 3T Siemens Prisma scanner equipped
with a 32-channel head RF coil and a gradient system that can
achieve a maximum gradient strength of 80 mT/m/axis. We
acquired 304 IR-IDEDWIs in 19 separate scans with different T1-
weightings: one scan with no-IR and TR = 12 s, and 18 scans with
TI values between 0.05 and 5 s and TR values between 1.63 and 10
s. For each scan, we first played out three discarded acquisitions
(3 TRs) to establish the steady-state longitudinal magnetization
followed by 16 consecutive acquisitions during the following
TRs with a range of IDE weightings b = 50–3,600 s/mm2. All
volumes were acquired with single-shot multislice EPI readout
with TE = 98 ms, a field-of-view (FOV) of 220 mm on an 88
× 88 imaging matrix, a GRAPPA factor of 2, no partial Fourier
sampling, 2.5 mm in-plane resolution, 20 axial slices with a 5 mm
slice thickness grouped in two concatenations. The non-cubic
voxel shape 2.5 × 2.5 × 5.0 mm was chosen to mitigate imaging
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artifacts due to Gibbs ringing while maintaining a high voxel
SNR. The total scan time of the IR-IDE protocol was 51 min. All
volunteers were instructed to minimize motion during the entire
duration of the experiment. Additional scans were also acquired:
a 30-direction DTI scan with b = 1,100 s/mm2, and the same
EPI acquisition parameters as the IR-IDE scans; a 1-mm sagittal
MP-RAGE (TE/TI/TR = 3.3/1,100/2,530 ms); and a 1-mm T2-
weighted (T2W) Turbo-spin echo image (TE/TR = 72/8,000 ms)
to serve as an anatomical reference for EPI distortion correction.

We processed all diffusionMRI data sets using the TORTOISE
software package to correct for EPI distortions due to eddy
currents and magnetic field inhomogeneities (Pierpaoli et al.,
2010) and to register the DWIs to the corresponding T2W
structural reference scan. We estimated tissue SNR levels by
dividing the baseline signals (no IR, b = 0.05 ms/µm2) averaged
in tissue-specific regions-of-interest by the signal standard
deviation measured in a noise region outside the brain. From
the corrected IR-DWIs we computed voxelwise T1-MD spectra
using 144 spectral components defined by bins with 12 MD
values logarithmically spaced between 0.3 and 3.0 µm2/ms, and
12 T1 values logarithmically spaced between 0.25 and 3.3 s. We
repeated the analysis using different grid sizes with logarithmic
spacing in order to better visualize signal components in specific
spectral bands. We derived marginal distributions of subvoxel T1
values and MDs by integrating the T1-MD spectra along each
dimension and compared the variability of the estimated spectra
across subjects. Furthermore, based on visual inspection of
whole-brain T1-MD distributions we manually selected spectral
components that are consistent with different tissue types and
integrated over the corresponding spectral bins to determine the
signal fractions of these components in all subjects.

3. RESULTS

3.1. Monte Carlo Simulations and Phantom
Experiments
MC simulation results suggest that we can estimate subvoxel
multicomponent T1-MD spectra from a sufficiently large number
of IR-DWIs with SNR levels that can be achieved on clinical MRI
scanners. Figures showing examples of MC simulations using our
clinical protocol and ground-truth spectra with one, two, and
three components similar to those observed in vivo at different
SNR levels are included as Supplementary Material. Figure 2
shows MC simulation results for a ground-truth spectrum
containing a mixture of three components. The apparent
inversion efficiency can be measured with very good precision
and accuracy. The peak locations and relative signal fractions in
the mean estimated and ground-truth correlation spectra and
in the corresponding 1D marginal distributions are generally
in good agreement. At higher SNR levels, the uncertainties in
estimating the peak locations and amplitudes are lower, reducing
the variance of the reconstructed spectra and the blurring in the
estimated mean spectrum.

