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Abstract 

Background:  Despite accumulating epidemiological studies support that diabetes increases the risk of Alzheimer’s 
disease (AD), the causal associations between diabetes and AD remain inconclusive. The present study aimed to 
explore: i) whether diabetes is causally related to the increased risk of AD; ii) and if so, which diabetes-related physi‑
ological parameter is associated with AD; iii) why diabetes drugs can be used as candidates for the treatment of AD. 
Two-sample Mendelian randomization (2SMR) was employed to perform the analysis.

Results:  Firstly, the 2SMR analysis provided a suggestive association between genetically predicted type 1 diabetes 
(T1D) and a slightly increased AD risk (OR = 1.04, 95% CI = [1.01, 1.06]), and type 2 diabetes (T2D) showed a much 
stronger association with AD risk (OR = 1.34, 95% CI = [1.05, 1.70]). Secondly, further 2SMR analysis revealed that dia‑
betes-related physiological parameters like fasting blood glucose and total cholesterol levels might have a detrimen‑
tal role in the development of AD. Thirdly, we obtained 74 antidiabetic drugs and identified SNPs to proxy the targets 
of antidiabetic drugs. 2SMR analysis indicated the expression of three target genes, ETFDH, GANC, and MGAM, were 
associated with the increased risk of AD, while CPE could be a protective factor for AD. Besides, further PPI network 
found that GANC interacted with MGAM, and further interacted with CD33, a strong genetic locus related to AD.

Conclusions:  In conclusion, the present study provides evidence of a causal association between diabetes and 
increased risk of AD, and also useful genetic clues for drug development.
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Introduction
Alzheimer’s disease (AD) is known as the most common 
progressive neurodegenerative disease with an increasing 
prevalence worldwide. According to the World Alzhei-
mer Report 2018 from Alzheimer’s Disease International, 
over 50 million people worldwide are suffering from 
dementia [1], and AD accounts for 60%-80% of all cases 

of dementia. With the aggravation of the disease, AD 
patients will show a series of clinical features, including 
progressive memory loss, gradual impairment of cog-
nitive functions, behavioural and personality changes. 
Given the steadily increasing burdens on patients, fami-
lies, and society, screening modifiable risk factors has 
been performed to reduce the risk of AD.

Diabetes, including type 1 diabetes (T1D), type 2 dia-
betes (T2D), and gestational diabetes, is a chronic met-
abolic disease with high blood glucose levels that can 
damage blood vessels and nerves and cause multiple 
serious complications. According to the International 

Open Access

Cell & Bioscience

*Correspondence:  jhf@sdut.edu.cn; shen@sdut.edu.cn
1 Institute of Biomedical Research, Shandong University of Technology, 
Zibo, Shandong, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-022-00768-9&domain=pdf


Page 2 of 16Meng et al. Cell & Bioscience           (2022) 12:28 

Diabetes Federation, 1 in 11 adults had diabetes (425 mil-
lion people), and 12% of the global health expenditure 
was spent on diabetes in 2017 [2].

More recently, increasing attention has been paid to 
the associations of AD with several chronic disorders, 
among which diabetes has attracted much interest due 
to a series of pathogenic associations. For instance, in the 
past few decades, significant epidemiological evidence 
indicated that diabetes patients had an increased risk of 
developing AD by approximately 53% [3–5]. Besides, the 
mechanisms associated with diabetes, such as dysfunc-
tional IR/PI3K/Akt signaling, increased inflammation, 
oxidative stress, and others, might accelerate the devel-
opment of pathological events in AD [6, 7]. Moreover, 
a growing number of studies also supported the asso-
ciations between AD and diabetes at the genetic level. A 
previous study has identified 395 SNPs to be shared the 
same risk allele for AD and T2D, suggesting common 
genetic aetiological risk factors between two disorders 
[8]. Correspondingly, inspired by the close association 
between two disorders, the studies of examining anti-
diabetic drugs against AD have increased tremendously. 
Excitedly, preliminary studies have indicated that many 
antidiabetic drugs, such as liraglutide, pioglitazone, lixi-
senatide, rosiglitazone, insulin, and exendin-4, exhibited 
therapeutic effects on AD [9–14], suggesting that dia-
betes and AD may share genetic etiological risk factors, 
especially provide a potential novel approach for AD 
drug development.

