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Abstract

Background: Inhibition of glucose oxidation during initial reperfusion confers protection against ischemia-reperfusion (IR)
injury in the heart. Mitochondrial metabolism is altered with progression of type 2 diabetes (T2DM). We hypothesized that
the metabolic alterations present at onset of T2DM induce cardioprotection by metabolic shutdown during IR, and that
chronic alterations seen in late T2DM cause increased IR injury.

Methods: Isolated perfused hearts from 6 (prediabetic), 12 (onset of T2DM) and 24 (late T2DM) weeks old male Zucker
diabetic fatty rats (ZDF) and their age-matched heterozygote controls were subjected to 40 min ischemia/120 min
reperfusion. IR injury was assessed by TTC-staining. Myocardial glucose metabolism was evaluated by glucose tracer kinetics
(glucose uptake-, glycolysis- and glucose oxidation rates), myocardial microdialysis (metabolomics) and tissue glycogen
measurements.

Results: T2DM altered the development in sensitivity towards IR injury compared to controls. At late diabetes ZDF hearts
suffered increased damage, while injury was decreased at onset of T2DM. Coincident with cardioprotection, oxidation of
exogenous glucose was decreased during the initial and normalized after 5 minutes of reperfusion. Metabolomic analysis of
citric acid cycle intermediates demonstrated that cardioprotection was associated with a reversible shutdown of
mitochondrial glucose metabolism during ischemia and early reperfusion at onset of but not at late type 2 diabetes.

Conclusions: The metabolic alterations of type 2 diabetes are associated with protection against IR injury at onset but
detrimental effects in late diabetes mellitus consistent with progressive dysfunction of glucose oxidation. These findings
may explain the variable efficacy of cardioprotective interventions in individuals with type 2 diabetes.
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Introduction

Patients with type 2 diabetes seem to have increased sensitivity

toward ischemia-reperfusion (IR) injury and attenuated ability to

activate endogenous cardioprotection against IR injury [1], but

the results from clinical [2] and experimental studies [3] are not

consistent.

Mitochondria are the end-effectors of various cardioprotective

strategies. Downregulation of metabolism facilitates cardioprotec-

tion [4]. Metabolic shut-down and gradual wake-up by extending

the endogenous inhibition of mitochondrial respiration from

ischemia to initial reperfusion followed by gradual reversal during

subsequent reperfusion mediates cardioprotection [5], because the

burst of reactive oxygen species (ROS) and Ca2+ overload

prompted by unmodified postischemic reperfusion are attenuated

[6]. Reduced glycolysis rate and inhibition of respiratory

complexes during ischemia are inherent parts of ischemic

preconditioning (IPC) [7]. Mitochondrial dysfunction is considered

inherent to the pathophysiology of type 2 diabetes [8] and may

diminish the metabolic flexibility, which is a prerequisite for

modification of metabolism to elicit cardioprotection.

We have recently shown that inhibition of mitochondrial

metabolism during ischemia and early reperfusion, by blockage

of the malate-aspartate shuttle (MAS), elicits a cardioprotective

effect similar to IPC [9–11]. MAS constitutes an important

mechanism for transport of reduced equivalents from the cytosol

to the mitochondria for oxidation and facilitation of glucose

oxidation. Its activity is regulated by substrate availability and
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specific aspartate/glutamate carrier (AGC) proteins located in the

mitochondrial membrane [12]. AGC contributes to an asymmet-

ric distribution of reduced nicotine adenine dinucleotide between

the cytosolic and the mitochondrial compartment and consists of

two proteins, citrin and aralar, of which aralar is predominant

[13]. Overexpression of aralar has been shown to increase glucose

oxidation and mitochondrial activity in pancreatic beta cells [14].

In addition, glutamate transfer across the mitochondrial mem-

brane by the excitatory amino acid transporter 1 (EAAT1) is

thought to involve MAS. EAAT1 may account for an increase in

MAS activity in hyperthyroid rats [15], suggesting that it may

adapt to various pathological conditions. We have recently

demonstrated decreased expression of EAAT1 in Zucker Diabetic

Fatty (ZDF) rat hearts [16]. The influence of diabetes duration on

the myocardial glucose metabolism during IR and the integrated

MAS expression influencing key metabolic pathways for cardio-

protection is unknown.