Apart from noise, the accuracy of the spectral reconstruction
in our MC simulations is also affected by the finite number
of measurements and the use of constraints in solving the

poorly-conditioned problem. The constraints in Equation (5)
make it difficult to establish analytical relations between the
spectral resolution, accuracy, or precision and factors such
as measurement noise or encoding parameters (b, TI, and
TR) that apply generally to any ground-truth distribution.
Nevertheless, the performance of the spectral reconstruction
is relatively unaffected by our choice of the reconstruction
grid (Figure 3). Because the estimated normalized spectra are
piecewise continuous probability density functions (i.e., 2D box
functions), the reconstruction grid (i.e., spectral bins) does not
affect the characteristics of the solution. While in this study
we used an empirical approach based on the MC experiments
to derive a protocol suitable for use on a clinical scanner,
the experimental design may be improved in the future with
advanced sampling methods and optimization algorithms.

Images obtained in the PVP phantom showed single-peak T1-
MD spectra throughout the phantom (Figure 4), with MD ≈

0.55µm2/ms and T1 ≈ 0.70s, in good agreement with
the nominal values (Pierpaoli et al., 2009; Wagner et al.,
2017; Sarlls et al., 2018). These results illustrate the ability
of our imaging method to accurately encode and map T1-
MD properties across large fields-of-view. The accuracy in
estimating the MD of the PVP phantom confirms that the
diffusion gradient amplitudes are scaled accurately to obtain
the desired b-values. Meanwhile, the relatively small apparent
inversion efficiency values suggest that RF inversion pulses are
accurately calibrated and the T1-encoding in our sequence is
not significantly affected by B1 inhomogeneities. Slight variations
in the spatial-spectral uniformity of the estimated spectra may
be caused by imaging distortions and unaccounted diffusion
encoding contributions from magnetic field inhomogeneities,
eddy currents, concomitant fields, or gradient non-linearities.

3.2. In vivo T1-MD Correlation
Spectroscopic MRI
IR-IDEDWIs showed good SNR in all study participants. Typical
SNR values computed from non-attenuated signals were 250 in
gray matter (GM), 125 inWM, 105 in the basal ganglia (BG), and
370 in cerebrospinal fluid (CSF). The relatively high SNR in GM
is likely due to partial volume contributions from CSF, while the
use of parallel imaging may also bias these tissue SNR estimates.
Throughout the brain, signal attenuations due to diffusion and
T1 contrasts showed a large dynamic range which was further
increased after phase-sensitive IR correction (Figure 5).

We found predominantly T1-MD spectra with one, two,
or three distinct components in the brains of healthy
volunteers. Figure 6 shows the raw data points and reconstructed
normalized T1-MD correlation spectrum in a representative
brain tissue voxel along with the residuals to the spectral
reconstruction as a function of the encoding parameters.
The independence of the residuals on the T1 and diffusion
encoding suggests that the spectral representation explains
the data well. In vivo estimates of the inversion efficiency
parameter, η, showed values of ∼ 89% in WM, 95% in GM,
and 98% in CSF (Figure 7), in good agreement with an earlier
study (Labadie et al., 2014). Maps of normalized T1-MD
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FIGURE 2 | Monte Carlo experiments illustrating the dependence of the spectral reconstruction on measurement noise using the proposed protocol with 304 IR-IDE

DWIs for a three-component T1-MD distribution. (Top) Comparison of ground-truth normalized spectrum (right), and the mean normalized reconstructed spectra for

measurements with different SNR levels simulated using the IR-IDE protocol for scanning healthy volunteers. (Middle) Estimated T1 marginal distributions (blue line)

derived from the T1-MD spectra in the top row compared to the ground-truth T1 marginal distribution (red line). (Bottom) Estimated mean diffusivity marginal

distributions derived from the T1-MD spectra in the top row compared to the ground-truth MD marginal distributions.

FIGURE 3 | Log-log plots of T1-MD spectra reconstructed using different grid sizes from a noisy simulated data set (with the same T1-MD encodings as our clinical

protocol) of the three-component ground-truth spectrum in Figure 2, assuming an SNR of 150. The peak locations and corresponding signal fractions (i.e., areas

under the peaks) of each component, quantified as percentages of the total signal, are consistent across reconstructions using different grid sizes.

correlation spectra and corresponding 1D marginal distributions
revealed signal components that were spatially consistent
with specific tissue types such as WM, GM, BG, and CSF
(Figure 7).