These studies imply that diabetes is closely associated 
with the risk of AD, and antidiabetic drugs also attracted 
much attention in the treatment of AD; however, it is 
unclear whether diabetes has causal associations with 
AD, and the impact of antidiabetic drug targets against 
AD remains to be further estimated. Mendelian rand-
omization uses genetic variants as proxies for modifiable 
risk factors to test whether the risk factor is causally rel-
evant to an outcome of interest, which could minimize 
the impact of confounding factors [15]. Thus, the present 
study performed a two-sample Mendelian randomization 
(2SMR) analysis to assess: i) whether diabetes is causally 
related to the increased risk of AD; ii) and if so, which 
diabetes-related physiological parameters, like blood glu-
cose, insulin, and others, is associated with AD; iii) how 
diabetes drugs can be used as a candidate for the treat-
ment of AD.

Methods
Based on existing data sources of the MR-base platform, 
we selected genetic variants associated with the exposure 
measure as an instrument to estimate causal effects. Can-
didate genetic variants of outcome (AD) were obtained 
from the International Genomics of Alzheimer’s Project 

(IGAP) [16]. As for exposures, we searched the EBI-
GWAS database by the MR-base platform with the fol-
lowing terms: “type 1 diabetes” and “type 2 diabetes”. And 
10 T1D-related SNPs were extracted from a European 
ancestry-specific joint GWA study to estimate the associ-
ation between T1D and AD [17], while a total of 37 SNPs 
provided by the summary statistics of  48,286  cases and 
250,671 controls were included to test the causal effect 
of T2D on AD [18]. Further, to investigate how diabetes 
affects the risk of AD, we also analyzed AD and diabe-
tes-related parameters, including fasting blood glucose, 
total cholesterol levels, and insulin levels [19–21]. Data 
extraction and 2SMR analyses were automatically con-
ducted using the software R and TwoSample MR package 
0.5.0, and genome-wide significant (p-value < 5 × 10−8) 
was chosen for computational analysis [15]. We selected 
inverse variance weighting (IVW) as the main ana-
lytical method, and various 2SMR methods, including 
weighted median, weighted mode, and MR-Egger, were 
employed to improve the reliability of the causal infer-
ence. P-value < 0.05 was chosen as the discriminant cri-
terion for the statistical significance of the 2SMR study. 
Besides, to ensure the robustness of results, leave-one-
out sensitivity analysis was used to test whether there is 
an SNP that has an excessive impact on MR estimates. 
Heterogeneity and pleiotropy tests were implemented 
based on the code contained in the TwoSample MR pack-
age. Cochran’s Q statistics were used to explore the size 
of heterogeneity, and whether there is pleiotropy was 
decided by the intercept term of MR-Egger method.

Besides, inspired by the benefits of antidiabetic drugs 
for AD, we then performed a further 2SMR analysis for 
the causal associations between antidiabetic drug targets 
and AD risk to assess the therapeutic effects. Firstly, we 
searched the DrugBank database (http://​www.​drugb​ank.​
ca/) with the term “diabetes” to retrieve antidiabetic drugs 
and target genes [22]. Drugs or compounds that have 
been approved or were being developed for the treatment 
of diabetes were collected as available antidiabetic drugs. 
The information was extracted from each drug, includ-
ing the name of antidiabetic drug, DrugBank ID, target 
gene, and target type. Secondly, using the TwoSample 
MR package, we identified target-related SNPs based on 
the GTEx eQTL catalog [23]. By using SNPs associated 
with antidiabetic drug target genes and without any link-
age disequilibrium, we calculated MR estimates and did 
not define tissue types. Since the number of SNPs con-
tained in each drug target was relatively small, a more 
liberal P-value threshold (p-value < 5 × 10−5) was used to 
filter available instrumental variables. In addition to the 
above four methods, we also added another MR method, 
wald ratio, which used a single instrumental variable to 
estimate the causal association.

http://www.drugbank.ca/
http://www.drugbank.ca/
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Furthermore, based on the IGAP database, the thresh-
old of p-value < 1 × 10−5  was used to screen suscepti-
bility-associated SNPs of AD. The identified significant 
SNPs were mapped into related susceptibility genes 
according to the location of the SNPs on human chro-
mosomes. We constructed network-based analyses by 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) databases to investigate the protein–protein 
interaction (PPI) information between the identified tar-
gets and susceptibility genes [24], and the final network 
was visualized by Cytoscape software (Version 3.7.1) [25].

