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Abstract
We study the influence of external electric or magnetic field B on orientational ordering of nematic liquid crystals or of other rod-

like objects (e.g. nanotubes immersed in a liquid) in the presence of random anisotropy field type of disorder. The Lebwohl–Lasher

lattice type of semi-microscopic approach is used at zero temperature. Therefore, results are valid well below the transition into the

isotropic phase. We calculate the correlation function of systems as a function of B, concentration p of impurities imposing random

anisotropy field disorder, the disorder strength W and system dimensionality (2D and 3D systems). In order to probe memory

effects we calculate correlation length ξ for random and homogeneous initial configurations. We determine the crossover fields

Bc(p) separating roughly the ordered and disordered regime. Memory effects are apparent only in the latter case, i.e. for B < Bc.

PACS numbers: 47.51.+a, 47.54.-r, 07.05.Tp, 61.30.-v
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Introduction
For years there has been a strong interest in the phase and struc-

tural behavior of randomly perturbed liquid crystals (LCs) [1].

Such systems could be used in various electro-optical

applications. On the other hand they represent also an adequate

testing ground [2] to study fundamental questions concerning

the impact of disorder [3-6] on various phase and structural

transitions.

Most studies so far have been carried out in thermotropic

nematic LC phases, which exhibit long range orientational order

[7]. To enforce disorder to LC ordering one either confines LC

to various porous matrices [8-12] (e.g., aerogels, Controlled-

pore glass, Vycor glass) or mixes LCs with nanoparticles. For

the latter purpose aerosil nanoparticles [13-15] are particularly

adequate. They form random networks, the structure of which

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:Matej.Cvetko@rra-mura.si
http://dx.doi.org/10.3762%2Fbjoc.6.2


Beilstein Journal of Organic Chemistry 2010, 6, No. 2.

Page 2 of
(page number not for citation purposes)

8

can be altered by varying the concentration of nanoparticles. At

least three qualitatively different regimes can be realized [16].

Studies so far have mainly focused on structural and phase

behavior [8-18]. It has been shown that the isotropic nematic

p h a s e  t r a n s i t i o n  i s  t y p i c a l l y  r e p l a c e d  b y  t h e

paranematic–nematic (PN–N) phase transition. The transition

temperature in most cases decreases with increased disorder

strength. If disorder is strong enough the transition can disap-

pear. In the nematic phase memory effects can be observed

revealing to some extent glass-like features.

To our knowledge none of the studies so far have systematic-

ally explored the effect of external ordering field (B) in such

systems. This is the topic of our paper. We consider the compet-

ition between local disordering fields and the global external

magnetic or electric ordering field. Local random fields can be

in practice imposed geometrically. Experimental examples are

LCs confined to a porous matrix [1], mixtures of LCs and

aerosil nanoparticles [12-15], binary mixtures of different

rodlike objects which tend to be oriented perpendicularly [19],

and nanotubes immersed in liquid crystals [20,21]. We focus on

B induced erasing of memory effects in such systems using the

Lebwohl–Lasher [22] type lattice model deep in the nematic

phase.

The structure of the article is as follows. First we present the

semi-microscopic lattice model that we use. Then the results are

presented and discussed. In the following section we summarize

our results. Some numerical details are summarized in the last

section.

Model
We consider an orthogonal cubic lattice with  cylindric-

ally symmetric particles positioned at equidistant sites in the

space with d dimensions. The nearest neighbour’s distance is

taken as a unit, thus the side of the cell has the length L = N0.

Local orientation of a particle at the site with index α is given

by a unit vector – director Sα. We further set at randomly

chosen sites of concentration p cylindrically symmetric

quenched impurities enforcing orientational ordering along eα.

The orientations of impurities are randomly chosen without any

preferred global orientation. We also impose a homogeneous

external (e.g., electric or magnetic) ordering field B = BeB,

which tends to reorient the director field along eB. Systems with

the head-to-tail invariance, where ±Sα orientations are equi-

valent, are taken into account. This property is characteristic for

most LC molecules (where several structural details are aver-

aged out via relatively fast molecular rotations) or nanotubes.

The corresponding interaction energy of the system can be

expressed as [6,8,23]

(1)

The parameter J > 0 describes the ordering interaction among

neighbouring molecules tending to orient directors parallel. The

index α in the double sum counts all the particles, and the

indices β run over the 1st nearest neighbours of the α-th

particle. At randomly chosen sites of concentration p we add-

itionally place rigid impurities which are coupled with

surrounding directors by the random anisotropy type interac-

tion [24,25] of anchoring strength W > 0. At the sites with

impurities pα = 1 while at remaining sites pα = 0.