The CSF signal showed a single peak (Figure 7, blue contour)
with long T1 and large MD values (Kwong et al., 1991)
that was well-isolated from parenchymal spectral components.
Due to the relatively coarse spatial resolution, many voxels in
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FIGURE 4 | (Left) Maps of normalized T1-MD spectra measured in a well-calibrated MRI diffusion phantom with 40% PVP polymer concentration. (Right) The

estimated inversion efficiency parameter η. Throughout the phantom, a single spectral peak can be observed centered around the nominal T1 and MD values for the

phantom at room temperature 0.71s and 0.53µm2/ms, respectively. The relatively low level of spatial inhomogeneities in individual spectral components supports the

ability to accurately estimate the locations of T1-MD spectral peaks across large fields-of-view.

FIGURE 5 | In vivo IR-IDE DWIs in a representative slice from a healthy volunteer: magnitude (A) and polarity-corrected (B) images.

the cortex and around the ventricles showed both CSF and
parenchymal components. These partial volume contributions
could be promptly separated in the reconstructed spectra. Even

though the CSF peak can be easily distinguished in both
spectral dimensions, it has a narrower range of MD values
centered around ≈ 3.0µm2/ms. The larger range of the CSF
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FIGURE 6 | (A) Measured data points (stars) and estimated fit (solid lines) for a single voxel in the human brain. The different colors of lines/points correspond to

different T1-encodings (i.e., separate scans). (B) Log-log contour plot of the corresponding normalized T1-MD correlation spectrum. (C) Corresponding residuals as a

function of T1- and MD-weightings.

T1 values 2.0–3.3 s may reflect partial volume variations across
measurements with different TIs due to subject/physiological
motions or the inflow of fresh blood (i.e., non-inverted spins)
from neighboring slices especially in GM (Trampel et al., 2004)
during the T1 encoding duration. Diffusion encoding on the
other hand occurs during a fixed short duration of the evolution
of transverse magnetization and is localized to the excited slice.

In the parenchyma, WM showed the largest heterogeneity
of subvoxel T1-MD properties, revealing two distinct peaks.

The major peak (Figure 7, green outline) was relatively broad
with intermediate values of T1 1.0–1.3 s and MD 0.85–1.00
µm2/ms. The second peak with shorter T1 values ≈ 250 ms was
specific to the major WM pathways and accounted for ≈ 10.2%
of the WM signal (Figure 7, magenta outline). It may reflect
processes associated with myelin water as suggested in previous
in vivo studies (Labadie et al., 2014). The MD properties of
the short-T1 peak were similar to those of other parenchymal
components suggesting that this peakmay be an indirect measure
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FIGURE 7 | (Left) Maps of 2D probability density functions (i.e., 2D normalized spectra) of subvoxel T1-MD values reconstructed on a 12 × 12 grid, along with the

corresponding marginal probability density functions (i.e., 1D normalized spectra) of subvoxel T1 values (top row) and subvoxel MD values (left column) derived from

the 304 phase-corrected IR-IDE MRIs in Figure 4. (Right) Corresponding maps of apparent inversion efficiency η (top) and the non-attenuated signal, i.e.,

T2-weighted image (bottom), in the same slice. Spectral components specific to WM (green), GM (red), basal ganglia (yellow), short-T1 WM (magenta), and CSF (blue)

were delineated manually based on visual inspection of whole-brain T1-MD spectra.

of myelin water via MT or chemical exchange (Avram et al.,
2010). The short-T1 WM component could be better visualized
using a higher resolution reconstruction grid in Figure 8. The
reconstructed spectra in WM, and more generally in the brain
parenchyma, did not reveal very low MD components that may
suggest the presence of a very restricted diffusion compartment
(i.e., dot compartment; Tax et al., 2020).

In GM we observed a single component, with significantly
longer T1 values 1.30–2.08 s and slightly lower MD values
compared to WM (Figure 7, red contour). The lowest
parenchymal MD values 0.56–0.69 µm2/ms were specific
to the BG, including the putamen and caudate nucleus (Figure 7,
yellow contour), in agreement with previous in vivo studies
(Avram et al., 2019). The localization of low MD components in
the BG is evident in the marginal MD distribution components
(Figure 7, left column). The BG also contained spectral
components found in other tissues.

