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Abstract
Aligning billions of reads generated by the next-generation sequencing (NGS) to reference sequences, termed “mapping”, is 
the time-consuming and computationally-intensive process in most NGS applications. A Fast, accurate and robust mapping 
algorithm is highly needed. Therefore, we developed the FANSe3 mapping algorithm, which can map a 30 × human whole-
genome sequencing (WGS) dataset within 30 min, a 50 × human whole exome sequencing (WES) dataset within 30 s, and 
a typical mRNA-seq dataset within seconds in a single-server node without the need for any hardware acceleration feature. 
Like its predecessor FANSe2, the error rate of FANSe3 can be kept as low as 10–9 in most cases, this is more robust than 
the Burrows–Wheeler transform-based algorithms. Error allowance hardly affected the identification of a driver somatic 
mutation in clinically relevant WGS data and provided robust gene expression profiles regardless of the parameter settings 
and sequencer used. The novel algorithm,  designed for high-performance cloud-computing after infrastructures, will break 
the bottleneck of speed and accuracy in NGS data analysis and promote NGS applications in various fields. The FANSe3 
algorithm can be downloaded from the website: http://www.chi-biote​ch.com/fanse​3/.
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Introduction

Next-generation sequencing (NGS) is a key cornerstone in 
precision medicine. With the rapid decrease in the experi-
mental cost of NGS, human  whole-genome sequencing 
(WGS) at 30× depth can be performed at the cost of $700, 
and an mRNA sequencing (RNA-seq) costs only $80. In 
contrast, the cost of NGS data analysis remains nearly 
unchanged. Mapping i.e., the alignment of millions of short 
reads to reference sequences, is the most computationally 

intensive step in NGS data analysis, and it requires a fast, 
accurate and robust mapping algorithm.

Burrows–Wheeler transform (BWT)-based mapping algo-
rithms such as the Burrows–Wheeler alignment (BWA) and 
Bowtie tools are the most widely used algorithms in NGS 
applications owing to their great advantages in speed com-
pared to that of normal seed-based algorithms. They can 
map a human WGS dataset within 1 day in a server node 
(Hung and Weng 2017). Hardware acceleration using GPU 
(Graphical Processing Unit) or FPGA (Field-Programmable 
Gate Array) further accelerates with BWT-based mapping 
by 2–7 times (Nogueira et al. 2016) and enables mapping 
of  a human WGS dataset within 3 h in a single server 
node. However, due to the sequencing error and deviation 
"between reads and reference sequences, BWT-based algo-
rithms generally lose accuracy when the error rate exceeds 
2%. These algorithms lose numerous mappable reads in real-
world tests at unpredictable rates (Schbath 2012; Ruffalo 
et al. 2011; Fonseca 2012; Homer et al. 2009), indicating 
their extreme dependence on sequencing quality and genetic 
background (Hung and Weng 2017). Whole exome sequenc-
ing (WES) for 57 patients with genetic diseases failed to 
detect any Human Gene Mutation Database-cataloged 
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variant, showing an unacceptable high false-negative rate 
(Park 2015). Disease-causing mutations in 7 genes were 
undetected due to the inadequate coverage. Other failures 
are mainly caused by instability and inaccuracy of the algo-
rithms, the concordance rate of single-nucleotide variants 
(SNVs) identified by five commonly used algorithms was 
only 26.8–57.4% (O’Rawe 2013).

To meet the accuracy and speed demands of precision 
medicine, we developed the FANSe series of mapping algo-
rithms (Mai 2017; Xiao 2014; Zhang 2012). Unlike other 
algorithms, which generally prioritize speed, FANSe prior-
itizes accuracy. In WGS variant calling, experimental vali-
dation of 1994 sites revealed no false positives or negatives 
(Wu 2014). The RNA-seq mRNAs identified by FANSe2 
could be perfectly validated by RT-PCR whereas those iden-
tified by Bowtie2 could not (Xiao 2014). This high accu-
racy made the FANSe algorithms optimal for the analysis of 
translating mRNA sequencing (RNC-seq) data, which is one 
of the key resource pillars in the Human Proteome Project 
(Zhong 2014) and it thus facilitates sensitive and accurate 
identification of proteins from shotgun mass spectrometry 
data (Chang 2014; Zhang et al. 2014; Xu 2015; Zhao 2017). 
Moreover, differentially expressed genes identified from 
FANSe2-mapped data were perfectly validated by RT-qPCR 
(Li 2017). The FANSe2splice algorithm, which is designed 
to map spliced reads to a genome based on the FANSe prin-
ciple, in terms of experimental verifiability outperformed 
other mainstream spliced mappers, such as TopHat2 (Kim 
2013), MapSplice2 (Wang 2010), HISAT2 (Kim et al. 2015), 
and STAR (Dobin 2013), and it can detect splice junctions 
from low-throughput semi-single-cell sequencing data-
sets (Mai 2017). Besides their high accuracy, the FANSe 
algorithms are highly error-tolerant and can be effectively 
applied to the meta-genome/meta-transcriptome studies, 
of various non-modelorganisms outperforming other algo-
rithms (reviewed in Cao and Zhang 2017).