Results
Diabetes and AD
The 2SMR analysis provided a suggestive association 
between genetically predicted T1D and higher risks of 
AD (IVW, OR = 1.04, 95% CI = [1.01, 1.06], p = 2.90E-03, 
Table 1, Fig. 1). Cochran’s Q statistics showed little evi-
dence of heterogeneity between T1D and AD, and the 
MR-Egger intercept suggested that there was no plei-
otropy in the SNPs included in this study. The further 
leave-one-out analysis also found that there were no SNP 
had an excessive impact on the results (all lines are on the 
right side of 0). However, compared with other SNPs, the 
independent SNP rs9272346 exerted a relatively signifi-
cant effect on the association between T1D and AD risk. 
According to the NCBI database, rs9272346 was located 
at HLA-DQA1, and the protein encoded by which plays a 
central role in the immune system by presenting peptides 
derived from extracellular proteins.

Compared with T1D, T2D seemed to show a much 
stronger association with an increased risk of AD 
(IVW, OR = 1.34, 95% CI = [1.05, 1.70], p = 0.02, Fig.  2). 
Cochran’s Q statistics showed little evidence of heteroge-
neity between T2D and AD. The MR-Egger intercept sug-
gested that there was no pleiotropy in the SNPs included 
in this study. Moreover, the leave-one-out method did 
not find that a certain SNP would have an excessive 

impact on the MR results, which also supported that the 
MR results were robust.

Diabetes‑related parameters and AD
In addition, we also conducted further analysis to inves-
tigate the causal association between diabetes-related 
physiological parameters and the risk of AD. In view of 
the fact that blood glucose and dyslipidemia are widely 
recognized as physiological changes in diabetes, we con-
ducted a 2SMR analysis to evaluate their causal asso-
ciation with AD. By performing a 2SMR analysis of the 
diabetes-related physiological parameters and AD, we 
found that fasting blood glucose and total cholesterol lev-
els may have a causative role in the development of AD 
as shown in Fig. 3. Fasting blood glucose was associated 
with a 57% increase in the risk of AD (IVW, OR = 1.57, 
95% CI = [1.14, 2.17], p = 6.33E-03), total cholesterol lev-
els also showed a strong causal association with the risk 
of AD (IVW, OR = 1.62, 95% CI = [1.21, 2.18], p = 1.23E-
03). Besides, as one of the typical characteristics of dia-
betes, the causal association between insulin level and 
AD was also included in this study. However, based on 
the currently available data, the 2SMR analysis results did 
not support the causal effect of insulin levels on AD risk 
(data not shown).

Antidiabetic drugs and AD
Based on the DrugBank database, we obtained 74 anti-
diabetic drugs up to July 2021, covering 96 target and 
enzyme genes extracted from the involved drugs. The 
details of these drugs, including drug names, DrugBank 
ID, target genes, and enzyme genes, are displayed in 
Table 2.

By using SNPs associated with antidiabetic drug tar-
get genes (p-value < 5 × 10−5) as instrumental variables, 
we conducted a 2SMR analysis for the causal associa-
tions between antidiabetic drug targets and AD risk 
(Table  3). Preliminary results showed that four targets, 

Table 1  2SMR estimates of the causality between diabetes and AD

Study Method Number of 
SNPs

b se P-value OR 95% CI Cochran’s Q 
statistic (P-value)

MR-egger 
intercept 
(P-value)

T1D Inverse variance weighted 4 0.04 0.01 2.90E−03 1.04 1.01–1.06 3.66 (0.30)

MR Egger 4 0.06 0.02 0.08 1.06 1.03–1.10 0.94 (0.63) − 0.02 (0.24)

Weighted median 4 0.04 0.01 8.83E−04 1.04 1.02–1.07

Weighted mode 4 0.04 0.01 0.04 1.04 1.02–1.07

T2D Inverse variance weighted 11 0.29 0.12 0.02 1.34 1.05–1.70 9.43 (0.49)

MR Egger 11 0.70 0.40 0.11 2.01 0.93–4.36 8.28 (0.51) − 0.02 (0.31)