The aim of the present study was to investigate whether

sensitivity toward IR injury in type 2 diabetes was dependent on

the duration of diabetes, and if so whether differences in sensitivity

were associated with changes in myocardial glucose metabolism

during ischemia and reperfusion.

Materials and Methods

Ethics Statement
Animals were handled in accordance with national and

institutional guidelines for animal research. The experimental

work was approved by the Danish Animal Experiments Inspec-

torate (license no. 2011/561-2010-C2).

Animals
Male Zucker diabetic fatty (ZDF) rats (homozygote (fa/fa)) and

their age-matched lean controls (fa/+) (Charles River Laborato-

ries, Kisslegg, Germany) were studied at ages 6, 12 and 24 weeks

corresponding to a prediabetic state, onset of and late type 2

diabetes. The rats did not receive any anti-diabetic treatment.

They were fed Purina 5008 diet as recommended by the supplier

and housed under controlled conditions with 12:12 h light-dark

cycles.

Animals were subjected to 12–16 hours of fasting before

experimental procedures. All rats were anaesthetized with

DormicumH (midazolam, 0.5 mg/kg body weight (bwt), Matrix

Pharmaceuticals, Herlev, DK) and HypnormH (fentanylcitrate,

0.158 mg/kg bwt and fluanisone, 0.5 mg/kg bwt, Vetapharma

Ltd., Leeds, UK) by subcutaneous injection before excision of the

heart for Langendorff perfusion or tissue analyses.

Study Design and Experimental Protocol
The study consisted of three arms that encompassed the

following analyses (Figure 1):

I. IR-sensitivity analyses; IR with determination of infarct

size (IS), hemodynamic performance, myocardial microdialysis

and exogenous glycolysis rate.

II. Tracer analyses+postischemic tissue analyses; IR

with determination of glucose uptake rate during stabilization and

glucose oxidation rate during stabilization and initial reperfu-

sion+myocardial content of total-glycogen after 30 min reperfu-

sion.

III. Baseline tissue analyses; myocardial protein expression

of MAS-related proteins+measurement of baseline total-glycogen.

Analysis of Blood Glucose and Plasma Metabolites
Preanesthetic fasting blood samples were drawn on animals

included in the IR sensitivity analyses (I) for measurements of

fasting blood glucose (OneTouchH Ultra Blood Glucose, Lifescan

Inc., CA, USA) and plasma insulin (DRG Instruments, Marburg,

Germany). Samples were obtained from tail-vein bleeding.

Preparation for insulin analyses included collection in heparinized

capillary tubes (,100 mL), centrifugation (5000 RPM for 1 min at

ambient temperature), collection of the supernatant and storage at

280uC before analysis with a hypersensitive rat insulin ELISA kit

(DRG Instruments, Marburg, Germany). Serum total-cholesterol,

triglyceride and free fatty acids were measured on blood samples

drawn from the aorta of the animal immediately before excision of

the heart. Preparation included centrifugation (3500 RPM for

10 min at 4uC), collection of the supernatant and storage at

280uC until analysis on a Cobas Integra Analyzer (Roche

Diagnostics, Rotkreuz, Switzerland).

Isolated Perfused Rat Heart Model
Hearts (I+II) were cannulated in-situ without disruption of

coronary flow and perfused retrogradely a.m. Langendorff with

Krebs-Henseleit (KH) solution (11 mM glucose) at a constant

pressure of 80 mmHg, as described in detail previously [17]. The

perfusion protocol consisted of 40 min stabilization, 40 min global

ischemia and 120 min reperfusion. Left ventricular function was

measured by an intraventricular balloon connected to a pressure

transducer and coronary flow (CF) by an inline flowmeter (Hugo

Sachs Electronic, March-Hugstetten, DE). Diastolic pressure was

set to 5–8 mmHg. Data were acquired and analyzed with

NotochordH-hem software (Notocord, Croissy-Sur-Seine, France).

Hearts were frozen, sliced and underwent vital staining with 2,3,5-

triphenyltetrazoliumchloride to delineate areas of infarction (I). IS

was assessed by manual delineation using image analysis software

(ImageJ, NIH). Measurements were weighted with the weight of

Figure 1. Study design and experimental protocol. Overview of groups, number of animals (N) and experimental protocols. KH-buffer: Krebs-
Henseleit buffer.
doi:10.1371/journal.pone.0064093.g001
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each individual slice. The IS/area-at-risk (IS/AAR) ratio was then

calculated for each heart.