With booming NGS applications, speed has becomes a 
key demand. The first-generation FANSe algorithm was 
slow and single-threaded. FANSe2 introduced the paralleli-
zation feature utilizing multi-core central processing units 
(CPUs). However, the parallelization efficiency of FANSe2 
limits the performance gain when more than eight CPU 
cores are present in the system. In addition, the insertion 

and deletion (indel) in FANSe2 is very time-consuming, 
restricting its application in precision medicine, where indel 
detection from WGS or WES data is routinely used. With 
the increase of CPU core numbers of modern servers and 
the development of cloud-computing infrastructures, we 
aimed to implement computational improvements to solve 
the aforementioned problems to achieve a higher mapping 
speed without compromising accuracy.

Materials and Methods

Server Configurations

As FANSe3 was designed exclusively for cloud-computing 
infrastructures, all tests were conducted on six server nodes 
using the hardware configurations listed in Table 1. A solid-
state drive was installed on these server nodes to maximize 
the I/O throughput.

WGS Datasets

A WGS dataset generated using a BGISEQ-500 sequencer 
(2 × 100 bp) was downloaded from the European Nucleotide 
Archive (accession no.: ERP021460). An Illumina HiSeq 
X Ten (2 × 150 bp) WGS datase was downloaded from the 
Sequence Read Archive (SRA) database (accession no: 
SRR6656084).

WES Dataset

A WES dataset of a tumor tissue from a lung adenocarci-
noma (LUAD) patient was downloaded from the SRA data-
base (accession no.: SRR6656083). In brief,  exome cap-
ture was performed using the Agilent SureSelect Human 
All Exon V4 kit. Sequencing was performed on an Illumina 
HiSeq X Ten sequencer in the 2 × 150 bp mode.

For variant calling (SNVs and indels), as the FANSe 
algorithms do not export results in the BAM/SAM format, 
we developed a variant calling procedure using simple read 

Table 1   Server nodes used in 
this study

CPU Cores/threads RAM

Dual Intel Xeon X5650 12C/24T 96 GB DDR3 ECC REG
Dual Intel Xeon E5-2670 16C/32T 128 GB DDR3 ECC REG
Dual Intel Xeon E5-2680V2 20C/40T 128 GB DDR3 ECC REG
Dual Intel Xeon E5-2696V4 44C/88T 256 GB DDR4 ECC REG
Quad Intel Xeon E7-4890V2 60C/120T 256 GB DDR3 ECC REG
Single AMD Threadripper 3990X 64C/128T 256 GB DDR4
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pile-up and Fisher’s exact test reported previously (Wu 
2014). This variant calling procedure has been experimen-
tally validated based on nearly 2000 sites, without false 
positives and false negatives. In this study, we used a highly 
parallelized implementation of such an algorithm running in 
Chi-Cloud for variant calling.

RNA‑seq Datasets

Published RNA-seq datasets of A549 LUAD cells gener-
ated using Illumina and Ion torrent Proton sequencers (Mai 
2017; Wang 2013) were downloaded from the SRA database 
(accessions nos:  SRR611119 and SRR4346573).