Weighted median 11 0.18 0.17 0.28 1.20 0.86–1.68

Weighted mode 11 0.04 0.23 0.88 1.04 0.65–1.64
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including carboxypeptidase E (CPE), electron trans-
fer flavoprotein-ubiquinone oxidoreductase (ETFDH), 
neutral alpha-glucosidase C (GANC), and maltase-
glucoamylase (MGAM), were identified to be caus-
ally associated with AD. Among them, genetically 
predicted the CPE gene could be a protective factor in 
AD (IVW, OR = 0.94, 95%CI = [0.89, 1.00], p = 0.05, 
Fig. 4), while the expressions of ETFDH (IVW, OR = 1.08, 
95%CI = [1.01,1.16], p = 0.03, Fig.  5), GANC (IVW, 
OR = 1.09, 95%CI = [1.02,1.18], p = 0.02, Fig.  6), and 
MGAM (Wald ratio, OR = 1.04, 95%CI = [1.00,1.09], 
p = 0.04) were causally associated with the increased 
risk of AD. Notably, the present study showed high 

expressions of ETFDH, GANC, and MGAM have causal 
effects on the increased risk of AD, in other words, inhib-
iting the expression of three target genes is beneficial to 
the treatment of AD to a certain extent. Interestingly, 
based on the pharmacological actions obtained from the 
DrugBank database, three targets related to antidiabetic 
drugs, including metformin, miglitol, acarbose, voglib-
ose, were the corresponding inhibitors of the above tar-
gets, suggesting that identified targets might provide 
useful genetic clues to understand the anti-AD effects of 
selected antidiabetic drugs.

Furthermore, a total of 2746 SNPs of AD were dis-
covered from the IGAP database using a genome-wide 

Fig. 1.  2SMR analysis of the causal association between T1D and the risk of AD. a Scatter plot. The slope of the line corresponds to a causal estimate 
using each of the four different methods. b Funnel plot. The vertical line shows a causal estimate using all SNPs combined into a single instrument 
for each of two different methods. c Forest plot. Each black dot represents the MR estimate of each SNP using the wald ratio, and the horizontal line 
represents the 95% CI. The red points show a combined causal estimate using all SNPs in a single instrument, including the 2SMR estimates of IVW 
and MR-Egger. d Leave-one-out sensitivity analysis. Each black dot represents the result of MR-IVW excluding that particular SNP, and the red dot 
depicts the IVW estimate using all SNPs
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significance threshold  (p-value < 1 × 10−5). By map-
ping the significant SNPs to genes on the basis of the 
NCBI database, 152 AD susceptibility genes were 
identified and included in this study. A PPI network 
that followed was constructed by identified targets 
(CPE, ETFDH, GANC, MGAM) and AD susceptibility 
genes (Fig. 7). It was found that CPE and ETFDH were 
not interacted with any degree in the network, while 
GANC was related to MGAM, and further interacted 
with CD33 (Fig.  8), which was a strong genetic locus 
associated with AD.

Discussion
Through performing a 2SMR analysis of the available 
data, we found that diabetes had a causal effect on AD 
risk, which is in line with previous epidemiological stud-
ies. There should be multiple mechanisms underlying the 
association between diabetes and AD. First, insulin sign-
aling dysregulation may be a critical pathological change 
in AD, and it has been reported that insulin signaling is 
impaired in postmortem brain tissue from AD patients 
[26, 27]. The insulin signaling pathway contributes to 
the control of neuronal excitability and metabolism, and 

Fig. 2.  2SMR analysis of the causal association between T2D and the risk of AD. a Scatter plot. The slope of the line corresponds to a causal estimate 
using each of the four different methods. b Funnel plot. The vertical line shows a causal estimate using all SNPs combined into a single instrument 
for each of two different methods. c Forest plot. Each black dot represents the MR estimate of each SNP using the wald ratio, and the horizontal line 
represents the 95% CI. The red points show a combined causal estimate using all SNPs in a single instrument, including the 2SMR estimates of IVW 
and MR-Egger. d Leave-one-out sensitivity analysis. Each black dot represents the result of MR-IVW excluding that particular SNP, and the red dot 
depicts the IVW estimate using all SNPs
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cerebrovascular changes, such as inflammation and alter-
ations in brain insulin signaling, might play a pivotal role 
in AD development [28, 29]. Second, as a mechanistic 
linker between AD and diabetes, inflammation can accel-
erate the development of diabetes by influencing islet 
function and peripheral insulin sensitivity. Moreover, as 
a starting point of AD pathological progression, the nor-
mal synaptic function will be disrupted by cerebrovascu-
lar and central inflammation, along with the increased 
accumulation of Aβ [30].