Myocardial Microdialysis
Myocardial microdialysis was performed on all hearts in the

perfusion analyses (I) to assess interstitial concentrations of citric

acid cycle intermediates and glycolytic end products, as described

previously [9]. In brief, a microdialysis probe (membrane length

4 mm, cut-off 6 Da; AgnTho’s AB, Sweden) was inserted into the

free left ventricular wall of the myocardium enabling sampling

with a perfusion rate of 1 mL/min over 10 min. Perfusion fluid was

KH buffer deoxygenated with 95% N2 and 5% CO2. Micro-

dialysis samples were separated by ultra-performance liquid

chromatography using a Waters Xevo TQ-S triple quadrupole

tandem mass spectrometer (Waters Corp., Manchester, UK).

Analytes were verified using two daughter ions and internal

standards when possible [18]. Results were corrected for relative

recovery rates that have been determined previously [9,18].

Exogenous Glucose Metabolism
Rates of glucose uptake, glycolysis and glucose oxidation were

measured using statically labeled tritiated glucose isotopes [19]. A

buffer volume of 1500 mL (5 mCi/100 mL) was recirculated.

Preexperimental buffer samples were drawn to assess baseline

specific activity (SA) pr. mmol glucose in the buffer. Glucose uptake

was assessed by 3H2O production from D-[2-3H]-glucose [20,21].

Glycolysis rate was determined by liberated 3H2O from D-[5-3H]-

glucose at the enolase step of glycolysis [22]. Glucose oxidation

was quantified by 3H2O production by oxidation of D-[6-3H]-

glucose in the citric acid cycle [19]. Because the buffer was

recirculated, samples from the inline flow tube (‘‘arterial’’ (A)) and

the coronary effluent (‘‘venous’’ (V)) were collected and analyzed

to assess 3H2O production. This was done by separation of labeled

glucose from 3H2O by anion exchange chromatography on AG 1-

X8 resin columns (Bio-Rad, Hercules, CA, USA) according to the

manufacturer’s instructions. The purified 3H2O was suspended in

10 mL Opti-Phase scintillation solution (Perkin-Elmer, Shelton,

CT, USA) and quantified by beta-scintillation on a TriCarb

2900TR liquid scintillation analyzer (Packard, Perkin, IL, USA) in

detections pr. minute (dpm). Rates of glucose utilization corrected

for heart weight and sampling time [19] were calculated as follows:

(V{A)(dpm=mL)|CoronaryFlow(mL=min)

SA(baseline)(dpm=mmol)|HeartWeight(g)

Myocardial Total-glycogen
Analyses were done on snap-frozen biopsies removed with

scissors from the left ventricle in vivo (III) and after 30 minutes of

reperfusion (II). Total glycogen was determined in triplicates after

degradation to glucose using the filter-paper technique and

spectrophotometric detection [23].

Western Blotting
Left ventricular biopsies were homogenized in 2 mL lysis-buffer

[16] and subsequently centrifuged for 15 min at 4uC and 1000 G.

Gel samples were prepared from the supernatant and total protein

concentration determined with a Pierce BCA Protein Assay

Reagent (Thermo Fisher Scientific Inc., Rockford, USA).

Samples were run on 12.5% polyacrylamide gels (Criterion

Tris-HCl, Bio-Rad, CA, USA) and subsequently transferred to a

nitrocellulose membrane. The blots were blocked with milk,

washed in PBS-T and incubated with primary antibodies

overnight at 4uC. Following incubation with horseradish perox-

idase-conjugated secondary antibody (P448, diluted 1:3000,

DAKO, Glostrup, Denmark) antigen-antibody complexes were

visualized with enhanced chemiluminiscense system (Amersham

Pharmacia Biotech, Denmark). Densitometry of protein bands was

performed, and for each gel an identical gel was run and subjected

to Coomassie staining to ascertain identical loading or to allow for

potential correction for minor differences in loading after scanning

and densitometry.

Antibodies. The following primary antibodies (rabbit poly-

clonal) were used: Aralar - (1:2000) (ab90095, Abcam, Cambridge,

UK); Citrin – (1:500) (sc-98624, Santa Cruz, CA, USA); EAAT1–

(1:1000) (ab416, Abcam, Cambridge, UK); GOT1/GOT2–

(1:1000/1:2000) (ARP48205_T100/ARP43517_T100); MDH1/

MDH2– (1:1500/1:1000) (ARP48284_T100/ARP48286_T100,

Aviva Systems Biology, CA, USA) When available, a blocking

peptide was used as a negative control.