We describe ordering in the Cartesian coordinate frame (x,y,z),

whose axes point along unit vectors ex, ey and ez, respectively.

The external field is oriented along a chosen axis, e.g., x-axis.

We consider behaviour in two and three dimensions, to which

we henceforth refer as 2D and 3D, respectively.

For latter convenience we scale quantities in Equation 1 with

respect to J: , , , i.e. we set

J = 1 in (1). We henceforth omit the tildes. Some details of the

minimization of the total energy Equation 1 are given in the

numerical approach section. We have neglected the role of

thermal fluctuations and consider configurations at zero tem-

perature. In case of nematic ordering in liquid crystals such

assumption is sensible deep in the nematic phase (i.e. well

below the isotropic-nematic LC phase transition temperature).

In simulations we either originate from randomly distributed

orientations of directors, or from homogeneously aligned

samples along a symmetry breaking direction. In the latter case

the directors are initially homogeneously aligned along ex. We

henceforth refer to these cases as the i) random and ii) homo-

geneous samples, respectively. The i) random case can be

experimentally realized by quenching the system from the

isotropic phase to the ordered phase without an external field

(i.e., B = 0). This can be achieved either via a sudden decrease

of temperature or sudden increase of pressure. The ii)

homogeneous case can be realized by applying first a strong

homogeneous external field B along a symmetry breaking direc-

tion. After a well enough alignment is achieved the field is

switched off.

In order to diminish the influence of statistical variations we

carry out several simulations (typically Nrep ≈ 10) for a given

set of parameters (i.e., W, p and a chosen initial condition).

From obtained configurations we calculate the orientational

correlation function G(r). It measures orientational correlation

of LC directors as a function of their mutual separation r (r = 1
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for nearest neighbours). We define it in two dimensional (2D)

ensembles as

(2)

and in three dimensions (3D) as

(3)

The brackets  denote the average over all lattice sites that

are separated for a distance r. If the directors are completely

homogeneously aligned along a single direction it follows

G(r) = 1. On the other hand G(r) = 0 reflects completely uncor-

related directors. Since each director is parallel with itself, it

holds G(0) = 1. The correlation function is a decreasing func-

tion of the distance r.

In order to obtain structural details from a calculated G(r) de-

pendence we use the ansatz

(4)

with adjustable parameters ξ, m, and s. The correlation length ξ

estimates the average domain in which directors are signific-

antly correlated. The parameter m measures the distribution

width of ξ values. Presence of a single correlation length in the

system is reflected in m ≈ 1. A value of s reveals the degree of

ordering within the system. The case s = 0 indicates the short

range order (SRO). A finite value of s reveals either the long

range order (LRO) or quasi long range order (QLRO). To

distinguish between these two cases a finite size analysis s(L)

must be carried out where L represents the typical linear size of

the system. If s(L) saturates at a finite value the system exhibits

LRO. If s(L) dependence exhibits algebraic dependence on L

the system possesses QLRO.

Results
We study the influence of an external ordering field on nematic

ordering which is orientationally perturbed by randomly distrib-

uted impurities of concentration p. We vary the history of

samples, concentration p of impurities, anchoring strength W

between LC molecules and impurities, dimensionality of the

system and the external field strength B. We consider 2D and

3D systems. Concerning histories we either originate from

initially homogeneously aligned directors or from completely

disordered configuration.

For a given set of control parameters we calculate a configura-

tion of the system by minimizing the interaction energy. The

configuration reflects the interplay among elastic, external

ordering field and surface disordering tendencies. The external

ordering (B) and impurities introduce additional characteristic

scales into the system. The relative strength of elastic and

external ordering field contribution is measured by the external

field extrapolation length [7] . In the case of ordered

LC-substrate interfaces the relative importance of surface

anchoring term is measured by the surface extrapolation length

[7] de ≈ J/W. The external ordering field is expected to override

the surface anchoring tendency in the limit de/ξ >> 1. However,

if LC-substrate interfaces introduce a disorder into the system,

then instead of de the so called Imry-Ma scale ξIM characterizes

the ordering of the system. It expresses the relative importance

of elastic ordering and surface disordering term. It roughly

holds [26]

(5)

where Wdis   W measures the disorder strength.