Further 2SMR analysis revealed that some diabetes-
related physiological parameters, such as fasting blood 
glucose and total cholesterol levels, were causally associ-
ated with the risk of AD. Previous studies have demon-
strated that metabolic dysfunction of diabetes, especially 
glucose-related dysfunction, may play a causative role 
in the development of AD. For example, a large-scale 
genome-wide cross-trait analysis identified 4 loci that 
were associated with AD and  fasting glucose [31]. Also, 
as the most cholesterol-rich organ, the cholesterol home-
ostasis in the human brain may be closely related to the 
occurrence and development of AD [32]. Recent studies 
have indicated that lipid metabolism-related genes, such 
as APOC1 and APOE, might be major risk factors for AD 
due to the involvement in the maintenance of brain lipid 
homeostasis [33, 34]. Furthermore, our previous study 
also identified a total of six SNPs shared between T2D 
and AD and found that lipid metabolism-related path-
ways were common between the two disorders by func-
tional enrichment analysis [35].

In the past decades, theoretical and experimental 
investigations of novel drugs for AD have attracted much 
attention. It is noteworthy that drug repositioning based 
on the approved drugs may represent an important 
source for AD drug discovery, a case of this is antidiabetic 
drug repositioning. By the 2SMR analysis, four targets, 
including CPE, ETFDH, GANC, and MGAM, were iden-
tified to be causally associated with AD in this paper. In 
particular, in combination with the present 2SMR results 
and pharmacological actions obtained from the Drug-
Bank database, ETFDH-, GANC-, and MGAM-related 
antidiabetic drugs, including metformin, miglitol, acar-
bose, voglibose, were precisely the corresponding inhibi-
tors of the above targets, indicating potential therapeutic 
effects on AD. Notably, among those, miglitol, acarbose, 
and voglibose are currently used in the management of 
glycemic control by inhibiting α-glucosidase, which is an 
important biological target/enzyme that can catalyze the 
degradation of dietary polysaccharides into monosac-
charides. The preliminary data in this paper proposed 
that the targets of α-glucosidase inhibitors, for example, 
GANC and MGAM, were causally associated with the 
increased risk of AD, suggesting the therapeutic implica-
tions of α-glucosidase on AD. However, at present, the 
antidiabetic drugs for the treatment of AD mainly focus 
on GLP-1R agonists (liraglutide, exenatide), thiazolidin-
ediones (pioglitazone, rosiglitazone), DPP-4 inhibitors 
(sitagliptin, vildagliptin), and so on, while there are lim-
ited studies of α-glucosidase inhibitors in the treatment 
of AD, and these findings remain to be further estimated.

Fig. 3.  2SMR estimates of the causality between fasting blood glucose and total cholesterol levels and AD. a) the causal effects of fasting blood 
glucose and AD. b) the causal effects of total cholesterol levels and AD



Page 7 of 16Meng et al. Cell & Bioscience           (2022) 12:28 	

Table 2  Main characteristics of the antidiabetic drugs included in the PPI network