The one-dimensional (1D) marginal distributions derived
from the T1-MD correlation spectra were in very good agreement
with results from other T1 (Labadie et al., 2014) and MD
(Avram et al., 2019) relaxation spectroscopicMRI studies, further

supporting the accuracy of the T1 and MD preparations and
the spectral reconstruction. The signal fractions obtained by
integrating the manually selected spectral regions-of-interest
(ROIs) corresponding to 1 CSF and 4 parenchymal components
were consistent across the three study participants (Figure 9) and
showed slight improvements in anatomical specificity compared
to the 1D marginal distributions (Figures 7, 8). The ad hoc
approach for defining the spectral ROI components in Figure 7

will be improved and automated in future studies with larger
cohorts of subjects. While these preliminary findings did not
reveal any remarkable T1-MD correlations in the healthy brain,
they encourage further studies with larger cohorts of healthy
volunteers and patients to assess the reproducibility and establish
the clinical applicability and utility of T1-MD CS-MRI.

The spatial-spectral characteristics of T1-MD distributions
did not depend on the locations or sizes of the spectral bins in
the reconstruction (Figures 7, 8), as expected from our numerical
simulation results (Figure 3). Estimating T1-MD spectra with
different reconstruction grids can improve visualization of
specific spectral bands. For example, Figure 8 reveals that the
T1 values of the short-T1 component in WM are in the range
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FIGURE 8 | Maps of estimated normalized T1-MD spectra (same slice shown in Figure 7) reconstructed using a 14 × 14 grid with bin locations chosen using

logarithmic spacing to better visualize the short-T1 spectral component in WM: 14 MD values with logarithmic spacing between 0.2 and 3.0 µm2/ms; and 14 T1
values with logarithmic spacing between 0.05 and 3.33 s. (Top row) The corresponding marginal distribution of T1 values. (Left column) The corresponding marginal

distribution of MD values. The short-T1 peak contains components in the range of 130–350 ms.

of 0.13–0.35 s. In general, reconstructions using denser grids
require longer processing times and can be more sensitive to
measurement noise as they aim to estimate more unknowns
(i.e., spectral components). In addition, reconstructions using
dense grids distribute the spatial-spectral information over a
large number of spectral components maps, making it more
difficult to identify spatially coherent anatomical features. Future
studies will use numerical simulations to optimize not only
the reconstruction grids but also the experimental protocols
(TI-b weightings) for specific clinical applications based on

high-quality T1-MD CS-MRI data sets measured in larger
cohorts of healthy volunteers and patients.

4. DISCUSSION

Mapping the subvoxel heterogeneity of magnetic relaxation and
diffusion parameters, e.g., T2 (Mackay et al., 1994), T1 (Labadie
et al., 2014), MD (Avram et al., 2019) using a clinical MRI scanner
may yield new clinical biomarkers. Recent human studies have
demonstrated the ability to acquire multidimensional CS-MRI
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FIGURE 9 | Maps of signal fractions corresponding to the principal T1-MD spectral components delineated with color-coded boundaries in Figure 7: Component 1

(magenta): short-T1 WM with T1 and MD values in the range of 0.0–0.32 s and 0.69–1.05 µm2/ms; Component 2 (green): WM with T1 and MD values in the range of

0.64–1.30 s and 0.56–1.30 µm2/ms, respectively; Component 3 (red): GM with T1 and MD values in the range of 1.30–2.08 s and 0.56–1.05 µm2/ms, respectively;
Component 4 (yellow): BG with T1 and MD values in the range of 1.03–1.30 s and 0.56–0.69 µm2/ms, respectively; and Component 5 (blue): CSF with T1 and MD

values in the range of 1.64–3.33 s and 2.43–3.00 µm2/ms, respectively. Matching axial slices in three healthy volunteers show similar anatomical features

corresponding to these spectral domains.

data (Tax et al., 2017; Kim et al., 2018; Slator et al., 2019). In this
study, we integrate two separate spectroscopic MRI methods
with 1D encodings (Labadie et al., 2014; Avram et al., 2019)
to image, for the first time, correlation spectra of T1 and MDs
in the human brain. There are several considerations for our
choice. Firstly, clinical studies have repeatedly demonstrated
the sensitivity of T1 (e.g., FLAIR) and diffusion (e.g., mADC)
contrasts to various pathophysiological tissue processes such
as perturbations in cellular metabolism, microstructural
remodeling, iron accumulation, changes in protein and lipid
concentrations. Secondly, preclinical experiments suggest that
water diffusivity in tissues correlates less with T1 than with
T2 (Benjamini and Basser, 2017). Furthermore, because T1
and diffusion preparations modulate the longitudinal and
transverse magnetizations, respectively, we can independently
control these contrasts to achieve a wide range of T1-MD
weightings. Finally, IR-preparation provides twice the signal
dynamic range with excellent sensitivity for short and long
TI preparations.