Table 1. Animal characteristics.

6 weeks 12 weeks 24 weeks

Control (n = 8) ZDF (n = 8) Control (n = 8) ZDF (n = 8) Control (n = 7) ZDF (n = 7)

Body weight (BW), g 17963 20466* 31763{ 36267*{ 44664{ 423611*{

Heart weight (HW), mg 748626 730617 1100641{ 1101629{ 1509664{ 1258632*{

HW/BW, ratio 4.1760.11 3.5960.08* 3.4860.13{ 3.0560.07*{ 3.3860.13{ 2.9860.09*{

B-glucose, mmol/L 4.460.1 5.360.2* 4.760.1 13.161.6*{ 5.460.1{ 23.461.5*{

P-insulin, pmol/L 6.461.0 331.3640.7* 21.865.1 298.0627.9* 66.1610.4 92.1620.1{

S-total cholesterol, mmol/L 1.6760.09 1.8960.17 1.5960.06 3.3860.13*{ 2.4760.33 7.4760.60*{

S-triglyceride, mmol/L 0.4960.03 2.4260.25* 0.5160.03 6.5760.60*{ 0.7460.06 10.6861.32*{

S-free fatty acid, mmol/L 1.4060.14 4.5560.80* 1.3760.12 5.5460.80* 2.3660.23 7.7561.76*{

Mean6SEM.
*p,0.05 compared to age-matched controls.
{p,0.05 compared to 6 weeks control/ZDF.
doi:10.1371/journal.pone.0064093.t001
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Statistics
For reasons of clarity all data are reported as mean 6 SEM,

unless stated otherwise, even when the differences between groups

were tested with a non-parametric test. Data were analyzed to

assess age effect within control and ZDF groups and the effect of

diabetes by comparing ZDF groups with age-matched control

groups by two-way ANOVA followed by a pairwise comparison by

post hoc Bonferroni modification when appropriate. Non-para-

metric data were compared with Kruskal-Wallis test. Data

containing repeated measurements were analyzed using repeated

measurements ANOVA. Calculations were performed using

GraphPad Prism (GraphPad Software, CA, USA). P,0.05 was

considered statistically significant.

Results

Animal Characteristics
Heart-, body weights and biochemical characteristics are

summarized in Table 1. ZDF rats had increased body weight

compared to their respective controls at 6 and 12 weeks of age,

while body weight was decreased at 24 weeks of age. Heart weight

was similar in control and ZDF rats at 6 and 12 weeks and

significantly lower at 24 weeks. In both control and ZDF rats heart

weight increased with age. Heart weight corrected for body weight

was smaller in ZDF rats at all ages.

Albeit still within the normoglycemic range, preoperative fasting

glucose was elevated at 6 weeks in ZDF compared to control rats.

At 12 weeks ZDF rats were hyperglycemic with a further increase

at 24 weeks. In ZDF rats there was a ,50 fold increase in insulin

at 6 weeks compared to controls and a subsequent decline at 12

and 24 weeks. Total cholesterol, triglyceride and free fatty acids

were elevated at 6 weeks, although non-significant for cholesterol,

with a further increase at 12 and 24 weeks in ZDF rats. All

parameters increased with age in control rats.

Preischemic Cardiac Function
Figure 2 shows preischemic cardiac function. At 6 and 12 weeks

control and ZDF hearts had similar left ventricular developed

pressure (LVDevP) and CF. ZDF hearts displayed lower intrinsic

heart rates (HR) and rate-pressure-product (RPP = HR 6
LVDevP), although not statistically significant at 6 weeks. At 24

weeks of age there was no difference in RPP, as LVDevP and HR

declined in the control group, while LVDevP increased in the ZDF

group. The latter was accompanied by a significant increase in CF

corrected for HW (CFcorr).

Functional Recovery
Changes in LVDevP, RPP, relative recovery of RPP (RPPrec; %

of baseline), HR, CF and CFcorr are shown in Figure 2.

ZDF hearts had decreased RPP at all ages compared to

controls. At 6, but not 12, and 24 weeks LVDevP was decreased,

whereas HR was decreased at 12 and 24 weeks. When correcting

for baseline RPP there was no difference in RPPrec at 12 weeks in

contrast to 6 and 24 weeks. There were no differences in CF and

CFcorr at 6 and 12 weeks, while both were elevated in ZDF hearts

at 24 weeks.