Results

Improvements of FANSe3

The FANSe series of algorithms are seed-hash algorithms 
(like BLAST), which divide a read into several seeds. The 
algorithm search for perfect matches of these seeds in the 
reference sequences to form hotspots, which are then merged 
to prioritize the most probable mapping positions. To speed 
up the seed search, seed-hash algorithms usually implement 
indexing of the reference sequences. However, one of the 
major drawbacks is that the genome index requires an enor-
mous amount of RAM that is proportional to the length of 
the reference sequence. To reduce RAM usage for normal 
desktop computers, FANSe2 splits the genome into small 
segments. However, smaller segments imply a lower prob-
ability that a read can be mapped with a particular segment. 
Therefore, to exclude a read that cannot be mapped with a 
particular segment, FANSe2 has to check all possible hot-
spots, i.e., to perform Smith–Waterman alignmenst for all 
hotspots, which is very slow. As, FANSe3 was designed 
for cloud-computing servers, the index can be built for the 
entire genome to ensure that the global high-score hotspot is 
always prioritized. However, this leads to high RAM usage, 
and 64 GB RAM is required for the mapping of reads to a 
human genome in a multi-core system. This is limiting factor 
for regular personal computers but is fully practical for cloud 
computing or supercomputing infrastructures. Hovever, this 
offers a significant advantage over FANSe2 and allows 8–10-
fold increase in speed.

Due to the increase in read length and accuracy of the 
modern sequencers, the “step-down” of the seed length in 
FANSe2, i.e., to first map the reads with large seeds and then 
map the unmapped reads with shorter seeds, is not efficient 
in most cases. Therefore, FANSe3 instead of a single seed 
length (which can be set from 6 to 14 with an increment of 

1) was used throughout the mapping process. To accelerate 
indel detection, fuzzy indexing was used, so that short indels 
are neglected during hotspot generation and are identified 
in the final check process. This results in an approximately 
10% performance decrease when indel detection is switched 
on, which is substantially better than that of more than 80% 
speed loss in FANSe2. Additionally, the multimapping pro-
cess is strongly improved in FANSe3. The Multimapped 
reads can be exported to a separate output file, leaving the 
uniquely mapped reads in one file to facilitate downstream 
analyses that use only these reads. Going through all pos-
sible multimapping hotspots is a step in the processing of 
every read. A quick multimapping estimation is performed 
during hotspot merging. Therefore, exporting all best map-
ping locations does not require extra processing time.

Extreme caution was taken to avoid thread contention 
when coding FANSe3. Thread-level parallelization was 
used in FANSe3 instead of the process-level FANSe2. This 
change prevents FANSe3 from parallelizing across multiple 
computers/server nodes. However, FANSe3 runs extremely 
fast in a multi-core server node and does not need to col-
laborate with other nodes practically. The advantage of 
this change lays in the fact that FANSe3 does not need an 
MPICH2 environment, which is often problematic during 
installation and configuration.

Besides the aforementioned algorithmic improvements, 
numerous technical improvements were made to achieve a 
30–50 × fold increase in speed when mapping WGS/WES 
data. For example, memory accession modes were optimized 
specifically for the dual ring bus structure of Intel Xeon 
E5-V2/V3/V4 CPUs and the mesh structures of Intel Xeon 
Scalable/AMD Epyc CPUs. In these CPU structures, mas-
sive creation and destruction of objects, such as arrays and 
structures, would make other cores wait for this operation 
and thus decrease the overall performance. The use of more 
cores would exacerbate this problem. Therefore, we assigned 
static memory to each core and minimized array creation 
in the code. This approach allows a 10–20 -fold increase 
in speed. As indel detection is often needed, we wrote the 
Smith–Waterman alignment procedures before the main pro-
gram, not as a function to call, to avoid an additional cost 
of calling functions and returning results as structures. This 
saves 10 μs per read at least in our computers. Considering 
that the mapping speed may exceed 30 million reads/min, 
which is equivalent to 2 μs/read, this coding trick allows an 
at least 5-fold increase in speed.

In summary, FANSe3 is designed for extreme speed to 
run in a multi-core server node with large RAM. Like in 
FANSe2, accuracy is still guaranteed by the mathematical 
estimation that ensures the mismapping rate of <10-9 (Xiao 
2014).
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FANSe3 Maps 30× Human WGS Data Within 30 
Minutes