The novel IR-IDE sequence (Figure 1) overcomes several
challenges to efficiently acquire whole-brain MRIs with a wide
range of T1-MDweightings. Suchmeasurements are traditionally
very time-consuming due to the long T1-preparation durations,
and the need to account for diffusion anisotropy. To accelerate
T1-encoding we interleaved inversion and acquisition modules
(Park et al., 1985; Oh et al., 1991; Listerud et al., 1996) across
multiple slices and adjusted both TI and TR concurrently.
T1-encoding efficiency may be further improved by sampling
multiple time points during the IR recovery (Look and Locker,
1970; Lee, 2000; Shah et al., 2001; Steinhoff et al., 2001; Hutter
et al., 2018), by using MR fingerprinting (McGivney et al., 2018;
Tang et al., 2018; Kim et al., 2019), or compressed sensing
(Bai et al., 2015). Meanwhile, the diffusion signal in tissues is
modulated by the exact timings, amplitudes, and orientations
of the diffusion-sensitizing gradient waveforms. Using very
economical gradient sampling schemes (Avram et al., 2018) we
can derive whole-brain mADC-weighted MRIs (Jones et al.,
1999) with arbitrary b-value very efficiently from only a few
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DWIs per b-value. Nevertheless, in heterogeneous tissues, the
mADC-weighted signal decay does not capture the diffusion-
diffusion correlations required to encode diffusion isotropically
in each microscopic water pool (Westin et al., 2016; Topgaard,
2017; Avram et al., 2019). On the other hand, the IDE
preparation (Avram et al., 2019) weighs all diffusion processes
isotropically in a single excitation, removing both macroscopic
and microscopic effects of diffusion anisotropy and drastically
accelerating the scan.

The IDE signal can be viewed as a practical, one-dimensional
simplification of a general representation that breaks down the
voxel signal into contributions from a distribution of diffusion
tensors whose diffusion ellipsoids have various sizes, shapes, and
orientations and correspond to slowly-exchanging microscopic
water pools (Westin et al., 2016; Topgaard, 2017; Avram et al.,
2019; Magdoom et al., 2021). Therefore, it is naturally suited
for relaxation correlation spectroscopic analysis, such as T1-MD
CS-MRI. The signal representation in Equation (4) can account
for very general distributions that may arise in healthy and
diseased tissues.

Previous CS-MRI studies with human subjects (Labadie
et al., 2014; Kim et al., 2018) have used spatial regularization
to enforce smoothness of the reconstructed spectra across
neighboring voxels. In this study, we did not employ any
non-local (i.e., spatial) constraints in the voxel-wise T1-MD
spectral reconstruction to maintain the sensitivity to subtle
local differences in tissue components, which is important
in diagnostic applications. The multidimensional spectral
reconstruction may be improved by using other techniques
such as Monte Carlo reconstruction (Prange and Song, 2009),
compressed sensing (Bai et al., 2015), marginal distribution
constrained (MADCO) reconstruction (Benjamini and Basser,
2016), Bayesian estimation (McGivney et al., 2018), or deep
learning (Pirkl et al., 2020).

Sources of error in MD-encoding include undesired
diffusion weighting contributions due to concomitant field
gradients, eddy currents, gradient non-linearities, and B0
field inhomogeneities (Avram et al., 2019). Meanwhile, the
quantitation and interpretation of T1 spectra can be affected
by: the adiabatic inversion efficiency which depends on spatial
variations in the RF field (B1 inhomogeneities); dynamic
tissue-specific processes such as MT and cross-relaxation
between bound (macromolecular) water and free tissue
water, as well as the water exchange across different T1
components; physiological effects such as the inflow of fresh
blood (Trampel et al., 2004) into the imaging slice; and partial
volume instabilities due to tissue motions during the long
duration of the experiment.