Name Drugbank ID Target genes Target type

Ebselen DB12610 EPHX2 Target

INCB13739 DB05064 HSD11B1 Target

PSN357 DB05044 PYGL Target

Bisegliptin DB06127 DPP4 Target

NOX-700 DB05464 NFKB2 Target

NFKB1 Target

CLX-0921 DB05854 PPARG​ Target

Reglitazar DB04971 PPARA​ Target

PPARG​ Target

ISIS 113715 DB05506 PTPN1 Target

AT1391 DB05120 INSR Target

NN344 DB05115 INSR Target

CYP1A2 Enzyme

APD668 DB05166 GPR119 Target

Dutogliptin DB11723 DPP4 Target

MB-07803 DB05053 FBP1 Target

PSN9301 DB05001 DPP4 Target

Gliquidone DB01251 ABCC8 Target

KCNJ8 Target

CYP2C9 Enzyme

Albiglutide DB09043 GLP1R Target

Pramlintide DB01278 CALCR Target

RAMP1 Target

RAMP2 Target

RAMP3 Target

Voglibose DB04878 MGAM Target

Dapagliflozin DB06292 SLC5A2 Target

CYP1A1 Enzyme

CYP1A2 Enzyme

CYP2A6 Enzyme

CYP2C9 Enzyme

CYP2D6 Enzyme

CYP3A4 Enzyme

UGT1A9 Enzyme

UGT2B4 Enzyme

UGT2B7 Enzyme

Miglitol DB00491 MGAM Target

GAA​ Target

GANAB Target

GANC Target

AMY2A Enzyme

Vildagliptin DB04876 DPP4 Target

Dulaglutide DB09045 GLP1R Target

Phenformin DB00914 PRKAA1 Target

KCNJ8 Target

CYP2D6 Enzyme

AMG-131 DB05490 PPARG​ Target

Acarbose DB00284 MGAM Target

GAA​ Target
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Table 2  (continued)

Name Drugbank ID Target genes Target type

SI Target

AMY2A Target

Sitagliptin DB01261 DPP4 Target

CYP3A4 Enzyme

CYP2C8 Enzyme

Acetohexamide DB00414 KCNJ1 Target

CBR1 Enzyme

CYP2C9 Enzyme

Canagliflozin DB08907 SLC5A2 Target

UGT1A9 Enzyme

UGT2B4 Enzyme

CYP3A4 Enzyme

Pioglitazone DB01132 PPARG​ Target

MAOB Target

CYP2C8 Enzyme

CYP3A4 Enzyme

CYP1A1 Enzyme

Glisoxepide DB01289 KCNJ8 Target

CYP2C9 Enzyme

Glipizide DB01067 ABCC8 Target

PPARG​ Target

CYP2C9 Enzyme

UGT1A1 Enzyme

Insulin Glargine DB00047 INSR Target

IGF1R Target

CYP1A2 Enzyme

Insulin Degludec DB09564 INSR Target

IGF1R Target

CYP1A2 Enzyme

Chlorpropamide DB00672 ABCC8 Target

CYP2C9 Enzyme

CYP2C19 Enzyme

PTGS1 Enzyme

Linagliptin DB08882 DPP4 Target

CYP3A4 Enzyme

Repaglinide DB00912 ABCC8 Target

PPARG​ Target

CYP2C8 Enzyme

CYP3A4 Enzyme

Insulin Pork DB00071 INSR Target

IGF1R Target

IDE Enzyme

CYP1A2 Enzyme

Nateglinide DB00731 ABCC8 Target

PPARG​ Target

CYP2C9 Enzyme

CYP3A4 Enzyme

CYP3A5 Enzyme

CYP3A7 Enzyme
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Table 2  (continued)

Name Drugbank ID Target genes Target type

PTGS1 Enzyme

UGT1A9 Enzyme

CYP2D6 Enzyme

Insulin Aspart DB01306 INSR Target

IGF1R Target

CYP1A2 Enzyme

Insulin Detemir DB01307 INSR Target

IGF1R Target

CYP1A2 Enzyme

Saxagliptin DB06335 DPP4 Target

CYP3A4 Enzyme

CYP3A5 Enzyme

Insulin Glulisine DB01309 INSR Target

IGF1R Target

CYP1A2 Enzyme

Tolbutamide DB01124 ABCC8 Target

KCNJ1 Target

CYP2C9 Enzyme

CYP2C8 Enzyme

CYP2C19 Enzyme

CYP2C18 Enzyme

Rosiglitazone DB00412 PPARG​ Target

ACSL4 Target

PPARA​ Target

PPARD Target

RXRA Target

RXRB Target

RXRG Target

CYP2C8 Enzyme

CYP2C9 Enzyme

PTGS1 Enzyme

CYP1A2 Enzyme

CYP3A4 Enzyme

CYP2B6 Enzyme

CYP2D6 Enzyme

CYP2E1 Enzyme

Mitiglinide DB01252 ABCC8 Target

PPARG​ Target

UGT1A3 Enzyme

UGT2B7 Enzyme

Insulin Human DB00030 INSR Target

IGF1R Target

CPE Target

NOV Target

LRP2 Target

IGFBP7 Target

IDE Enzyme

PCSK2 Enzyme

PCSK1 Enzyme
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Table 2  (continued)