Population-scale WGS/WES puts an enormous burden 
on data processing capacity. We mapped WGS datasets 
sequenced using Illumina HiSeq X Ten (150-nt paired-end 
reads) and BGISEQ-500 (100-nt paired-end reads) sequenc-
ers, as these are two representative and practical WGS-scale 
sequencers. When running a  single FANSe3 process on 
the six servers listed in Table 1, Intel Xeon E5 CPUs with 
the ring bus across four generations (E5-2670, E5-2680V2, 
E5-2696V4) achieved nearly identical speeds when using 
12 CPU cores or less and were significantly faster than the 
Xeon X5650 CPU which lacks the ring bus (Fig. 1a), dem-
onstrating that the FANSe3 algorithm was optimized for the 
ring bus of modern multi-core CPUs. The mapping speed 
increased almost proportionally to the thread count before 
the physical CPU core count were achieved, showing that the 
parallelization efficiency was  optimized and FANSe3 takes 
full advantage of the booming cores of newer generation 
CPUs. When setting more threads, the performance further 
increased by ~ 25%, indicating that FANSe3 takes advantage 
of the hyper-threading feature of these modern CPUs.

Although mapping more than 6 million reads per min-
ute is already quite fast, we noticed that reading the data-
set took considerable time, during which the CPU was 
hardly used. To make full use of the CPU power, we ran 
two FANSe3 processes to map both ends of the reads 
simultaneously on the same server with 256 GB RAM. 
As expected, the speed increased by 25–30% (Fig. 1a, 
open diamonds). With this trick, a 6-year-old quad 
Xeon E7-4890V2 system with 60 CPU cores could map 
a 30 × human WGS dataset within 55 min, and modern 
AMD Threadripper 3990X CPU could complete this task 
in approximately 30 min (Fig. 1a, green diamond). For 
the BGISEQ-500 sequencer with slightly higher error rate 
and shorter read length, FANSe3 achieved a similar per-
formance. We believe that the up-to-date dual Intel Xeon 
Scalable and dual AMD Epyc CPU systems would be even 
faster as they possess more cores and a mesh bus with 
decreased latency.

Compared to the up-to-date BWA (v. 0.7.17) run-
ning on CentOS 7 and on the Dual E5-2680V2 hardware 
system, FANSe3 was 60% faster than BWA-MEM and 
7.5 times faster than BWA running at normal mode (Fig. 1b). 
Notably, FANSe3 achieved an additional 35% increase in 

Fig. 1   Mapping human WGS 
datasets against the human 
reference genome GRCh37/
hg19. a Open diamonds rep-
resent the total mapping speed 
when running two FANSe3 
processes to map reads of both 
ends simultaneously in one 
server, and dots represent the 
speed when running a single 
FANSe3 process. Dashed gray 
lines indicate the minimum 
mapping speed required to map 
a 30× human WGS dataset 
within 1 h or 30 min. b Map-
ping  of the BGISEQ-500 WGS 
dataset using BWA, BWA-
MEM, and FANSe3 on the dual 
E5-2680V2 system. BWA and 
BWA-MEM were run using 
default settings. c Uniquely 
mapped reads of the dataset 
ERR1831354 (file1, 100 nt 
read length) exported by BWA, 
BWA-MEM, and FANSe3. 
“Local alignment only” indi-
cates that only part of the reads 
was aligned to the reference 
sequence. BWA and FANSe3 
in this test allow a maximum of 
five errors
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speed when using hyper-threading, whereas BWA running 
on both modes achieved little performance gain by hyper-
threading. Running two BWA instances simultaneously 
would not improve speed. This again showed the advantage 
of FANSe3 in terms of scalability. The mapping results of 
BWA and FANSe3 were nearly identical. The only excep-
tion was that BWA-MEM mapped 5.2% more reads than the 
other two algorithms (Fig. 1c). However, BWA-MEM per-
forms only local alignments and does not allow the user to 
set a maximum number of mismatches. When we excluded 
the “local-alignment-only” reads and reads with an error 
rate higher than 5%, BWA-MEM yielded a nearly identical 
number of uniquely mapped reads like BWA and FANSe3.

FANSe3 Maps WES Datasets Robustly Within 
Minutes

WES is often used in clinical applications to sequence 
disease-relevant mutations at a substantially higher depth 
than that of WGS at a reasonable cost. In this study, we 
used WES data of a tumor tissue from an LUAD patient 
to search for druggable driver mutations. This dataset con-
tained 41.5 M paired-end reads, with a nominal sequencing 
depth of 244× on average. Since exons are rarely repetitive 
sequences, FANSe3 could map these reads more efficiently 
than WGS reads to the reference genome, achieving nearly 
doubled mapping speed compared to that for the WGS data-
sets (Fig. 2a). As observed for the WGS data, running two 
FANSe3 processes to map both ends simultaneously uti-
lized the CPU power with higher efficiency. A dual Xeon 
E5-2696V4 system achieved a speed of 17.78 M reads/min, 
indicating that a 50× WES dataset (~ 2.5 GB data, generally 
used for genetic testing and genome-wide association stud-
ies) could be mapped in approximately 30 s (Fig. 2a).