High-SNR and large dynamic range are intrinsic requirements
for disentangling multiexponential decays in RS-MRI (Figure 2).
The SNR can be improved on clinical scanners by increasing
the voxel size, for instance. However, in high-SNR MRIs, signal-
dependent imaging artifacts (e.g., Gibbs ringing, aliasing) can be
considerably larger than the noise level. Furthermore, in long-
duration scans with human subjects, additional factors, such as
physiological motions, blood flow, tissue perfusion, or active

metabolic processes may cause partial volume instabilities that
fluctuate above the noise level, potentially compounding the
quantitation bias.

RF field inhomogeneities typically produce spatially smooth
variations in the inversion efficiency. However, inversion
efficiency maps measured in vivo (Figure 7) showed a notable
tissue dependence (lower values in WM compared to GM and
CSF), suggesting that the longitudinal magnetization available
at excitation may also reflect tissue-specific processes such as
magnetization transfer, cross-relaxation, or chemical exchange.
This tissue dependence, first reported in an in vivo T1 RS-MRI
study (Labadie et al., 2014), was attributed to differences in MT
and cross-relaxation properties among brain tissues (Labadie
et al., 2014). The authors of that study incorporated contributions
from RF inhomogeneities and tissue-specific processes into a
general parameter called apparent inversion efficiency, η. This
pragmatic empirical description allows the estimation of T1
spectra in vivo but assumes a uniform inversion efficiency in all
subvoxel signal components.

In general, the interpretation of any T1 measurement should
carefully consider the effects of dynamic processes like MT
which depend on the pattern of RF pulses during a multi-
slice scan. In IR experiments, these processes can lead to signal
changes that are difficult to disentangle from fast longitudinal
relaxation and affect primarily the quantitation of short-T1
components (Edzes and Samulski, 1978; Gochberg et al., 1997;
Does et al., 1998), such as those observed in WM (Labadie
et al., 2014). In our multi-slice IR experiment, an additional
confound may arise from the TI dependence of MT effects.
When a given slice is inverted using an on-resonance slice-
selective IR-pulse, the neighboring slices can experience the same
IR pulse as off-resonance saturations compounding their MT
effects. Since between the inversion and excitation pulses of each
slice, the number of out-of-slice inversions changes with TI,
measurements with different TIs could reflect different amounts
of MT saturation. The contributions of MT in IR experiments
have been characterized for simple two-pool (bound and free
water) systems (Gochberg and Gore, 2003, 2007). Extending
these frameworks to a spectrum of T1 tissue components requires
many additional unknowns to account for the coupling between
spectral components and different measurements that are not
feasible for an in vivo study like ours.

Due to the relatively long TE needed to accommodate the IDE
preparation, the T1-MD spectra are strongly T2-weighted and
may differ from similar measurements using shorter TEs. The
TE = 98 ms is significantly longer than the T2 of myelin water
(<35 ms) resulting in an almost complete attenuation due to
the transverse relaxation of the direct myelin water contribution
to the measured signal. Consequently, the short-T1 peak in
Figures 7, 8 may not quantify myelin water directly, but likely
reflects processes such as MT and chemical exchange between
myelin water and water in other tissue compartments. Further
decreasing the TE in images with T1 and diffusion encoding may
be possible by using high-performance gradient systems (Jones
et al., 2018), stimulated echo sequences, and center-out readout
trajectories (Avram et al., 2014).

Frontiers in Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 671465

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Avram et al. Clinical T1-MD Correlation Spectroscopic MRI

5. CONCLUSIONS

Building on the established radiological utility and sensitivity
to pathophysiology of DWI and FLAIR images, this study
takes significant steps toward a non-parametric quantitation
of the subvoxel heterogeneity of two important biophysical
tissue properties. It lays out the methodology for measuring
whole-brain IR-IDE MRIs (pulse sequence and experimental
design) and illustrates, as a proof-of-principle, how from
those measurements one can map T1-MD spectra (signal
representation and spectral reconstruction). Mapping the
subvoxel landscape of joint T1-diffusion properties may
reveal sensitive tissue signal components for diagnosing and
characterizing neuroinflammatory and neurodegenerative
diseases, traumatic brain injury, ischemic stroke, or cancer.
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