RPP decreased in control hearts from 6 and 12 weeks to 24

weeks (p = 0.0003). In ZDF rats a similar pattern was found

between 6 and 24 weeks (p = 0.03), while ZDF hearts recovered

better at 12 compared to 6 weeks (p = 0.02). There was a

significant decline in CFcorr from 6 and 12 weeks to 24 weeks in

both control and ZDF hearts.

Figure 2. Hemodynamic parameters at baseline and during reperfusion. Hemodynamic performance during stabilization and reperfusion.
Mean6SEM. Closed symbols: Control, Open symbols: ZDF. * p,0.05, { p,0.01, ` p,0.001. LVDevP: Left ventricular developed pressure. HR: Heart
rate. RPP: rate-pressure-product. RPPrec: % recovery from baseline rate-pressure-product. CFcorr: Coronary flow corrected for heart weight.
doi:10.1371/journal.pone.0064093.g002

Figure 3. Infarct size and correlation with blood glucose. A. Infarct size/area-at-risk ratio (IS/AAR). Black bars: Control, White bars: ZDF. B.
Correlations between preoperative fasting blood glucose and IS/AAR at prediabetes, onset and late type 2 diabetes mellitus. Mean 6 SEM. Circles:
ZDF 6 weeks, Squares: ZDF 12 weeks, Triangles: ZDF 24 weeks.
doi:10.1371/journal.pone.0064093.g003
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Figure 4. Glucose metabolism prior to ischemia-reperfusion. Glucose uptake – glycolysis- and glucose oxidation rates during stabilization.
Mean 6 SEM. Black bars: Control, White bars: ZDF.
doi:10.1371/journal.pone.0064093.g004

Figure 5. Glucose metabolism during reperfusion. A: Glycolysis and B: Glucose oxidation rates during reperfusion at 6, 12 and 24 weeks. Mean
6 SEM. Closed symbols: Control, Open symbols: ZDF. P-values indicate differences between control and ZDF from 0–5 and 10–30 minutes of
reperfusion, respectively.
doi:10.1371/journal.pone.0064093.g005
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Infarct Size and Correlation with Blood Glucose
T2DM significantly altered the development in sensitivity

towards IR injury compared to controls. At late diabetes ZDF

hearts suffered increased IR injury. At onset of T2DM the injury

was decreased (Figure 3A).

There was a non-significant increase in IS with increasing age in

control hearts. In contrast ZDF hearts had reduced IS at 12 weeks

compared to 6 as well as 24 weeks, and IS was significantly higher

at 24 than at 6 weeks.

IS correlated inversely with blood glucose concentration at 12

weeks (r2 = 0.51, p = 0.046) and tended to correlate positively at 24

weeks in ZDF rats (r2 = 0.46, p = 0.095) (Figure 3B). There were no

significant correlations between IS and circulating free fatty acids,

triglyceride or cholesterol concentrations.

Exogenous Glucose Metabolism
Preischemically. Rates of exogenous glucose uptake, glycol-

ysis rate and glucose oxidation did not differ between control and

ZDF hearts at 6 weeks (Figure 4). At 12 and 24 weeks glucose

uptake -, glycolysis- and oxidation rates were reduced in ZDF

hearts. All rates decreased with increasing age in ZDF hearts.

Postichemically. Compared to control hearts glycolysis rate

did not differ at 6 weeks, but decreased at 12 and 24 weeks of age

(Figure 5A). Glucose oxidation rates were similar at 6 weeks. At

onset of type 2 diabetes (12 weeks) ZDF rats completely shut down

their exogenous glucose oxidation during the first few minutes of

reperfusion (p = 0.0007) with a subsequent increase to reach

control levels between 10–30 minutes of reperfusion (p = 0.12)

(Figure 5B). Glucose oxidation was continuously decreased

throughout reperfusion in ZDF rats at late diabetes.

Myocardial Total-glycogen in vivo and after Ischemia-
reperfusion

In vivo total-glycogen concentrations were similar at 6 and 12

weeks and almost 3-fold increased in ZDF rats at 24 weeks

compared to control rats (Figure 6A). After 30 min of reperfusion

there were no differences between control and ZDF at any age

(Figure 6B).