For clinical applications, robustness is essential. We 
compared the mapping results when allowing 3–7 errors per 
read. Increasing the error allowance did not substantially 
influence the mapping speed (Fig. 2b). The mapping rate of 
the first end remained nearly constant when the error allow-
ance increased. Due to the lower sequencing quality, the 
mapping rate of the second end was lower, and it increased 
slightly with the increase of error allowance (Fig. 2c). This 
led to a slight increase in detected non-synonymous substi-
tutions and indels (Fig. 2d). Nevertheless, at the position 
of clinical significance, the T > G variant causing EGFR 
L858R mutation, displayed almost the same nucleotide 
pile-up result, which is independent of parameter settings 
(Fig. 2e). This finding was validated by qPCR. Based on 
these findings, the patient was treated with erlotinib, a 
tyrosine kinase inhibitor targeting the EGFR L858R muta-
tion, and the tumor decreased considerably. The treatment 
outcome validated the robust findings from the WES data, 
demonstrating its clinical potential.

FANSe3 Maps RNA‑Seq Reads with higher speed

Like its previous generations, FANSe3 does not support the 
spliced mapping directly for RNA-seq, as FANSe2splice 
(Mai 2017) is specifically designed for this purpose. In 
most RNA-seq applications, where novel splice junctions 
do not need to be discovered, directly mapping reads to 
already spliced RNA reference sequences is a substantially 
faster and more accurate solution. We previously reported 
that FANSe3 is at least 30 times faster than FANSe2 in 
RNA-seq applications (Liu 2018). We mapped a previously 
generated mRNA-seq dataset of A549 LUAD cells (75-nt 
single-ended reads) (Wang 2013) to NCBI RefSeq-RNA ref-
erence sequences. Given the significantly smaller reference 
sequences, the computational complexity is substantially 
lower than that in the WGS/WES applications. Therefore, 
disk I/O becomes a bottleneck. In the test, the parallelization 
efficiency dropped when more than 12 cores were enabled 
(Fig. 3). Dual FANSe3 processes utilized the CPU more 
efficiently and achieved a mapping speed of 59.9 M reads/
min or almost 1 M reads/s. At this speed, a typical mRNA-
seq dataset, which is sufficient to quantify more than 11,000 
genes in human cells (2 M reads, Human Proteome Pro-
ject) (Chang 2014), could be accomplished in only 2 s. In 
addition, even running two FANSe3 processes simultane-
ously used only approximately half of the CPU power of 
the dual Xeon E5-2696V4 system because of the insufficient 
I/O speed of the SSD. We believe that using a substantially 
faster enterprise-level storage system may unleash the com-
putational power to achieve 1 s per mRNA-seq dataset in a 
single server node.

Parameter Robustness for RNA Quantification Using 
FANSe3

Given the extra steps in RNA-seq library construction 
compared to DNA-seq library construction, e.g., reverse 
transcription, the error rate of RNA-seq is generally higher 
than that of DNA-seq. Lower-throughput and error-prone 
sequencers such as the Ion Torrent are often used for tran-
scriptome sequencing. Therefore, mapping algorithms must 
deal with higher and uncertain error rates. This requires 
robustness of the mapping algorithms. Thus, we tested the 
parameter robustness of FANSe3 using A549 cell RNA-seq 
data generated by Illumina and Ion Torrent sequencers.