Name Drugbank ID Target genes Target type

CYP1A2 Enzyme

Insulin Lispro DB00046 INSR Target

IGF1R Target

CYP1A2 Enzyme

IDE Enzyme

Lixisenatide DB09265 GLP1R Target

Metformin DB00331 PRKAB1 Target

ETFDH Target

GPD1 Target

Lobeglitazone DB09198 PPARG​ Target

CYP1A2 Enzyme

CYP2C9 Enzyme

CYP2C19 Enzyme

CYP3A4 Enzyme

Managlinat dialanetil DB05518 FBP1 Target

Levoketoconazole DB05667 CYP11B1 Target

CYP51A1 Target

CYP3A4 Enzyme

CYP3A5 Enzyme

CYP51A1 Enzyme

CYP17A1 Enzyme

CYP21A2 Enzyme

CYP11B1 Enzyme

Tesaglitazar DB06536 PPARA​ Target

PPARG​ Target

Ertiprotafib DB06521 PTPN1 Target

IKBKB Target

PPARA​ Target

PPARG​ Target

Glycodiazine DB01382 KCNJ1 Target

ABCC8 Target

Muraglitazar DB06510 PPARA​ Target

PPARG​ Target

CYP1A2 Enzyme

UGT1A3 Enzyme

UGT1A1 Enzyme

CYP2C8 Enzyme

Troglitazone DB00197 PPARG​ Target

ACSL4 Target

SERPINE1 Target

SLC29A1 Target

ESRRG​ Target

ESRRA​ Target

PPARD Target

PPARA​ Target

GSTP1 Target

CYP3A4 Enzyme

CYP2C19 Enzyme

UGT1A1 Enzyme
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Table 2  (continued)

Name Drugbank ID Target genes Target type

CYP2C8 Enzyme

CYP19A1 Enzyme

CYP1A1 Enzyme

CYP2B6 Enzyme

CYP2C9 Enzyme

CYP3A5 Enzyme

CYP3A7 Enzyme

UGT1A3 Enzyme

UGT1A4 Enzyme

UGT1A6 Enzyme

UGT1A7 Enzyme

UGT1A8 Enzyme

UGT1A9 Enzyme

UGT1A10 Enzyme

UGT2B7 Enzyme

UGT2B15 Enzyme

Ertugliflozin DB11827 SLC5A2 Target

UGT1A9 Enzyme

UGT2B7 Enzyme

UGT1A1 Enzyme

UGT1A4 Enzyme

Exenatide DB01276 GLP1R Target

DPP4 Enzyme

Naveglitazar DB12662 PPARG​ Target

Alogliptin DB06203 DPP4 Target

CYP3A4 Enzyme

CYP2D6 Enzyme

Liraglutide DB06655 GLP1R Target

DPP4 Enzyme

MME Enzyme

Semaglutide DB13928 GLP1R Target

DPP4 Enzyme

MME Enzyme

LPL Enzyme

AMY1A Enzyme

Glimepiride DB00222 KCNJ11 Target

KCNJ1 Target

ABCC8 Target

CYP2C9 Enzyme

Sarpogrelate DB12163 HTR2C Target

HTR2A Target

Glyburide DB01016 ABCC9 Target

ABCB11 Target

ABCA1 Target

CFTR Target

CPT1A Target

TRPM4 Target

CYP2C9 Enzyme

CYP2C19 Enzyme
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Several limitations of the present analysis need to be 
noted. In the 2SMR analysis, we avoided the influence of 
different ethnicities to the greatest extent by screening for 
European ancestry in the involved studies. However, there 
are also a few studies that have mixed populations with a 
small proportion outside Europe. At the same time, the 
limitation of European ancestry also indicates that our 
findings may not be applicable to other ethnicities. In addi-
tion, the small number of variants for each exposure is the 

limitation of these analyses. These factors may interfere 
with the stability of the conclusion.