Interstitial Metabolite Concentrations during IR
Interstitial lactate and pyruvate levels were measurable in all

groups during the entire protocol. Fumarate, succinate and malate

levels were highest at 12 weeks and quantifiable during the entire

protocol in both controls and ZDF rats. At 6 and 24 weeks,

concentrations only reached quantitative levels during the last 20

minutes of ischemia and the first 10 minutes of reperfusion. Results

for control and ZDF hearts at 12 weeks are shown in Figure 7.

Interstitial lactate levels were similar in control and ZDF hearts

during the entire protocol at 6 weeks. ZDF rats had lower

interstitial lactate levels during stabilization and the concentration

also tended to be lower during reperfusion at 12 weeks (Figure 7A).

Interstitial lactate was increased during late ischemia and entire

reperfusion in ZDF hearts at 24 weeks (p = 0.02).

ZDF rats had increased concentrations of pyruvate, fumarate

and malate during ischemia, and in particular at the end of

ischemia, compared to controls at 12 weeks, while succinate was

non-significantly increased (Figure 7B–E). During reperfusion

malate concentration was increased in ZDF rats, while pyruvate,

succinate and fumarate levels were similar. At 6 and 24 weeks

there were no differences in pyruvate, fumarate, succinate and

malate levels.

Protein Expression of MAS Transporters and Enzymes
There were no significant alterations in protein expression at 6

and 12 weeks of age, although there was a tendency towards

upregulation of EAAT1 and downregulation of aralar and the

cytosolic enzymes at 12 weeks. At 24 weeks all transport proteins

were downregulated. However, the downregulation of aralar did

not reach statistical significance (Figure 8).

Discussion

This study provides two major findings: 1) sensitivity towards

ischemia-reperfusion injury in the type 2 diabetic heart is

dependent on the duration of the disease with decreased sensitivity

at onset and increased sensitivity at a late stage, 2) this finding was

associated with differences in glucose metabolism during ischemia

and reperfusion depending on the stage of the disease. At onset of

diabetes there was a shutdown of mitochondrial glucose oxidation

during ischemia and initial reperfusion with a subsequent gradual

awakening. In contrast rats with late type 2 diabetes displayed

continuously decreased glucose metabolism throughout reperfu-

sion and downregulated expression of MAS proteins indicating a

dysfunctional cytosol to mitochondria communication that should

have facilitated gradual awakening of glucose oxidation. Our

findings substantiate previous studies on diabetes and IR injury

demonstrating the influence of early and late diabetes [24–28]. In

addition our study examines concomitantly the impact of

myocardial glucose metabolism, ranging from glucose uptake to

mitochondrial oxidation, at different stages of type 2 diabetes on

IR sensitivity.

Heart-, bodyweights and biochemical data confirm that ZDF

rats develop characteristics similar to unregulated human type 2

diabetes. The characteristics of our animals are comparable to

those reported by Wang et al. [25]. In addition to hyperlipidemia

and hypercholesterolemia, ZDF rats develop several obesity- and

hyperglycemia-related complications including arterial hyperten-

sion, cardiomyopathy, cardiac hypertrophy and nephropathy

[29,30]. Per se, these complications are associated with alterations

in either IR sensitivity and/or the effect of cardioprotective

strategies. Hyperlipidemia impairs ischemic tolerance and atten-

uates the effect of conditioning strategies [31,32]. The effects of

compensated hypertrophy and hypertension on IR sensitivity are

Figure 6. Myocardial glycogen concentrations. Myocardial
concentrations of total-glycogen in vivo (A) and after ischemia and
30 min reperfusion (B) in control and ZDF rats. Mean 6 SEM. Black bars:
Control, White bars: ZDF. IR: ischemia-reperfusion. p,0.0001 vs. age-
matched control and ZDF 6 weeks.
doi:10.1371/journal.pone.0064093.g006
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currently discussed because increased as well as unaltered