For the Illumina dataset, allowing 3–7 errors yielded 
very similar mapping rates, and the mapping speed 
remained quite constant (Fig. 4a). For the Ion Torrent Pro-
ton dataset, the mapping rate was generally higher than that 
of the Illumina dataset owing to the higher error rate. With 
the increasing error allowance from 3% to 7%, the mapping 
rate increased from 34.1% to 46.7% at the cost of decreased 
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mapping speed (Fig. 4b). Interestingly, the quantification 
of gene expression was nearly independent from the error 
allowance: the Pearson R values for the same sequencer 
were all above 0.993 (Fig. 4c). Correlation coefficients for 

any mRNA quantified by the two sequencers were nearly 
all around 0.89, suggesting it is independent from the 
error allowance (Fig. 4d). These results demonstrated the 

Fig. 2   WES data analysis 
using FANSe3. a Speed test 
of FANSe3 in various systems 
with five errors allowed and 
indel detection on. The blue 
graph indicate the speed of 
FANSe2 mapping for the same 
dataset with indel detection 
off and masked genome on. 
b Mapping speed of FANSe3 
allowing 3–7 errors per read. c 
Mapping rates of both ends of 
the paired-end reads at different 
error allowances. d Detection 
of non-synonymous substitu-
tions and coding-sequence 
indels at different error allow-
ances. e Nucleotide pile-ups 
at chr7:55259514 to detect 
T ≥ G mutation (causing EGFR 
L858R driver mutation)
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parameter robustness of FANSe3 in RNA-seq applica-
tions, and the results are largely independent of parameter 
settings.

Discussion

With 30 min for WGS data, 1 min for WES data, and 1–2 
s for transcriptome data, FANSe3 sets a new speed record 
for NGS analysis. This speed was fully achieved on CPU 

Fig. 3   Mapping an A549 
cell mRNA-seq dataset to 
NCBI RefSeq-RNA reference 
sequences using FANSe3 on 
various platforms

Fig. 4   Parameter robustness of 
FANSe3 in RNA-seq applica-
tions. A549 cell mRNA-seq 
data generated using Illumina 
GAIIx and Ion Torrent Proton 
sequencers were mapped 
to RefSeq-RNA reference 
sequences. a, b Mapping rate 
and mapping speed when allow-
ing 3–7 errors for the Illumina 
dataset and 3–7% errors for 
the Ion Torrent Proton dataset 
(due to the variable read length 
of the Ion Torrent sequencer). 
Mapping speed was recorded 
using a single FANSe process 
in the dual E5-2696V4 server 
node. c Correlation of RNA 
quantification (in RPKM) when 
setting different error allow-
ances for the Illumina and Ion 
Torrent datasets. d Correlation 
of RNA quantification among 
the sequencing platforms under 
different error allowances
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and was even substantially higher than that of many FPGA/
GPU solutions, demonstrating the advantageous algorithm 
design. FANSe3 does not use any special instruction sets, 
such as SSE and AVX, indicating that it can be theoretically 
compiled to run on any platform even non-X86 systems. 
This versatility allows convenient deployment in sequenc-
ing centers to utilize the power of national supercomputing 
centers. For example, FANSe3 deployed in the TianHe-2 
supercomputer (Guangzhou, China) would be able to map 
50 × WES datasets of the entire world population (7.8 bil-
lion people) within 1 year. This speed may facilitate a boom 
in rapid clinical applications (e.g., pathogen identification) 
and population-scale research/applications. Moreover, this 
performance also dramatically decreases the computational 
cost of NGS, facilitating low-cost NGS applications that are 
widely affordable.

With the almost identical mapping results to those with 
FANSe2 (Liu 2018), FANSe3 inherited its the extreme 
accuracy and robustness. We demonstrated the robustness 
in both DNA-seq and RNA-seq applications, where SNV 
identification and RNA quantification were independent of 
the parameter settings, providing a potential solution to the 
“alarming reproducibility crisis” (Nekrutenko and Taylor 
2012). This is essential for the  clinical use, and our algo-
rithm provides a strong candidate for a standardized NGS 
workflow procedure.

The major drawback of FANSe3 is the high RAM 
demand. Indeed, FANSe3 is designed exclusively for high-
performance computing centers and cloud-computing infra-
structure. It can be run on regular personal computers only 
when small reference sequences are used, e.g., bacterial 
genomes. Another drawback is I/O bottleneck in the WES 
and transcriptome applications, where the CPU maps the 
reads faster than the hard disk can read/write (Figs. 2, 3). 
This depends on the hardware development. In a cloud-
computing environment, the user experience may also be 
limited by slow network transfer for the extremely large 
sequencing datasets. However, with the booming broad-
band network and 5G wireless communication technology, 
everyone can upload compressed sequencing datasets to the 
cloud and obtain analysis results quickly without the local 
computational resources. This will dramatically promote 
NGS applications in various fields, including mobile medi-
cal services, on-site forensic interrogations and environmen-
tal monitoring.
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