Conclusions
The present 2SMR analysis based on extensive data 
uncovered causal associations between diabetes and AD. 
It is interesting to note that T2D seemed to show a more 
significant association with AD risk than T1D. Further 
analysis identified several diabetes-related physiological 

Table 2  (continued)

Name Drugbank ID Target genes Target type

CYP3A4 Enzyme

CYP3A7 Enzyme

CYP3A5 Enzyme

Gliclazide DB01120 ABCC8 Target

VEGFA Target

CYP2C9 Enzyme

CYP2C19 Enzyme

Empagliflozin DB09038 SLC5A2 Target

UGT2B7 Enzyme

UGT1A3 Enzyme

UGT1A8 Enzyme

UGT1A9 Enzyme

Glymidine DB01382 KCNJ1 Target

ABCC8 Target

Balaglitazone DB12781 CYP3A4 Enzyme

CYP2C8 Enzyme

Glibornuride DB08962 CYP2C9 Enzyme

Rivoglitazone DB09200 CYP3A4 Enzyme

CYP2C8 Enzyme

AB192 DB06111 MPO Enzyme

Lisofylline DB12406 CYP1A2 Enzyme

Table 3  2SMR estimates of the causality between antidiabetic targets and AD

Target gene Drugs Action Method Numbers of 
SNPs

OR 95% CI P-value

CPE Insulin Human Modulator (Unknown) MR Egger 3 0.98 0.82–1.17 0.86

Inverse variance weighted 3 0.94 0.89–1.00 0.05

Weighted median 3 0.95 0.89–1.01 0.08

Weighted mode 3 0.95 0.89–1.01 0.24

ETFDH Metformin Inhibitor Inverse variance weighted 2 1.08 1.01–1.16 0.03

GANC Miglitol Antagonist Inverse variance weighted 2 1.09 1.02–1.18 0.02

MGAM Voglibose Inhibitor Wald ratio 1 1.04 1.00–1.09 0.04

Acarbose Inhibitor

Miglitol Antagonist,
inhibitor
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Fig. 4.  2SMR estimates of the causality between CPE target and AD. a Scatter plot. The slope of the line corresponds to a causal estimate using 
each of the four different methods. b Funnel plot. The vertical line shows a causal estimate using all SNPs combined into a single instrument for 
each of two different methods. c Forest plot. Each black dot represents the MR estimate of each SNP using the wald ratio, and the horizontal line 
represents the 95% CI. The red points show a combined causal estimate using all SNPs in a single instrument, including the 2SMR estimates of IVW 
and MR-Egger. d Leave-one-out sensitivity analysis. Each black dot represents the result of MR-IVW excluding that particular SNP, and the red dot 
depicts the IVW estimate using all SNPs
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parameters that may have a causative role in the devel-
opment of AD. Besides, four targets from antidiabetic 
drugs were identified to be causally associated with AD, 
indicating potential therapeutic effects on AD and might 
provide implications for drug development. In summary, 
our study indicates that  diabetes and antidiabetic drugs 

were causally relevant to AD and certainly warrants 
more well-designed studies clinical verifications in the 
future. At the same time, these findings also inspire us 
that preventing or delaying the risk factors of AD, such 
as diabetes, are likely to be more achievable goals in the 
foreseeable future.

Fig. 5.  2SMR estimates of the causality between ETFDH target and AD. a Scatter plot. The slope of the line corresponds to a causal estimate using 
each of the four different methods. b Funnel plot. The vertical line shows a causal estimate using all SNPs combined into a single instrument for 
each of two different methods. c Forest plot. Each black dot represents the MR estimate of each SNP using the wald ratio, and the horizontal line 
represents the 95% CI. The red points show a combined causal estimate using all SNPs in a single instrument, including the 2SMR estimates of IVW 
and MR-Egger

Fig. 6.  2SMR estimates of the causality between GANC target and AD. a Scatter plot. The slope of the line corresponds to a causal estimate using 
each of the four different methods. b Funnel plot. The vertical line shows a causal estimate using all SNPs combined into a single instrument for 
each of two different methods. c Forest plot. Each black dot represents the MR estimate of each SNP using the wald ratio, and the horizontal line 
represents the 95% CI. The red points show a combined causal estimate using all SNPs in a single instrument, including the 2SMR estimates of IVW 
and MR-Egger
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to small sizes and bright color)

Fig. 8  The sub-network analysis based on identified targets and first 
neighbors of AD susceptibility genes
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