sensitivity have been reported, while the effect of preconditioning

consistently seems to be maintained [33,34]. In contrast, IR

sensitivity is increased in uremia, while the cardioprotective effect

of ischemic preconditioning is maintained or even improved

[35,36]. All of these conditions may be involved in the mechanisms

behind the findings of our study. However, based on our data it

seems that the factors triggering the response to IR injury in

diabetic hearts are associated with mitochondrial glucose metab-

olism possibly through the MAS-cycle. The correlation between

myocardial infarct size and preoperative blood glucose concen-

tration indicates that the decrease in sensitivity towards IR injury

in early and increase in sensitivity in late diabetes is associated with

the severity of hyperglycemia. Although not overtly hyperglyce-

mic, prediabetic rats had higher blood glucose than controls and a

borderline increase in IR injury at this stage supporting the impact

of preoperative circulating glucose concentration. An influence of

hyperglycemia on IR injury in the presence of evident diabetes

and a dependency on disease duration gain support from previous

studies [24,37–39]. However, these studies have been performed

in streptozotocin (STZ) or alloxan induced animal models of type

1 diabetes where the disease, in contrast to type 2 diabetes,

develops rapidly without the preceding metabolic abnormalities

present in the ZDF rat model. Studies in Goto-Kakizaki (GK) rats,

Figure 7. Interstitial concentrations of metabolites. Interstitial concentrations of glycolytic - and citric acid cycle metabolites measured by
myocardial microdialysis during ischemia-reperfusion in control (closed squares) and ZDF (open squares) at 12 weeks. Mean 6 SEM. A: Lactate, B:
Pyruvate, C: Succinate, D: Fumarate, E: Malate.
doi:10.1371/journal.pone.0064093.g007
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another hereditary animal model of type 2 diabetes, have shown

that the dependency of myocardial IR injury on circulating

glucose levels is a function of age and associated with concomitant

alterations in heart mitochondrial function [40]. Thus, not only

the severity but also the duration of hyperglycemia alters sensitivity

against IR injury and other yet unidentified mechanisms may be

triggered as the animals develop evident diabetes.

The metabolic phenotype associated with reduced sensitivity

against IR injury in early diabetes seem to share features with the

mechanisms involved in cardioprotection by IPC, which is

associated with optimized energy yield by adaptation of major

pathways such as glycolysis, glucose - and fatty acid oxidation.

Following initial activation of anaerobic glycolysis, persistent

ischemia inhibits glycolysis and glycogenolysis. IPC accentuates

this inhibition [7,41] by a metabolic shut-down during ischemia

and very early reperfusion followed by a gradual wake-up of

metabolism during subsequent reperfusion [5]. Considered a key

mechanism behind not only IPC but also cardioprotective

strategies like postconditioning and remote ischemic conditioning,

the convergence towards mitochondria as the end-effector of

ischemic cardioprotection [6,42] is of importance for type 2

diabetes, because mitochondrial dysfunction is regarded as an

inherent part of insulin resistance in type 2 diabetes [8].

Mitochondrial dysfunction compromising metabolic flexibility

has also been demonstrated with ageing [43], but the nature of

the abnormality and whether it varies with diabetes duration is

unknown.

In accordance with previous studies we found elevated tissue

concentrations of the citric acid cycle intermediates (CAC)

succinate, fumarate and malate during IR injury [44–46]. More

importantly, we demonstrated increased concentrations during

ischemia at onset of type 2 diabetes compared to controls

consistent with the cardioprotective effect of fumarate recently

demonstrated by Ashrafian et al. [47] in fumarate hydratase (FH)

knock-out mice with reduced IR sensitivity. These mice displayed

increased levels of second span CAC intermediates (a-ketogluta-

rate to oxaloacetate) [48], and to compensate for the decreased

CAC activity due to FH deficiency they channeled amino acids

into the CAC and thereby maintained energetic viability. Our

findings are not likely to be caused by a decrease in FH activity,

because malate was increased. However, a potential mechanism

may be a decreased CAC activity due to decreased consumption of

reduced equivalents by the respiratory chain enzymes during early

reperfusion. When induced in healthy hearts by respiratory chain

enzymes inhibitors, this mechanism induces cardioprotection

[4,49], and a reduced TCA cycle flux has recently been

demonstrated in diabetic myotubes [50] supporting this assump-

tion. An alternative or coexistent mechanism could be increased

amino acid derived anaplerosis, which would maintain energetic

viability [51] and cause an increase in second span metabolites.

Figure 8. Expression of proteins involved in the malate-aspartate shuttle. Fold change in expression of proteins participating in the malate-
aspartate shuttle. Controls are set to 0 at all ages. Bars indicate fold change in ZDF hearts compared to control hearts. A: Transporter proteins. B:
Enzymes. C: Representative western blots. There were no significant changes in expression at 6 and 12 weeks, while citrin and EAAT1 were
significantly, and aralar non-significantly, downregulated at 24 weeks of age. Mean 6 SEM. EAAT: Excitatory Amino Acid Transporter. ASAT:
Aspartate Amino Acid Transaminase. MDH: Malate Dehydrogenase. *p,0.05.
doi:10.1371/journal.pone.0064093.g008
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However, the increased interstitial pyruvate concentration during

ischemia in diabetic hearts does not support anaplerosis as a

predominant mechanism. The increase in pyruvate concentration

rather reflects decreased CAC activity and pyruvate utilization.