From obtained orientational ordering we calculate the correla-

tion function G(r). From it we extract the average correlation

length ξ using Equation 4. In case that the disorder dominates

the system behavior one expects ξ ≈ ξIM. On the contrary, the

dominance of B is reflected in ξ ≈ ξB.

Note that for cases studied we obtain qualitatively similar

results for 2D and 3D systems. Consequently, we carry out

more detailed simulations for 2D systems which demand less

computational time.

A typical G(r) dependence in 2D and 3D is shown in Figure 1a

and Figure 1b, respectively. We plot G(r) for both homogen-

eous and random initial configuration in the presence of

external field and without it. For B = 0 it holds ξ(hom) > ξ(ran),

where superscripts (hom) and (ran) denote correlation lengths in

homogeneous and random samples, respectively. The reason

behind this are stronger elastic frustrations in random samples,

as analyzed in more detail in our previous paper [25]. Further-

more, ξ(ran) roughly obeys the Imry-Ma scaling for low enough

external fields (i.e. ξ(ran) << ξB), suggesting ξ(ran) ≈ ξIM. The

presence of B becomes apparent when ξ≈ < ξIM, which is shown

in Figure 1.

We also note that in random samples s = G(r→∞) always

equals zero [25] for B = 0 indicating short range order. On the

contrary in homogeneous samples we obtain a finite value of s

if the disorder strength is not too large. In Figure 1 we see that

the presence of external field can enforce a finite value of s also

in random samples.
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Figure 1: The orientational correlation function as a function of separation r between LC molecules for (a) 2D and (b) 3D systems. In random samples
G(r) vanishes for large enough values of r for B = 0 while in homogeneous samples it could saturate at a finite plateau s (if p or W are low enough).
For B > 0 a finite plateau can be observed also in random samples. (a) p = 0.3, W = 2.5, N0 = 260; (b) p = 0.3, W = 2.5, N0 = 100. At r = 1 the first
neighbors are placed in the cubic cell. The legend is shown in (a).

In Figure 2 we plot ξ as a function of 1/B for both homogen-

eous and random samples. For strong enough magnetic fields

one expects ξ ≈ ξB  1/B. On the other hand for a weak enough

B the value of ξ is dominantly influenced by the disorder

strength. Indeed, we observe a crossover behavior in ξ(B) de-

pendence on varying B. The crossover between two qualitat-

ively different regimes roughly takes place at the crossover field

Bc. We define it as the field below which the difference between

ξ(ran) and ξ(hom) is apparent. Below Bc the disordered regime

takes place, where ξ exhibits weak dependence on B, i.e.

ξ ≈ ξIM. Above Bc the ordered regime exists, where ξ ≈ ξB  1/

B. Therefore, for B > Bc it holds ξ(ran) ≈ ξ(hom) ≈ ξB and in the

random regime one observes ξ(hom) ≈ ξ(ran) ≈ ξIM.

The corresponding s(B) dependence is shown in Figure 3. As

expected s monotonously increases on increasing B, because the

external field tends to increase the degree of ordering. Note that

in random samples s(B = 0) = 0 and the presence of B gives rise

to s > 0.

In Figure 4 we show the m(B) dependence. For weak enough

fields (B << Bc) one typically observes m(ran) > m(hom) > 1.

Therefore, in random samples we have larger dispersion of ξ

values than in homogeneous samples. With the increasing

external field both m(ran) and m(hom) asymptotically approach

towards m = 1. In the latter case the distribution of ξ vales is

sharply centered at ξ ≈ ξB.

The crossover field Bc as a function of p is shown in Figure 5.

Indicated lines roughly separate ergodic (B > Bc) and noner-

godic regimes (B < Bc). With increasing p the degree of frustra-

tion within the system increases. Consequently larger values of

B are needed to erase disorders induced memory effects. Note

that Bc is larger in 2D than in 3D systems because in the former

case the LC molecules are effectively more constrained by

impurities (i.e., in 3D the additional degree of freedom is

present).
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Figure 2: Correlation length ξ as a function of 1/B for homogeneous and random samples for three different concentrations of impurities in (a) 2D and
(b) 3D. The ξB(B) dependence displays a crossover between the disordered and ordered regime. The disordered regimes extends at (B < Bc), where
ξ(hom) > ξ(ran). In the ordered regime (B > Bc) one observes ξ(ran) ≈ ξ(hom) ≈ ξB. (a) W = 2.5, N0 = 260; (b) W = 2.5, N0 = 100. The legend is shown
in (a).

Figure 3: The s(B) dependence for homogeneous and random samples for two different p in (a) 2D and (b) 3D. For s(B = 0) we obtain s(ran) = 0. In
the disordered regime it holds s(hom) > s(ran) and s(hom) ≈ s(ran) in the ordered regime. (a) W = 2.5, N0 = 260; (b) W = 2.5, N0 = 100. The legend is
shown in (a).
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Figure 4: The m(B) dependence r homogeneous and random samples for two different p in (a) 2D and (b) 3D. In the disordered regime it holds
m(ran) > m(hom) > 1. In the ordered regime we obtain m(ran) ≈ m(hom) > 1 which asymptotically approach one on increasing B. (a) W = 2.5, N0 = 260;
(b) W = 2.5, N0 = 100. The legend is shown in (a).

Figure 5: The crossover field Bc on varying p. Indicated lines roughly
separate ergodic (B > Bc) and nonergodic regimes (B < Bc). With
increasing p one the degree of frustration within the system increases.
Consequently larger values of B are needed to erase disorder induced
memory effects. The points are calculated and the lines serve as
guides for the eye. (a) W = 2.5, N0 = 260; (b) W = 2.5, N0 = 100.

Conclusions
We have studied the influence of external ordering electric or

magnetic field B on systems of rod-like objects (e.g. nematic

liquid crystals or a dispersion of nano-rods in a liquid environ-

ment [20,21]) in the presence of random anisotropic type of

disorder. We express the interaction energy F of the system

using the Lebwohl–Lasher type semi-microscopic description.

The orientational order is described in terms of the uniaxial

director field exhibiting head-to-tail invariance. We calculate

configurations of director fields by minimizing F at tempera-

ture zero. Therefore, our results are reasonable deep in the

nematic phase, where the long range orientational order is

observed in absence of random fields. In addition we neglect

biaxial states [27,28] which might be present in strongly elastic-

ally perturbed systems. For a given set of parameters (i.e.

concentration p of impurities imposing random anisotropy

disorder, disorder anchoring strength W, system dimensionality,

history of systems and B) we calculate the orientational correla-

tion function G(r) of the system. From it we extract the average

size of correlated regions and distribution of ξ values measured

via the distribution parameter m.

Our main interest was to determine the magnetic field regime in

which random-field driven memory effects are erased by a
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strong enough magnetic field. For this purpose we monitored ξ

dependence on B for random and homogeneous initial configur-

ations. These states represent two extreme conditions and

consequently yield relatively strong memory effects for weak

enough values of B. On increasing B values of m are

approaching towards m = 1. This signifies that the single peak

distribution of ξ values is narrowing. On varying B we distin-

guish between two qualitatively different regimes. The disorded

regime, where random field effects are apparent, exists below

Bc. In it we find ξ(hom) > ξ(ran). In the ordered regime B > Bc the

average length ξ is dominated by external field B and

ξ ≈ ξB  1/B. The crossover values Bc are larger in 2D systems,

and monotonously increase on increasing p.

The results of our studies suggest regimes in which memory

effects are expected. Our settings well mimic for example

mixtures of LCs and aerosil particles [13-15] or LCs confined to

porous matrices [10-12], or randomly perturbed nanotubes in a

liquid environment [20,21]. Our results might be of use for

electro-optic applications, where switching between different

optical states (i.e. global orientational ordering) is achieved via

external electric or magnetic fields in advanced soft nano-

composites or soft hybrid systems.

Numerical approach
The system consists of a lattice of N0 × N0 × N0 sites with unit

directors

(6)

In 2D we set SZ = 0. We express the total interaction energy

functional as the sum over all sites  where the term

Fijk consists of three parts:

(7)

J = 1. The indices  run over the first neighbors of the

point described by the indices I, j, k. With respect to denotation

of indices in Equation 1 these sets of indices correspond to

α = (I,j,k) and . The parameter pijk has the value

either 1 or 0, while the orientation of the unit vector eijk is

random spatially distributed, we set these by random-number

generator.

The equilibrium director configuration is obtained by minim-

izing the total interaction energy with respect to all the directors

by taking into account the normalization condition . The

resulting potential to be minimized reads , where

(8)

and λijk are Lagrange multipliers. We minimize the potential F*

and obtain the following set of equations which are solved

numerically:

(9)

where the vector function g is defined as

(10)

The system of Equation 9 is solved by overrelaxation method

which has been proved fast and reliable. At cell boundaries we

impose the periodic boundary conditions.
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