Localized in the inner mitochondrial membrane, the MAS

constitutes the main pathway for balancing myocardial extra- and

intramitochondrial glucose metabolism through translocation of

reducing equivalents from the cytosol into the mitochondria. We

found decreased expression of ASAT1 and a tendency towards

increased expression of the glutamate transporter EAAT1 at onset

of diabetes. The association between altered protein expression

and dynamic changes in metabolism is unknown. Our findings are

consistent with an increased metabolic flexibility at onset of type 2

diabetes allowing initial shut down of glucose oxidation because

inhibition of MAS causes attenuated transfer of reduced equiva-

lents and decreased CAC activity during early reperfusion

combined with a preserved ability of the shuttle to increase its

activity and hence mitochondrial metabolism. An increase in

expression of glutamate transporters participating in the MAS has

previously been shown to enhance mitochondrial metabolism

including glucose oxidation [14]. The increased sensitivity towards

IR injury at late diabetes could be a consequence of loss of

metabolic flexibility due to exhaustion of the MAS, which showed

markedly reduced expression, and severe mitochondrial dysfunc-

tion in accordance with a recent human study of cardiac

expression of MAS-related proteins on pancreatic islet cells in

type 2 diabetes [52]. These abnormalities obstruct the initial

metabolic shutdown followed by a gradual acceleration of glucose

oxidation [53] and induce irreversible tissue damage [54]. A

recently published study by Sárközy et al. [55] confirms that late

unregulated diabetes in ZDF rats is associated with extensive

changes at the mRNA and protein level of the myocardium. In an

exploratory study evaluating ,15.000 genes in 25 wks old ZDF

rats they found profound modifications of the myocardial

transcriptome including genes involved in carbohydrate metabo-

lism and membrane transport. Moreover, they demonstrated

increased levels of cardiac 3-nitrotyrosine, an indicator of

oxidative stress, and regulations of genes related to stress response

and oxidative stress, factors that are known to affect IR injury.

These and ours findings warrant studies with a mechanistic

approach to delineate the pathophysiological consequences of

these alterations.

We conducted our experiments in an isolated perfused rat heart

model with a circulating glucose concentration of 11 mmol/L and

glucose as the sole substrate in the absence of insulin to avoid acute

influences of different glucose concentrations and interference

from fatty acids (FA) and insulin on IR injury. Sensitivity towards

IR injury is substrate dependent with increased injury when

metabolizing FA [56], and insulin is an activator of the reperfusion

injury salvage kinase pathway, which provides cardioprotection

[57]. Wang et al. [25] demonstrated a similar reduction of

sensitivity against IR injury in ZDF hearts at onset of type 2

diabetes irrespective of substrate composition. We chose the ZDF

rat because it is a commonly used animal model of type 2 diabetes

with the inherent metabolic disarrays, i.e. insulin resistance and

basal hyperinsulinemia [58], abnormal glucose metabolism [59]

and myocardial mitochondrial dysfunction [60], which may

modify the efficacy of cardioprotection.

We demonstrated differences in glycolysis and glucose oxidation

by quantification of exogenous glucose metabolism. Endogenous

glucose metabolism was assessed by tissue measurements of

glycogen concentrations before ischemia and after 30 minutes of

reperfusion. Although these measurements showed no differences

between control and ZDF rats at onset of type 2 diabetes it is a

limitation that this method does not allow temporal assessment of

endogenous glycogen metabolism during different phases of

reperfusion.

A final limitation of our study is that it is not clear to which

extend altered protein expression is associated with dynamic

changes in metabolism. Although the evidence for the changes in

intermediary metabolism and respiratory capacity remain indirect,

we applied a variety of approaches and the totality of data from

numerous methods underlies our conclusions.

Conclusions
In conclusion, the alterations in mitochondrial glucose metab-

olism in type 2 diabetes are associated with protection against IR

injury at onset but detrimental effects in late diabetes mellitus.

These findings provide an explanation to previous conflicting

results on IR injury in individuals with type 2 diabetes.
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